導航:首頁 > 編程語言 > python多線程計算

python多線程計算

發布時間:2022-12-09 10:53:44

python之多線程

進程的概念:以一個整體的形式暴露給操作系統管理,裡麵包含各種資源的調用。 對各種資源管理的集合就可以稱為進程。
線程的概念:是操作系統能夠進行運算調度的最小單位。本質上就是一串指令的集合。

進程和線程的區別:
1、線程共享內存空間,進程有獨立的內存空間。
2、線程啟動速度快,進程啟動速度慢。注意:二者的運行速度是無法比較的。
3、線程是執行的指令集,進程是資源的集合
4、兩個子進程之間數據不共享,完全獨立。同一個進程下的線程共享同一份數據。
5、創建新的線程很簡單,創建新的進程需要對他的父進程進行一次克隆。
6、一個線程可以操作(控制)同一進程里的其他線程,但是進程只能操作子進程
7、同一個進程的線程可以直接交流,兩個進程想要通信,必須通過一個中間代理來實現。
8、對於線程的修改,可能會影響到其他線程的行為。但是對於父進程的修改不會影響到子進程。

第一個程序,使用循環來創建線程,但是這個程序中一共有51個線程,我們創建了50個線程,但是還有一個程序本身的線程,是主線程。這51個線程是並行的。注意:這個程序中是主線程啟動了子線程。

相比上個程序,這個程序多了一步計算時間,但是我們觀察結果會發現,程序顯示的執行時間只有0.007秒,這是因為最後一個print函數它存在於主線程,而整個程序主線程和所有子線程是並行的,那麼可想而知,在子線程還沒有執行完畢的時候print函數就已經執行了,總的來說,這個時間只是執行了一個線程也就是主線程所用的時間。

接下來這個程序,吸取了上面這個程序的缺點,創建了一個列表,把所有的線程實例都存進去,然後使用一個for循環依次對線程實例調用join方法,這樣就可以使得主線程等待所創建的所有子線程執行完畢才能往下走。 注意實驗結果:和兩個線程的結果都是兩秒多一點

注意觀察實驗結果,並沒有執行列印task has done,並且程序執行時間極其短。
這是因為在主線程啟動子線程前把子線程設置為守護線程。
只要主線程執行完畢,不管子線程是否執行完畢,就結束。但是會等待非守護線程執行完畢
主線程退出,守護線程全部強制退出。皇帝死了,僕人也跟著殉葬
應用的場景 : socket-server

注意:gil只是為了減低程序開發復雜度。但是在2.幾的版本上,需要加用戶態的鎖(gil的缺陷)而在3點幾的版本上,加鎖不加鎖都一樣。

下面這個程序是一個典型的生產者消費者模型。
生產者消費者模型是經典的在開發架構中使用的模型
運維中的集群就是生產者消費者模型,生活中很多都是

那麼,多線程的使用場景是什麼?
python中的多線程實質上是對上下文的不斷切換,可以說是假的多線程。而我們知道,io操作不佔用cpu,計算佔用cpu,那麼python的多線程適合io操作密集的任務,比如socket-server,那麼cpu密集型的任務,python怎麼處理?python可以折中的利用計算機的多核:啟動八個進程,每個進程有一個線程。這樣就可以利用多進程解決多核問題。

Ⅱ python之多線程原理

並發:邏輯上具備同時處理多個任務的能力。
並行:物理上在同一時刻執行多個並發任務。

舉例:開個QQ,開了一個進程,開了微信,開了一個進程。在QQ這個進程裡面,傳輸文字開一個線程、傳輸語音開了一個線程、彈出對話框又開了一個線程。
總結:開一個軟體,相當於開了一個進程。在這個軟體運行的過程里,多個工作同時運轉,完成了QQ的運行,那麼這個多個工作分別有多個線程。

線程和進程之間的區別:

進程在python中的使用,對模塊threading進行操作,調用的這個三方庫。可以通過 help(threading) 了解其中的方法、變數使用情況。也可以使用 dir(threading) 查看目錄結構。

current_thread_num = threading.active_count() # 返回正在運行的線程數量
run_thread_len = len(threading.enumerate()) # 返回正在運行的線程數量
run_thread_list = threading.enumerate() # 返回當前運行線程的列表
t1=threading.Thread(target=dance) #創建兩個子線程,參數傳遞為函數名
t1.setDaemon(True) # 設置守護進程,守護進程:主線程結束時自動退出子線程。
t1.start() # 啟動子線程
t1.join() # 等待進程結束 exit()`# 主線程退出,t1子線程設置了守護進程,會自動退出。其他子線程會繼續執行。

Ⅲ python多線程

有很多的場景中的事情是同時進行的,比如開車的時候,手和腳共同來駕駛汽車,再比如唱歌跳舞也是同時進行的

結果:

• _thread
• threading(推薦使用)

結果:

threading.enumerate() 可查看當前正在運行的線程

結果:

結果:

結果:

結果: 出現資源競爭導致計算結果不正確

(1)當多個線程幾乎同時修改某一個共享數據的時候,需要進行同步控制
(2)線程同步能夠保證多個線程安全訪問資源,最簡單的同步機制是引入互斥鎖
(3)互斥鎖為資源引入一個狀態: 鎖定/非鎖定
(4)某個線程要更愛共享數據時,先將其鎖定,此時資源的狀態為"鎖定", 其他線程不能更改;直到該線程釋放資源,將資源狀態變為"非鎖定"
(5)互斥鎖保證了每次只有一個線程進行寫入操作,從而保證了多線程情況下數據的正確性

結果: 計算正確

結果:卡住了

在線程間共享多個資源的時候,如果兩個線程分別戰友一部分資源且同時等待對方資源,就會造成死鎖

(1)程序設計時避免(銀行家演算法)
(2)添加超時時間

Ⅳ python 怎麼實現多線程的

線程也就是輕量級的進程,多線程允許一次執行多個線程,Python是多線程語言,它有一個多線程包,GIL也就是全局解釋器鎖,以確保一次執行單個線程,一個線程保存GIL並在將其傳遞給下一個線程之前執行一些操作,也就產生了並行執行的錯覺。

Ⅳ python的多線程是否能利用多核計算

比方我有一個4核的CPU,那麼這樣一來,在單位時間內每個核只能跑一個線程,然後時間片輪轉切換。但是Python不一樣,它不管你有幾個核,單位時間多個核只能跑一個線程,然後時間片輪轉。看起來很不可思議?但是這就是GIL搞的鬼。任何Python線程執行前,必須先獲得GIL鎖,然後,每執行100條位元組碼,解釋器就自動釋放GIL鎖,讓別的線程有機會執行。這個GIL全局鎖實際上把所有線程的執行代碼都給上了鎖,所以,多線程在Python中只能交替執行,即使100個線程跑在100核CPU上,也只能用到1個核。通常我們用的解釋器是官方實現的CPython,要真正利用多核,除非重寫一個不帶GIL的解釋器。

Ⅵ python 多線程

python支持多線程效果還不錯,很多方面都用到了python 多線程的知識,我前段時間用python 多線程寫了個處理生產者和消費者的問題,把代碼貼出來給你看下:
#encoding=utf-8
import threading
import random
import time
from Queue import Queue

class Procer(threading.Thread):

def __init__(self, threadname, queue):
threading.Thread.__init__(self, name = threadname)
self.sharedata = queue

def run(self):
for i in range(20):
print self.getName(),'adding',i,'to queue'
self.sharedata.put(i)
time.sleep(random.randrange(10)/10.0)
print self.getName(),'Finished'

# Consumer thread

class Consumer(threading.Thread):

def __init__(self, threadname, queue):
threading.Thread.__init__(self, name = threadname)
self.sharedata = queue

def run(self):

for i in range(20):
print self.getName(),'got a value:',self.sharedata.get()
time.sleep(random.randrange(10)/10.0)
print self.getName(),'Finished'

# Main thread

def main():

queue = Queue()
procer = Procer('Procer', queue)
consumer = Consumer('Consumer', queue)
print 'Starting threads ...'
procer.start()
consumer.start()
procer.join()
consumer.join()
print 'All threads have terminated.'
if __name__ == '__main__':
main()

如果你想要了解更多的python 多線程知識可以點下面的參考資料的地址,希望對有幫助!

Ⅶ Python 的多線程問題。。

python 的GIL規定每個時刻只能有一個線程訪問python虛擬機,所以你要用python的多線程來做計算是很不合算的,但是對於IO密集型的應用,例如網路交互來說,python的多線程還是非常給力的。
如果你是一個計算密集型的任務,非要用python來並行執行的話,有以下幾個方法:
1 使用python的multiprocessing 模塊,能夠發揮多核的優勢。
2 使用ironPython,但是這個只能在windows下用
3 使用pypy,這個可以實現真正的多線程。

Ⅷ 為什麼有人說 Python 的多線程是雞肋

說這句話的人一定是在網上看到一些資料說,python的多線程不支持多核計算的,幾乎不會提高運行效率。其實這句話只是對於CPython。因為CPython中存在GIL鎖,每次只能有一個線程可以訪問位元組碼。這樣,即便線程再多,即便多核,線程都不可能同時執行,因為位元組碼一個時刻只能由一個線程訪問。

參考官方資料:
Global interpreter lock
The mechanism used by the CPython interpreter to assure that only one thread executes Python bytecode at a time. This simplifies the CPython implementation by making the object model (including critical built-in types such as dict) implicitly safe against concurrent access. Locking the entire interpreter makes it easier for the interpreter to be multi-threaded, at the expense of much of the parallelism afforded by multi-processor machines.
However, some extension moles, either standard or third-party, are designed so as to release the GIL when doing computationally-intensive tasks such as compression or hashing. Also, the GIL is always released when doing I/O.
Past efforts to create a 「free-threaded」 interpreter (one which locks shared data at a much finer granularity) have not been successful because performance suffered in the common single-processor case. It is believed that overcoming this performance issue would make the implementation much more complicated and therefore costlier to maintain.

Ⅸ python多線程並行計算問題,請大神指點一二,不勝感激

監控一個信號就起一個線程與進程處理。這樣的邏輯是不太合適的。所有的資源都是有限的,如果這樣浪費很快會資源管理失控。 常規的做法是起一個線程池,或者是進程池。 使用線程還是進程取決於你處理的信號的類型

閱讀全文

與python多線程計算相關的資料

熱點內容
如何批量快速壓縮視頻 瀏覽:432
我的世界如何加入ice伺服器 瀏覽:873
兄弟cnc編程說明書 瀏覽:204
php閃電入門教程學習 瀏覽:152
金岳霖邏輯pdf 瀏覽:938
linuxtomcat線程 瀏覽:77
pboc長度加數據加密 瀏覽:187
英雄聯盟國際服手游怎麼下安卓 瀏覽:297
程序員的思路 瀏覽:234
只能用命令獲得的四種方塊 瀏覽:358
怎麼用命令方塊防止開創造 瀏覽:807
掃描版的pdf 瀏覽:790
編程貓怎樣做3d游戲 瀏覽:207
怎麼查找雲伺服器上的ftp 瀏覽:156
我的世界伺服器如何注冊賬號 瀏覽:934
統計英文字元python 瀏覽:424
linux信息安全 瀏覽:910
壓縮機接線柱爆 瀏覽:1001
程序員自主創業 瀏覽:586
匯編程序員待遇 瀏覽:360