導航:首頁 > 編程語言 > Python在地震學中的應用

Python在地震學中的應用

發布時間:2022-12-08 19:08:29

python怎麼學習

對於很多想學習Python的小夥伴來說,不知道從何開始,小蝸這里整理了一份Python全棧開發的學習路線,大家可按照以下這份大綱來進行學習:

第一階段:專業核心基礎

階段目標:
1. 熟練掌握Python的開發環境與編程核心知識
2. 熟練運用Python面向對象知識進行程序開發
3. 對Python的核心庫和組件有深入理解
4. 熟練應用SQL語句進行資料庫常用操作
5. 熟練運用Linux操作系統命令及環境配置
6. 熟練使用MySQL,掌握資料庫高級操作
7. 能綜合運用所學知識完成項目

知識點:
Python編程基礎、Python面向對象、Python高級進階、MySQL資料庫、Linux操作系統。
1、Python編程基礎,語法規則,函數與參數,數據類型,模塊與包,文件IO,培養扎實的Python編程基本功,同時對Python核心對象和庫的編程有熟練的運用。
2、Python面向對象,核心對象,異常處理,多線程,網路編程,深入理解面向對象編程,異常處理機制,多線程原理,網路協議知識,並熟練運用於項目中。
3、類的原理,MetaClass,下劃線的特殊方法,遞歸,魔術方法,反射,迭代器,裝飾器,UnitTest,Mock。深入理解面向對象底層原理,掌握Python開發高級進階技術,理解單元測試技術。
4、資料庫知識,範式,MySQL配置,命令,建庫建表,數據的增刪改查,約束,視圖,存儲過程,函數,觸發器,事務,游標,PDBC,深入理解資料庫管理系統通用知識及MySQL資料庫的使用與管理。為Python後台開發打下堅實基礎。
5、Linux安裝配置,文件目錄操作,VI命令,管理,用戶與許可權,環境配置,Docker,Shell編程Linux作為一個主流的伺服器操作系統,是每一個開發工程師必須掌握的重點技術,並且能夠熟練運用。

第二階段:PythonWEB開發

階段目標:
1. 熟練掌握Web前端開發技術,HTML,CSS,JavaScript及前端框架
2. 深入理解Web系統中的前後端交互過程與通信協議
3. 熟練運用Web前端和Django和Flask等主流框架完成Web系統開發
4. 深入理解網路協議,分布式,PDBC,AJAX,JSON等知識
5. 能夠運用所學知識開發一個MiniWeb框架,掌握框架實現原理
6. 使用Web開發框架實現貫穿項目

知識點:
Web前端編程、Web前端高級、Django開發框架、Flask開發框架、Web開發項目實戰。
1、Web頁面元素,布局,CSS樣式,盒模型,JavaScript,JQuery與Bootstrap掌握前端開發技術,掌握JQuery與BootStrap前端開發框架,完成頁面布局與美化。
2、前端開發框架Vue,JSON數據,網路通信協議,Web伺服器與前端交互熟練使用Vue框架,深入理解HTTP網路協議,熟練使用Swagger,AJAX技術實現前後端交互。
3、自定義Web開發框架,Django框架的基本使用,Model屬性及後端配置,Cookie與Session,模板Templates,ORM數據模型,Redis二級緩存,RESTful,MVC模型掌握Django框架常用API,整合前端技術,開發完整的WEB系統和框架。
4、Flask安裝配置,App對象的初始化和配置,視圖函數的路由,Request對象,Abort函數,自定義錯誤,視圖函數的返回值,Flask上下文和請求鉤子,模板,資料庫擴展包Flask-Sqlalchemy,資料庫遷移擴展包Flask-Migrate,郵件擴展包Flask-Mail。掌握Flask框架的常用API,與Django框架的異同,並能獨立開發完整的WEB系統開發。

第三階段:爬蟲與數據分析

階段目標:
1. 熟練掌握爬蟲運行原理及常見網路抓包工具使用,能夠對HTTP及HTTPS協議進行抓包分析
2. 熟練掌握各種常見的網頁結構解析庫對抓取結果進行解析和提取
3. 熟練掌握各種常見反爬機制及應對策略,能夠針對常見的反爬措施進行處理
4. 熟練使用商業爬蟲框架Scrapy編寫大型網路爬蟲進行分布式內容爬取
5. 熟練掌握數據分析相關概念及工作流程
6. 熟練掌握主流數據分析工具Numpy、Pandas和Matplotlib的使用
7. 熟練掌握數據清洗、整理、格式轉換、數據分析報告編寫
8. 能夠綜合利用爬蟲爬取豆瓣網電影評論數據並完成數據分析全流程項目實戰

知識點:
網路爬蟲開發、數據分析之Numpy、數據分析之Pandas。
1、爬蟲頁面爬取原理、爬取流程、頁面解析工具LXML,Beautifulfoup,正則表達式,代理池編寫和架構、常見反爬措施及解決方案、爬蟲框架結構、商業爬蟲框架Scrapy,基於對爬蟲爬取原理、網站數據爬取流程及網路協議的分析和了解,掌握網頁解析工具的使用,能夠靈活應對大部分網站的反爬策略,具備獨立完成爬蟲框架的編寫能力和熟練應用大型商業爬蟲框架編寫分布式爬蟲的能力。
2、Numpy中的ndarray數據結構特點、numpy所支持的數據類型、自帶的數組創建方法、算術運算符、矩陣積、自增和自減、通用函數和聚合函數、切片索引、ndarray的向量化和廣播機制,熟悉數據分析三大利器之一Numpy的常見使用,熟悉ndarray數據結構的特點和常見操作,掌握針對不同維度的ndarray數組的分片、索引、矩陣運算等操作。
3、Pandas裡面的三大數據結構,包括Dataframe、Series和Index對象的基本概念和使用,索引對象的更換及刪除索引、算術和數據對齊方法,數據清洗和數據規整、結構轉換,熟悉數據分析三大利器之一Pandas的常見使用,熟悉Pandas中三大數據對象的使用方法,能夠使用Pandas完成數據分析中最重要的數據清洗、格式轉換和數據規整工作、Pandas對文件的讀取和操作方法。
4、matplotlib三層結構體系、各種常見圖表類型折線圖、柱狀圖、堆積柱狀圖、餅圖的繪制、圖例、文本、標線的添加、可視化文件的保存,熟悉數據分析三大利器之一Matplotlib的常見使用,熟悉Matplotlib的三層結構,能夠熟練使用Matplotlib繪制各種常見的數據分析圖表。能夠綜合利用課程中所講的各種數據分析和可視化工具完成股票市場數據分析和預測、共享單車用戶群里數據分析、全球幸福指數數據分析等項目的全程實戰。

第四階段:機器學習與人工智慧

階段目標:
1. 理解機器學習相關的基本概念及系統處理流程
2. 能夠熟練應用各種常見的機器學習模型解決監督學習和非監督學習訓練和測試問題,解決回歸、分類問題
3. 熟練掌握常見的分類演算法和回歸演算法模型,如KNN、決策樹、隨機森林、K-Means等
4. 掌握卷積神經網路對圖像識別、自然語言識別問題的處理方式,熟悉深度學習框架TF裡面的張量、會話、梯度優化模型等
5. 掌握深度學習卷積神經網路運行機制,能夠自定義卷積層、池化層、FC層完成圖像識別、手寫字體識別、驗證碼識別等常規深度學習實戰項目

知識點:
1、機器學習常見演算法、sklearn數據集的使用、字典特徵抽取、文本特徵抽取、歸一化、標准化、數據主成分分析PCA、KNN演算法、決策樹模型、隨機森林、線性回歸及邏輯回歸模型和演算法。熟悉機器學習相關基礎概念,熟練掌握機器學習基本工作流程,熟悉特徵工程、能夠使用各種常見機器學習演算法模型解決分類、回歸、聚類等問題。
2、Tensorflow相關的基本概念,TF數據流圖、會話、張量、tensorboard可視化、張量修改、TF文件讀取、tensorflow playround使用、神經網路結構、卷積計算、激活函數計算、池化層設計,掌握機器學習和深度學習之前的區別和練習,熟練掌握深度學習基本工作流程,熟練掌握神經網路的結構層次及特點,掌握張量、圖結構、OP對象等的使用,熟悉輸入層、卷積層、池化層和全連接層的設計,完成驗證碼識別、圖像識別、手寫輸入識別等常見深度學習項目全程實戰。

⑵ Python在大數據領域是怎麼來應用的

適合大數據處理。而不是大數據量處理。 如果大數據量處理,需要採用並用結構,比如在hadoop上使用python,或者是自己做的分布式處理框架。 大數據量處理使用python的也多。如果單機單核單硬碟大數據量(比如視頻)處理。顯然只能用c/c++語言了。 大數據與大數據量區別還是挺大的。 大數據意思是大數據的智慧演算法和應用。 大數據量,早在50年前就有大數據量處理了。 中國大約在95年左右,大量引入PC機的大數據量處理。一個模型計算數據量大,而且計算時間通常超過一個星期,有時候要計算半年。 氣象,遙感,地震,模式識別,模擬計算的數據量與計算量都是巨大的。當時遠遠超過互聯網。 後來互聯網發起起來以後數據量才上去。即使如此,數據的復雜度也還是比不上科學研究領域的數據。 python早些年就在科學研究和計算領域有大量的積累。所以現在python應用到大數據領域就是水到渠成。

⑶ python的基礎是什麼

Python的基礎有:

1 標識符

標識符是編程時使用的名字,用於給變數、函數、語句塊等命名,Python 中標識符由字母、數字、下劃線組成,不能以數字開頭,區分大小寫。

以下劃線開頭的標識符有特殊含義,單下劃線開頭的標識符,如:_xxx,表示不能直接訪問的類屬性,需通過類提供的介面進行訪問,不能用from xxx import *導入;雙下劃線開頭的標識符,如:__xx,表示私有成員;雙下劃線開頭和結尾的標識符,如:__xx__,表示 Python 中內置標識,如:__init__()表示類的構造函數。

2 關鍵字

3 引號

Python 可以使用引號(')、雙引號(")、三引號('''或""")來表示字元串,引號的開始與結束須類型相同,三引號可以由多行組成。

4 編碼

Python2 中默認編碼為ASCII,假如內容為漢字,不指定編碼便不能正確的輸出及讀取,比如我們想要指定編碼為UTF-8,Python 中通過在開頭加入# -*- coding: UTF-8 -*-進行指定。

Python3 中默認編碼為UTF-8,因此在使用 Python3 時,我們通常不需指定編碼。

5 輸入輸出

Python 輸出使用 print(),內容加在括弧中即可。

Python 提供了一個 input(),可以讓用戶輸入字元串,並存放到一個變數里。

6 縮進

Python 不使用{}來控制類、函數、邏輯判斷等,而是使用縮進,縮進的空格可變。

7 多行

Python 中一般以新行作為語句的結束標識,可以使用將一行語句分為多行顯示。

如果包含在[]、{}、()括弧中,則不需要使用。

8 注釋

Python 中單行注釋使用#,多行注釋使用三個單引號(''')或三個雙引號(""")。

⑷ 學習Python需要掌握哪些知識

以下是python全棧開發課程學習路線,可以按照這個課程大綱有規劃的進行學習:

階段一:Python開發基礎

Python全棧開發與人工智慧之Python開發基礎知識學習內容包括:Python基礎語法、數據類型、字元編碼、文件操作、函數、裝飾器、迭代器、內置方法、常用模塊等。

階段二:Python高級編程和資料庫開發

Python全棧開發與人工智慧之Python高級編程和資料庫開發知識學習內容包括:面向對象開發、Socket網路編程、線程、進程、隊列、IO多路模型、Mysql資料庫開發等。

階段三:前端開發

Python全棧開發與人工智慧之前端開發知識學習內容包括:Html、CSS、JavaScript開發、Jquery&bootstrap開發、前端框架VUE開發等。

階段四:WEB框架開發

Python全棧開發與人工智慧之WEB框架開發學習內容包括:Django框架基礎、Django框架進階、BBS+Blog實戰項目開發、緩存和隊列中間件、Flask框架學習、Tornado框架學習、Restful API等。

階段五:爬蟲開發

Python全棧開發與人工智慧之爬蟲開發學習內容包括:爬蟲開發實戰。

階段六:全棧項目實戰

Python全棧開發與人工智慧之全棧項目實戰學習內容包括:企業應用工具學習、CRM客戶關系管理系統開發、路飛學城在線教育平台開發等。

階段七:數據分析

Python全棧開發與人工智慧之數據分析學習內容包括:金融量化分析。

階段八:人工智慧

Python全棧開發與人工智慧之人工智慧學習內容包括:機器學習、數據分析 、圖像識別、自然語言翻譯等。

階段九:自動化運維&開發

Python全棧開發與人工智慧之自動化運維&開發學習內容包括:CMDB資產管理系統開發、IT審計+主機管理系統開發、分布式主機監控系統開發等。

階段十:高並發語言GO開發

Python全棧開發與人工智慧之高並發語言GO開發學習內容包括:GO語言基礎、數據類型與文件IO操作、函數和面向對象、並發編程等。

對於Python開發有興趣的小夥伴們,不妨先從看看Python開發教程開始入門!B站上有很多的Python教學視頻,從基礎到高級的都有,還挺不錯的,知識點講的很細致,還有完整版的學習路線圖。也可以自己去看看,下載學習試試。

閱讀全文

與Python在地震學中的應用相關的資料

熱點內容
腳本提取源碼器 瀏覽:928
smo源碼 瀏覽:875
為什麼要搭建單獨伺服器 瀏覽:478
編譯器有什麼控制 瀏覽:891
希爾伯特pdf 瀏覽:645
php數組全數字 瀏覽:645
解密塔羅牌小程序源碼 瀏覽:862
聚合跑分源碼 瀏覽:553
注冊dns伺服器寫什麼 瀏覽:879
linux安裝deb包 瀏覽:521
電腦盤文件夾如何平鋪 瀏覽:267
相機卡滿了沒文件夾 瀏覽:751
如何批量快速壓縮視頻 瀏覽:432
我的世界如何加入ice伺服器 瀏覽:873
兄弟cnc編程說明書 瀏覽:204
php閃電入門教程學習 瀏覽:152
金岳霖邏輯pdf 瀏覽:938
linuxtomcat線程 瀏覽:77
pboc長度加數據加密 瀏覽:187
英雄聯盟國際服手游怎麼下安卓 瀏覽:299