導航:首頁 > 編程語言 > 知乎python入門

知乎python入門

發布時間:2022-11-26 21:27:49

❶ 初學者如何學習python如何快速從Python小白到初級Python工程師

制定目標
我的學習歷程:我想免費學習Python,因此我必須養成每天的學習習慣(每天4個小時),甚至要利用我的周末。我的總體規劃是設定目標並追逐目標。我為7個星期設定了7個目標!
第1周
我的第一周目標-(Python基礎知識)作為初學者,我們的第一周目標應該是-熟悉Python基礎知識,例如變數,條件,列表,循環,函數。(好奇並探索您可以使用Python進行的操作)。由於我想免費學習python,所以我開始在互聯網上進行挖掘,幸運的是發現了一個Python備忘單,對我有很大幫助。
第2周
第二周目標-(提高我的編碼能力)解決100多個編碼問題。反向字元串,迴文,GCD,合並排序數組,If-then-else語句,循環,函數和python軟體包問題。「越努力,您就會成為更好的開發者」
第3周
第三周目標-(了解數據結構和演算法),提升您的技能和知識,並學習基礎知識,例如堆棧,隊列,元組,樹,字典,鏈接列表,搜索(線性和二進制搜索),遞歸函數(階乘,斐波那契數列),排序(氣泡排序,選擇排序)和時間復雜度(線性,二次和常數)。
第4周
第四(探索Python庫)Python之所以在開發人員中如此受歡迎,是因為其令人贊嘆的庫可供用戶使用。您可以使用的一些最常見的庫是Numpy,Scipy,Scikit-learn,Theano,TensorFlow,Keras,PyTorch和Pandas。
OpenCV是計算機視覺庫,可為您提供圖像處理功能!很酷吧?
SimpleCV,另一個CV庫,本質上是OpenCV的子集,但學習曲線要低得多。
我發現個驚人的博客約有56個Python庫。
PyGame,一個游戲開發庫,可讓您製作出色的游戲。
第5周
第五周目標-(學習Python框架)您必須學習至少3個流行的框架。閱讀框架文檔,在B站上找到視頻教程。必須以Numpy,Django,pandas和Scrapy開頭。
Django-一個Web應用程序框架。從這里您可以學習Django。
Flask(Python Microframework),另一種流行的Web應用程序框架,更加扎實(因此更加靈活)的Web應用程序開發方法
第6周
第六周目標-(從事Python項目)這是最重要的。在這里,您必須測試並應用您的知識。在第6周,您要做的就是至少處理3個python項目。我知乎分享了我以前的答案,您將在這里獲得一些適合初學者和中級學習者的出色python項目:使用Python構建的一些出色項目?
第7周
第七周目標-(Python面試練習)恭喜!現在,您擁有在全球任何一家技術公司中申請任何軟體工程工作所需的資源。現在,練習您的軟技能,並盡可能練習面試問題。

❷ python最佳入門教程(1): python的安裝

本教程基於python3.x, 是針對初學者的一系列python入門教程,在知乎上常有人問我計算機該怎麼學,如何自學編程,筆者也是通過自學編程而進入IT這一行業的,回顧入行的這幾年,從音視頻流媒體輾轉到人工智慧深度學習,機器視覺,我是下了不少苦心的,對於如何學習有自己的一套理論和實踐方法,很多人自言學編程不得其門,把學不會歸咎於天分,其實芸芸眾生,智力無別,你現在所看到的是技術大牛們一個個超凡絕頂(然知此絕頂非彼絕頂),看不到的是曾經的他們,也在每個晝夜裡用心苦學。再者學一門技術,需要勤學刻苦,是需要講究方法和基礎的,方法對了就事半功倍,所謂的天才也無不是建立在扎實的基礎之上。
在windows中安裝python
首先打開python官網https://www.python.org/,點擊頁面downloads導航按鈕,下載windows最新的基於web安裝的安裝器,右鍵以管理員身份運行 安裝包,會出現如下界面:
將Add Python 3.7 to PATH 進行勾選,勾選此項的目的在於將python解釋器加入系統環境變數,則在後續的python開發中可直接在windows 命令行中執行python腳本。所謂的環境變數是系統運行環境的一系列參數,比如這里的系統環境變數是PATH,PATH保存了與路徑相關的參數,系統在路徑查找中,會對PATH保存的路徑進行搜索。
點擊install Now按鈕執行python的安裝
打開windows命令行界面(按windows鍵輸入cmd命令),輸入python -V,出現python版本的相關輸出,即表示安裝成功。
在Linux系統中安裝python
筆者的系統是CentOS, Linux系統默認有安裝python,但是其版本是2.x,在這里筆者以源碼安裝的形式來安裝python 3.X。首先進入python源碼包頁面 點擊下載最新的gzip格式的python源碼包,上傳到伺服器然後進行解壓,解壓後的目錄結構如下圖所示:
Linux中的configure與make
configure是Linux中的腳本配置工具,用來對源碼的當前安裝環境進行檢測,若檢測無誤,會在當前目錄生成一個供源碼編譯的Makefile腳本文件。
make是Linux系統下的編譯安裝工具,用來解釋執行makefile文件中的腳本命令,編譯命令。
現在我們開始編譯安裝python
(1) 在當前目錄執行./configure(2) 輸入 make && sudo make install
若無指定安裝目錄,python會被默認安裝在/usr/local目錄中, 讀者可以執行./configure --prefix=「你自定義的安裝目錄」來配置安裝路徑。安裝完畢以後進入/usr/local/bin目錄,輸入 「python3.x -V」 (這里的python3.x為你所安裝的python版本),若出現與python版本的相關輸出,即表示安裝成功。
為安裝的python設置軟鏈接
安裝的python可以以絕對路徑的方式來執行,每次敲一大段路徑來執行python未免麻煩,通常我們會給安裝的python設置軟鏈接,這里的軟鏈接類似於windows的快捷方式。
輸入以下命令來給python設置軟鏈接,筆者安裝的版本是python3.7, pip是python的包管理工具,會在教程的後續章節中進行詳細講解。
ln -s /usr/bin/python3 /usr/local/bin/python3.7 # 表示設置python3 為 /usr/local/bin/python3.7的快捷方式ln -s /usr/bin/pip3 /usr/local/bin/pip3.7 # 表示設置pip3 為 /usr/local/bin/pip3.7的快捷方式

❸ 你們都是怎麼學 Python 的

學習Python大致可以分為以下幾個階段:
1.剛上手的時候肯定是先過一遍Python最基本的知識,比如說:變數、數據結構、語法等,基礎過的很快,基本上1~2周時間就能過完了,我當時是在這兒看的基礎:Python 簡介 | 菜鳥教程果你想簡單點,我把我自己的學習經驗總結成了一本Python以及爬蟲電子書,保證非常的通俗易懂幫助你學會Python,目前這本書幫助了數十萬的人從零開始學會了Python。
2.看完基礎後,就是做一些小項目鞏固基礎,比方說:做一個終端計算器,如果實在找不到什麼練手項目,可以在 Codecademy - learn to code, interactively, for free 上面進行練習。
3.如果時間充裕的話可以買一本講Python基礎的書籍比如《Python編程》,閱讀這些書籍,在鞏固一遍基礎的同時你會發現自己諸多沒有學習到的邊邊角角,這一步是對自己基礎知識的補充。
4.Python庫是Python的精華所在,可以說Python庫組成並且造就了Python,Python庫是Python開發者的利器,所以學習Python庫就顯得尤為重要:The Python Standard Library ,Python庫很多,如果你沒有時間全部看完,不妨學習一遍常用的Python庫:Python常用庫整理 - 知乎專欄
5.Python庫是開發者利器,用這些庫你可以做很多很多東西,最常見的網路爬蟲、自然語言處理、圖像識別等等,這些領域都有很強大的Python庫做支持,所以當你學了Python庫之後,一定要第一時間進行練習。如何尋找自己需要的Python庫呢?推薦我之前的一個回答:如何找到適合需求的 Python 庫?

6.學習使用了這些Python庫,此時的你應該是對Python十分滿意,也十分激動能遇到這樣的語言,就是這個時候不妨開始學習Python數據結構與演算法,Python設計模式,這是你進一步學習的一個重要步驟:faif/python-patterns
7.當度過艱難的第六步,此時選擇你要研究的方向,如果你想做後端開發,不妨研究研究Django,再往後,就是你自己自由發揮了。

❹ python必背入門代碼是什麼

python必背入門代碼是Reversing a string using slicingmy_string "ABCDE"reversed_string = my_string[::-1]print(reversed_string)。

當你定義一個a = 3的時候,系統在內存中會給a一個地址,而這個a就是代表一個門牌號,然後小3住在裡面,當你要調用a的時候,就相當於你喊了一句:小3,出來玩兒了!當你改好了這個房子之後,門牌號a是不能改變的,但住在裡面的小3是可以換人的,所以稱之為變數,而不是恆量。

python經歷

在知乎和CSDN的圈子裡,經常看到、聽到一些 python 初學者說,學完基礎語法後,不知道該學什麼,學了也不知道怎麼用,一臉的茫然。

近日,CSDN的公眾號推送了一篇博客,題目叫做《迷思:Python 學到什麼程度可以面試工作?》,真實反映了 python 程序員在成長過程中的一些困惑。從2007年開始接觸 python 這門編程語言,從2009年開始單一使用 python 應對所有的開發工作,直至今天。

回顧自己的學習過程,也曾經遇到過無數的困難,也曾經迷茫過、困惑過。本文所列舉的這100個模塊,是我在工作和學習中用過的或者正在學習的,算是對自己過去12年的學習總結。希望對處在迷茫中的程序員有所幫助。



❺ 小白學python怎麼快速入門多久能完成一個項目

電子書集合|數據科學速查表|遷移學習實戰 ,免費下載

鏈接: https://pan..com/s/11qnpoLX1H_XzFB-RdVNG4w 提取碼: z9x7


❻ 如何學習python知乎

對於Python的學習人員需要掌握以下技術。
1.網路編程。
網路編程在生活和開發中無處不在,哪裡有通訊就有網路,它可以稱為是一切開發的"基石"。對於所有編程開發人員必須要知其然並知其所以然,所以網路部分將從協議、封包、解包等底層進行深入剖析。
2. 爬蟲開發。
將網路一切數據作為資源,通過自動化程序進行有針對性的數據採集以及處理。爬蟲開發項目包含跨越防爬蟲策略、高性能非同步IO、分布式爬蟲等,並針對Scrapy框架源碼進行深入剖析,從而理解其原理並實現自定義爬蟲框架。
3.Web開發。
Web開發包含前端以及後端兩大部分,前端部分,帶你從"黑白"到"彩色"世界,手把手開發動態網頁;後端部分,帶你從10行代碼開始到n萬行來實現並使用自己的微型Web框架,框架講解中涵蓋了數據、組件、安全等多領域的知識,從底層了解其工作原理並可駕馭任何業內主流的Web框架。
4. IT自動化開發。
IT運維自動化是一組將靜態的設備結構轉化為根據IT服務需求動態彈性響應的策略,目的就是實現減少人工干預、降低人員成本以及出錯概率,真刀真槍的帶你開發企業中最常用的項目,從設計層面、框架選擇、靈活性、擴展性、故障處理、以及如何優化等多個層面接觸真實的且來源於各大互聯網公司真實案例,如:堡壘機、CMDB、全網監控、主機管理等。
5. 金融分析。
金融分析包含金融知識和Python相關模塊的學習,手把手帶你從金融小白到開發量化交易策略的大拿。學習內容囊括Numpy\Pandas\Scipy數據分析模塊等,以及常見金融分析策略如"雙均線"、"周規則交易"、"羊駝策略"、"Dual Thrust 交易策略"等,讓夢想照進現實,進入金融行業不再是個夢。
6. 人工智慧+機器學習。
人工智慧時代來臨,率先引入深度機器學習課程。其中包含機器學習的基礎概念以及常用知識,如:分類、聚類、回歸、神經網路以及常用類庫,並根據身邊事件作為案例,一步一步經過預處理、建模、訓練以及評估和參調等。人工智慧是未來科技發展的新趨勢,Python作為最主要的編程語言,勢必有很好的發展前景,現在學習Python也是一個很好的機會。

❼ 知乎python 爬蟲如何入門學習

鏈接:https://pan..com/s/1wMgTx-M-Ea9y1IYn-UTZaA

提取碼:2b6c

課程簡介

畢業不知如何就業?工作效率低經常挨罵?很多次想學編程都沒有學會?

Python 實戰:四周實現爬蟲系統,無需編程基礎,二十八天掌握一項謀生技能。

帶你學到如何從網上批量獲得幾十萬數據,如何處理海量大數據,數據可視化及網站製作。

課程目錄

開始之前,魔力手冊 for 實戰學員預習

第一周:學會爬取網頁信息

第二周:學會爬取大規模數據

第三周:數據統計與分析

第四周:搭建 Django 數據可視化網站

......

❽ 深度學習 python怎麼入門 知乎

自學深度學習是一個漫長而艱巨的過程。您需要有很強的線性代數和微積分背景,良好的Python編程技能,並扎實掌握數據科學、機器學習和數據工程。即便如此,在你開始將深度學習應用於現實世界的問題,並有可能找到一份深度學習工程師的工作之前,你可能需要一年多的學習和實踐。然而,知道從哪裡開始,對軟化學習曲線有很大幫助。如果我必須重新學習Python的深度學習,我會從Andrew Trask寫的Grokking deep learning開始。大多數關於深度學習的書籍都要求具備機器學習概念和演算法的基本知識。除了基本的數學和編程技能之外,Trask的書不需要任何先決條件就能教你深度學習的基礎知識。這本書不會讓你成為一個深度學習的向導(它也沒有做這樣的聲明),但它會讓你走上一條道路,讓你更容易從更高級的書和課程中學習。用Python構建人工神經元
大多數深度學習書籍都是基於一些流行的Python庫,如TensorFlow、PyTorch或Keras。相比之下,《運用深度學習》(Grokking Deep Learning)通過從零開始、一行一行地構建內容來教你進行深度學習。

《運用深度學習》
你首先要開發一個人工神經元,這是深度學習的最基本元素。查斯克將帶領您了解線性變換的基本知識,這是由人工神經元完成的主要計算。然後用普通的Python代碼實現人工神經元,無需使用任何特殊的庫。
這不是進行深度學習的最有效方式,因為Python有許多庫,它們利用計算機的圖形卡和CPU的並行處理能力來加速計算。但是用普通的Python編寫一切對於學習深度學習的來龍去是非常好的。
在Grokking深度學習中,你的第一個人工神經元只接受一個輸入,將其乘以一個隨機權重,然後做出預測。然後測量預測誤差,並應用梯度下降法在正確的方向上調整神經元的權重。有了單個神經元、單個輸入和單個輸出,理解和實現這個概念變得非常容易。您將逐漸增加模型的復雜性,使用多個輸入維度、預測多個輸出、應用批處理學習、調整學習速率等等。
您將通過逐步添加和修改前面章節中編寫的Python代碼來實現每個新概念,逐步創建用於進行預測、計算錯誤、應用糾正等的函數列表。當您從標量計算轉移到向量計算時,您將從普通的Python操作轉移到Numpy,這是一個特別擅長並行計算的庫,在機器學習和深度學習社區中非常流行。
Python的深度神經網路
有了這些人造神經元的基本構造塊,你就可以開始創建深層神經網路,這基本上就是你將幾層人造神經元疊放在一起時得到的結果。
當您創建深度神經網路時,您將了解激活函數,並應用它們打破堆疊層的線性並創建分類輸出。同樣,您將在Numpy函數的幫助下自己實現所有功能。您還將學習計算梯度和傳播錯誤通過層傳播校正跨不同的神經元。

隨著您越來越熟悉深度學習的基礎知識,您將學習並實現更高級的概念。這本書的特點是一些流行的正規化技術,如早期停止和退出。您還將獲得自己版本的卷積神經網路(CNN)和循環神經網路(RNN)。
在本書結束時,您將把所有內容打包到一個完整的Python深度學習庫中,創建自己的層次結構類、激活函數和神經網路體系結構(在這一部分,您將需要面向對象的編程技能)。如果您已經使用過Keras和PyTorch等其他Python庫,那麼您會發現最終的體系結構非常熟悉。如果您沒有,您將在將來更容易地適應這些庫。
在整本書中,查斯克提醒你熟能生巧;他鼓勵你用心編寫自己的神經網路,而不是復制粘貼任何東西。
代碼庫有點麻煩
並不是所有關於Grokking深度學習的東西都是完美的。在之前的一篇文章中,我說過定義一本好書的主要內容之一就是代碼庫。在這方面,查斯克本可以做得更好。
在GitHub的Grokking深度學習庫中,每一章都有豐富的jupiter Notebook文件。jupiter Notebook是一個學習Python機器學習和深度學習的優秀工具。然而,jupiter的優勢在於將代碼分解為幾個可以獨立執行和測試的小單元。Grokking深度學習的一些筆記本是由非常大的單元格組成的,其中包含大量未注釋的代碼。

這在後面的章節中會變得尤其困難,因為代碼會變得更長更復雜,在筆記本中尋找自己的方法會變得非常乏味。作為一個原則問題,教育材料的代碼應該被分解成小單元格,並在關鍵區域包含注釋。
此外,Trask在Python 2.7中編寫了這些代碼。雖然他已經確保了代碼在Python 3中也能順暢地工作,但它包含了已經被Python開發人員棄用的舊編碼技術(例如使用「for i in range(len(array))」範式在數組上迭代)。
更廣闊的人工智慧圖景
Trask已經完成了一項偉大的工作,它匯集了一本書,既可以為初學者,也可以為有經驗的Python深度學習開發人員填補他們的知識空白。
但正如泰溫·蘭尼斯特(Tywin Lannister)所說(每個工程師都會同意),「每個任務都有一個工具,每個工具都有一個任務。」深度學習並不是一根可以解決所有人工智慧問題的魔杖。事實上,對於許多問題,更簡單的機器學習演算法,如線性回歸和決策樹,將表現得和深度學習一樣好,而對於其他問題,基於規則的技術,如正則表達式和幾個if-else子句,將優於兩者。

關鍵是,你需要一整套工具和技術來解決AI問題。希望Grokking深度學習能夠幫助你開始獲取這些工具。
你要去哪裡?我當然建議選擇一本關於Python深度學習的深度書籍,比如PyTorch的深度學習或Python的深度學習。你還應該加深你對其他機器學習演算法和技術的了解。我最喜歡的兩本書是《動手機器學習》和《Python機器學習》。
你也可以通過瀏覽機器學習和深度學習論壇,如r/MachineLearning和r/deeplearning subreddits,人工智慧和深度學習Facebook組,或通過在Twitter上關注人工智慧研究人員來獲取大量知識。
AI的世界是巨大的,並且在快速擴張,還有很多東西需要學習。如果這是你關於深度學習的第一本書,那麼這是一個神奇旅程的開始。

❾ 零基礎如何入門學習Python

以下是python全棧開發課程學習路線,可以按照這個課程大綱有規劃的進行學習:

階段一:Python開發基礎

Python全棧開發與人工智慧之Python開發基礎知識學習內容包括:Python基礎語法、數據類型、字元編碼、文件操作、函數、裝飾器、迭代器、內置方法、常用模塊等。

階段二:Python高級編程和資料庫開發

Python全棧開發與人工智慧之Python高級編程和資料庫開發知識學習內容包括:面向對象開發、Socket網路編程、線程、進程、隊列、IO多路模型、Mysql資料庫開發等。

階段三:前端開發

Python全棧開發與人工智慧之前端開發知識學習內容包括:Html、CSS、JavaScript開發、Jquery&bootstrap開發、前端框架VUE開發等。

階段四:WEB框架開發

Python全棧開發與人工智慧之WEB框架開發學習內容包括:Django框架基礎、Django框架進階、BBS+Blog實戰項目開發、緩存和隊列中間件、Flask框架學習、Tornado框架學習、Restful API等。

階段五:爬蟲開發

Python全棧開發與人工智慧之爬蟲開發學習內容包括:爬蟲開發實戰。

階段六:全棧項目實戰

Python全棧開發與人工智慧之全棧項目實戰學習內容包括:企業應用工具學習、CRM客戶關系管理系統開發、路飛學城在線教育平台開發等。

階段七:數據分析

Python全棧開發與人工智慧之數據分析學習內容包括:金融量化分析。

階段八:人工智慧

Python全棧開發與人工智慧之人工智慧學習內容包括:機器學習、數據分析 、圖像識別、自然語言翻譯等。

階段九:自動化運維&開發

Python全棧開發與人工智慧之自動化運維&開發學習內容包括:CMDB資產管理系統開發、IT審計+主機管理系統開發、分布式主機監控系統開發等。

階段十:高並發語言GO開發

Python全棧開發與人工智慧之高並發語言GO開發學習內容包括:GO語言基礎、數據類型與文件IO操作、函數和面向對象、並發編程等。

對於Python開發有興趣的小夥伴們,不妨先從看看Python開發教程開始入門!B站上有很多的Python教學視頻,從基礎到高級的都有,還挺不錯的,知識點講的很細致,還有完整版的學習路線圖。也可以自己去看看,下載學習試試。

❿ python好學嗎 知乎

首先,對於初學者來說學習Python是不錯的選擇,一方面Python語言的語法比較簡單易學,另一方面Python的實驗環境也比較容易搭建。
學習編程是一定需要老師的,我不信誰能無師自通把Python學得多好。至少著急就業的人肯定不會,沒人指導很難學成。那麼學習Python編程語言難嗎?其實學Python不難,比起C語言、C#、 C+ +和JAVA這些編程語言相對容易很多。學習Python編程語言,動手實踐是一件非常愉快的事情。
下面給新手學習Python一些建議:
1、先買一本自學用的Python書籍,不要看電子書。
2、對Python基礎數據類型有個了解。
3、學會各種類型的操作方法。
4、了解函數和類的概念。
5、動手實踐,找小項目練習。
如果你決定了要學習Python技術,就是為了以後能有個高薪工作,而且你對自己學習Python還很自信,建議參加專業的學習。因為你對於工作的迫切需求,你肯定不會像大學那樣貪玩不學習,你會極其認真。

閱讀全文

與知乎python入門相關的資料

熱點內容
上海php工具開發源碼交付 瀏覽:788
哪裡有求購黃頁的源碼 瀏覽:194
商城礦機源碼礦場系統 瀏覽:195
單片機的led燈熄滅程序 瀏覽:222
洛陽python培訓 瀏覽:702
小鍵盤命令 瀏覽:192
單片機c語言返回主程序 瀏覽:816
dockerpythonweb 瀏覽:970
程序員演算法有多強 瀏覽:717
pythonworkbook模塊 瀏覽:245
什麼app能查醫生 瀏覽:175
輕量級的編程語言 瀏覽:338
程序員那麼可愛生孩子 瀏覽:432
後綴him3加密文件是什麼軟體 瀏覽:984
堅果隱藏app為什麼要140版本才能用 瀏覽:313
淘寶dns伺服器地址 瀏覽:259
領英轉型app哪個好用 瀏覽:943
壓縮軟體的圖標 瀏覽:97
賣鞋哪個app是真的 瀏覽:469
python迭代是累計嗎 瀏覽:419