導航:首頁 > 編程語言 > 多維數組使用python

多維數組使用python

發布時間:2022-12-12 00:25:05

1. python里怎麼定義三維數組

在Windows下運行應用程序時出現非法操作的提示

此類故障引起原因較多,在如下幾鍾可能:

(1) 系統文件被更改或損壞,倘若由此引發則打開一些系統自帶的程序時就會出現非法操作,(例如,打開控制面板)

(2) 驅動程序未正確安裝,此類故障一般表現在顯卡驅動程序之止,倘若由此引發,則打開一些游戲程序時就會產生非法操作,有時打開一此網頁也會出現這種程況。

(3) 內存質量不好,降低內存速度也可能會解決這個問題。

(4) 軟體不兼容,如,IE 5。5在Windows 98 SE 上,當打開多個網頁也會產生非法操作。

2. python中有沒有直接對多維數組排序的方法

直接用numpy的lexsort就可以

import numpy as np
data = np.array([[1,2,3,4,5], [1,2,3,6,7], [2,3,4,5,7], [3,4,5,6,7], [4,5,6,7,8]])
idex=np.lexsort([-1*data[:,2], data[:,1], data[:,0]])
#先按第一列升序,再按第二列升序,再按第三列降序
#注意先按後邊的關鍵詞排序
sorted_data = data[idex, :]

3. python中怎麼表示多維數組

只有通過遍歷得到。這個應該沒有直接獲取的方式方法。遍歷這個數組,當然維數不確定的話你就需要使用遞歸,然後一一判斷它的值是否為你指定的值,然後輸出索引。另外,建議不要匿名提問,因為這會讓很多高手不屑於回答你的問題。

4. 為什麼要使用Python進行數據分析

我使用python這門語言也有三年了,被其簡潔、易讀、強大的庫所折服,我已經深深愛上了python。其pythonic語言特性,對人極其友好,可以說,一個完全不懂編程語言的人,看懂python語言也不是難事。
在數據分析和交互、探索性計算以及數據可視化等方面,相對於R、MATLAB、SAS、Stata等工具,Python都有其優勢。近年來,由於Python庫的不斷發展(如pandas),使其在數據挖掘領域嶄露頭角。結合其在通用編程方面的強大實力,我們完全可以只使用Python這一種語言去構建以數據為中心的應用程序。
由於python是一種解釋性語言,大部分編譯型語言都要比python代碼運行速度快,有些同學就因此鄙視python。但是小編認為,python是一門高級語言,其生產效率更高,程序員的時間通常比CPU的時間值錢,因此為了權衡利弊,考慮用python是值得的。

Python強大的計算能力依賴於其豐富而強大的庫:
Numpy
Numerical Python的簡稱,是Python科學計算的基礎包。其功能:
1. 快速高效的多維數組對象ndarray。
2. 用於對數組執行元素級計算以及直接對數組執行數學運算的函數。
3. 線性代數運算、傅里葉變換,以及隨機數生成。
4. 用於將C、C++、Fortran代碼集成到Python的工具。

除了為Python提供快速的數組處理能力,NumPy在數據分析方面還有另外一個主要作用,即作為在演算法之間傳遞數據的容器。對於數值型數據,NumPy數組在存儲和處理數據時要比內置的Python數據結構高效得多。此外,由低級語言(比如C和Fortran)編寫的庫可以直接操作NumPy數組中的數據,無需進行任何數據復制工作。

SciPy
是一組專門解決科學計算中各種標准問題域的包的集合,主要包括下面這些包:
1. scipy.integrate:數值積分常式和微分方程求解器。
2. scipy.linalg:擴展了由numpy.linalg提供的線性代數常式和矩陣分解功能。
3. scipy.optimize:函數優化器(最小化器)以及根查找演算法。
4. scipy.signal:信號處理工具。
5. scipy.sparse:稀疏矩陣和稀疏線性系統求解器。
6. scipy.special:SPECFUN(這是一個實現了許多常用數學函數(如伽瑪函數)的Fortran庫)的包裝器。
7. scipy.stats:標准連續和離散概率分布(如密度函數、采樣器、連續分布函數等)、各種統計檢驗方法,以及更好的描述統計法。
8. scipy.weave:利用內聯C++代碼加速數組計算的工具。

註:NumPy跟SciPy的有機結合完全可以替代MATLAB的計算功能(包括其插件工具箱)。

SymPy
是python的數學符號計算庫,用它可以進行數學表達式的符號推導和演算。

pandas
提供了使我們能夠快速便捷地處理結構化數據的大量數據結構和函數。你很快就會發現,它是使Python成為強大而高效的數據分析環境的重要因素之一。
pandas兼具NumPy高性能的數組計算功能以及電子表格和關系型資料庫(如SQL)靈活的數據處理功能。它提供了復雜精細的索引功能,以便更為便捷地完成重塑、切片和切塊、聚合以及選取數據子集等操作。
對於使用R語言進行統計計算的用戶,肯定不會對DataFrame這個名字感到陌生,因為它源自於R的data.frame對象。但是這兩個對象並不相同。R的data.frame對象所提供的功能只是DataFrame對象所提供的功能的一個子集。也就是說pandas的DataFrame功能比R的data.frame功能更強大。

matplotlib
是最流行的用於繪制數據圖表的Python庫。它最初由John D. Hunter(JDH)創建,目前由一個龐大的開發人員團隊維護。它非常適合創建出版物上用的圖表。它跟IPython(馬上就會講到)結合得很好,因而提供了一種非常好用的互動式數據繪圖環境。繪制的圖表也是互動式的,你可以利用繪圖窗口中的工具欄放大圖表中的某個區域或對整個圖表進行平移瀏覽。

TVTK
是python數據三維可視化庫,是一套功能十分強大的三維數據可視化庫,它提供了Python風格的API,並支持Trait屬性(由於Python是動態編程語言,其變數沒有類型,這種靈活性有助於快速開發,但是也有缺點。而Trait庫可以為對象的屬性添加檢校功能,從而提高程序的可讀性,降低出錯率。) 和NumPy數組。此庫非常龐大,因此開發公司提供了一個查詢文檔,用戶可以通過下面語句運行它:
>>> from enthought.tvtk.toolsimport tvtk_doc
>>> tvtk_doc.main()

Scikit-Learn
是基於python的機器學習庫,建立在NumPy、SciPy和matplotlib基礎上,操作簡單、高效的數據挖掘和數據分析。其文檔、實例都比較齊全。

小編建議:初學者使用python(x, y),其是一個免費的科學和工程開發包,提供數學計算、數據分析和可視化展示。非常方便!

5. python中如何表示多維數組

在Python中,一個像這樣的多維表格可以通過「序列的序列」實現。一個表格是行的序列。每一行又是獨立單元格的序列。這類似於我們使用的數學記號,在數學里我們用Ai,j,而在Python里我們使用A[i][j],代表矩陣的第i行第j列。
這看起來非常像「元組的列表」(Lists of Tuples)。
「列表的列表」示例:
我們可以使用嵌套的列表推導式(list comprehension)創建一個表格。 下面的例子創建了一個「序列的序列」構成的表格,並為表格的每一個單元格賦值。
table= [ [ 0 for i in range(6) ] for j in range(6) ]print tablefor d1 in range(6):for d2 in range(6):table[d1][d2]= d1+d2+2print table123456程序的輸出結果如下:
[[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]],
[[2, 3, 4, 5, 6, 7], [3, 4, 5, 6, 7, 8], [4, 5, 6, 7, 8, 9],
[5, 6, 7, 8, 9, 10], [6, 7, 8, 9, 10, 11], [7, 8, 9, 10, 11, 12]]
1234
這個程序做了兩件事:創建了一個6 × 6的全0表格。 然後使用兩枚骰子的可能組合的數值填充表格。 這並非完成此功能最有效的方式,但我們通過這個簡單的例子來演示幾項技術。我們仔細看一下程序的前後兩部分。
程序的第一部分創建並輸出了一個包含6個元素的列表,我們稱之為「表格」;表格中的每一個元素都是一個包含6個0元素的列表。它使用列表推導式,對於范圍從0到6的每一個j都創建對象。每一個對象都是一個0元素列表,由i變數從0到6遍歷產生。初始化完成之後,列印輸出二維全0表格。
推導式可以從里向外閱讀,就像一個普通表達式一樣。內層列表[ 0 for i in range(6) ]創建了一個包含6個0的簡單列表。外層列表[ [...] for j in range(6) ]創建了這些內層列表的6個深拷貝。
程序的第2個部分對2個骰子的每一個組合進行迭代,填充表格的每一個單元格。這由兩層嵌套循環實現,每一個循環迭代一個骰子。外層循環枚舉第一個骰子的所有可能值d1。內層循環枚舉第二個骰子d2。
更新每一個單元格時需要通過table[d1]選擇每一行;這是一個包含6個值的列表。這個列表中選定的單元格通過...[d2]進行選擇。我們將擲骰子的值賦給這個單元格,d1+d2+2。
其他示例:
列印出的列表的列表不太容易閱讀。下面的循環會以一種更加可讀的形式顯示表格。
for row in table:
print row[2, 3, 4, 5, 6, 7]
[3, 4, 5, 6, 7, 8]
[4, 5, 6, 7, 8, 9]
[5, 6, 7, 8, 9, 10]
[6, 7, 8, 9, 10, 11]
[7, 8, 9, 10, 11, 12]
12345678910111213作為練習,讀者可以試著在列印列表內容時,再列印出行和列的表頭。提示一下,使用"%2d" % value字元串運算符可以列印出固定長度的數字格式。顯示索引值(Explicit Index Values)。
我們接下來對骰子表格進行匯總統計,得出累計頻率表。我們使用一個包含13個元素的列表(下標從0到12)表示每一個骰子值的出現頻率。觀察可知骰子值2在矩陣中只出現了一次,因此我們期望fq[2]的值為1。遍歷矩陣中的每一個單元格,得出累計頻率表。
fq= 13 * [0]for i in range(6):for j in range(6):c= table[i][j]fq[ c ] += 112345使用下標i選出表格中的行,用下標j從行中選出一列,得到單元格c。然後用fq統計頻率。
這看起來非常的數學和規范。
Python提供了另外一種更簡單一些的方式。
使用列表迭代器而非下標,表格是列表的列表,可以採用無下標的for循環遍歷列表元素。
fq= 13 * [0]print fqfor row in table:for c in row:fq[c] += 1print fq[2:

6. Python——ndarray多維數組基本操作(1)

數組允許進行批量操作而無需使用for循環,因此更加簡便,這種特性也被稱為向量化。任何兩個等尺寸之間的算術操作都應用逐元素操作的方式進行。

同尺度數組之間的比較,會產生一個布爾型數組。

上述操作均是在同尺度數組之間進行的,對於不同尺度數組間的操作,會使用到廣播特性。

索引:獲取數組中特定位置元素的過程;
切片:獲取數組元素子集的過程。

new_a = a.astype(new_type)

astype()方法一定會創建新的數組(原始數據的一個拷貝),即使兩個類型一致。

ls = a.tolist()

轉置是一種特殊的數據重組形式,可以返回底層數據的視圖而不需要復制任何內容。
數組擁有 transpose 方法,也有特殊的 T 屬性。

對於更高緯度的數組, transpose 方法可以接受包含軸編號的元組,用於轉置軸。

ndarray的 swapaxes 方法,通過接受一對軸編號作為參數,並對軸進行調整用於重組數據。
swapaxes 方法返回的是數據的視圖,而沒有對數據進行復制。

Reference:
《Python for Data Analysis:Data Wrangling with Pandas,Numpy,and IPython》

7. python 多維數組(比如二維數組)能不能在指定位置進行切片修改

python進行切片修改還是很容易的。
In [1]: a = [[1,2,3],[4,5,6]]

In [2]: a

Out[2]: [[1, 2, 3], [4, 5, 6]]

取索引0的 0到2的切片(不包含索引2)
In [3]: a[0][0:2]

Out[3]: [1, 2]

對索引0切片賦值

In [4]: a[0][0:2] = [2,3]

In [5]: a

Out[5]: [[2, 3, 3], [4, 5, 6]]

8. Python怎麼生成三維數


1、創建一般的多維數組

importnumpyasnp
a=np.array([1,2,3],dtype=int)#創建1*3維數組array([1,2,3])
type(a)#numpy.ndarray類型
a.shape#維數信息(3L,)
a.dtype.name#'int32'
a.size#元素個數:3
a.itemsize#每個元素所佔用的位元組數目:4


b=np.array([[1,2,3],[4,5,6]],dtype=int)#創建2*3維數組array([[1,2,3],[4,5,6]])
b.shape#維數信息(2L,3L)
b.size#元素個數:6
b.itemsize#每個元素所佔用的位元組數目:4


c=np.array([[1,2,3],[4,5,6]],dtype='int16')#創建2*3維數組array([[1,2,3],[4,5,6]],dtype=int16)
c.shape#維數信息(2L,3L)
c.size#元素個數:6
c.itemsize#每個元素所佔用的位元組數目:2
c.ndim#維數


d=np.array([[1,2,3],[4,5,6]],dtype=complex)#復數二維數組
d.itemsize#每個元素所佔用的位元組數目:16
d.dtype.name#元素類型:'complex128'

2、創建一般的多維數組

importnumpyasnp
a=np.array([1,2,3],dtype=int)#創建1*3維數組array([1,2,3])
type(a)#numpy.ndarray類型
a.shape#維數信息(3L,)
a.dtype.name#'int32'
a.size#元素個數:3
a.itemsize#每個元素所佔用的位元組數目:4


b=np.array([[1,2,3],[4,5,6]],dtype=int)#創建2*3維數組array([[1,2,3],[4,5,6]])
b.shape#維數信息(2L,3L)
b.size#元素個數:6
b.itemsize#每個元素所佔用的位元組數目:4


c=np.array([[1,2,3],[4,5,6]],dtype='int16')#創建2*3維數組array([[1,2,3],[4,5,6]],dtype=int16)
c.shape#維數信息(2L,3L)
c.size#元素個數:6
c.itemsize#每個元素所佔用的位元組數目:2
c.ndim#維數


d=np.array([[1,2,3],[4,5,6]],dtype=complex)#復數二維數組
d.itemsize#每個元素所佔用的位元組數目:16
d.dtype.name#元素類型:'complex128'

3、創建特殊類型的多維數組

a1=np.zeros((3,4))#創建3*4全零二維數組
輸出:
array([[0.,0.,0.,0.],
[0.,0.,0.,0.],
[0.,0.,0.,0.]])
a1.dtype.name#元素類型:'float64'
a1.size#元素個數:12
a1.itemsize#每個元素所佔用的位元組個數:8


a2=np.ones((2,3,4),dtype=np.int16)#創建2*3*4全1三維數組
a2=np.ones((2,3,4),dtype='int16')#創建2*3*4全1三維數組
輸出:
array([[[1,1,1,1],
[1,1,1,1],
[1,1,1,1]],

[[1,1,1,1],
[1,1,1,1],
[1,1,1,1]]],dtype=int16)


a3=np.empty((2,3))#創建2*3的未初始化二維數組
輸出:(mayvary)
array([[1.,2.,3.],
[4.,5.,6.]])


a4=np.arange(10,30,5)#初始值10,結束值:30(不包含),步長:5
輸出:array([10,15,20,25])
a5=np.arange(0,2,0.3)#初始值0,結束值:2(不包含),步長:0.2
輸出:array([0.,0.3,0.6,0.9,1.2,1.5,1.8])
fromnumpyimportpi
np.linspace(0,2,9)#初始值0,結束值:2(包含),元素個數:9
輸出:
array([0.,0.25,0.5,0.75,1.,1.25,1.5,1.75,2.])
x=np.linspace(0,2*pi,9)
輸出:
array([0.,0.78539816,1.57079633,2.35619449,3.14159265,
3.92699082,4.71238898,5.49778714,6.28318531])


a=np.arange(6)
輸出:
array([0,1,2,3,4,5])
b=np.arange(12).reshape(4,3)
輸出:
array([[0,1,2],
[3,4,5],
[6,7,8],
[9,10,11]])
c=np.arange(24).reshape(2,3,4)
輸出:
array([[[0,1,2,3],
[4,5,6,7],
[8,9,10,11]],

[[12,13,14,15],
[16,17,18,19],
[20,21,22,23]]])

使用numpy.set_printoptions可以設置numpy變數的列印格式

在ipython環境下,使用help(numpy.set_printoptions)查詢使用幫助和示例

4、多維數組的基本操作

加法和減法操作要求操作雙方的維數信息一致,均為M*N為數組方可正確執行操作。

a=np.arange(4)
輸出:
array([0,1,2,3])
b=a**2
輸出:
array([0,1,4,9])
c=10*np.sin(a)
輸出:
array([0.,8.41470985,9.09297427,1.41120008])


n<35
輸出:
array([True,True,True,True],dtype=bool)

A=np.array([[1,1],[0,1]])
B=np.array([[2,0],[3,4]])
C=A*B#元素點乘
輸出:
array([[2,0],
[0,4]])
D=A.dot(B)#矩陣乘法
輸出:
array([[5,4],
[3,4]])
E=np.dot(A,B)#矩陣乘法
輸出:
array([[5,4],
[3,4]])

多維數組操作過程中的類型轉換

When operating with arrays of different types, the type of the
resulting array corresponds to the more general or precise one (a
behavior known as upcasting)

即操作不同類型的多維數組時,結果自動轉換為精度更高類型的數組,即upcasting

數組索引、切片和迭代

a=np.ones((2,3),dtype=int)#int32
b=np.random.random((2,3))#float64
b+=a#正確
a+=b#錯誤
a=np.ones(3,dtype=np.int32)
b=np.linspace(0,pi,3)
c=a+b
d=np.exp(c*1j)
輸出:
array([0.54030231+0.84147098j,-0.84147098+0.54030231j,
-0.54030231-0.84147098j])
d.dtype.name
輸出:
'complex128'

多維數組的一元操作,如求和、求最小值、最大值等

a=np.random.random((2,3))
a.sum()
a.min()
a.max()


b=np.arange(12).reshape(3,4)
輸出:
array([[0,1,2,3],
[4,5,6,7],
[8,9,10,11]])
b.sum(axis=0)#按列求和
輸出:
array([12,15,18,21])
b.sum(axis=1)#按行求和
輸出:
array([6,22,38])
b.cumsum(axis=0)#按列進行元素累加
輸出:
array([[0,1,2,3],
[4,6,8,10],
[12,15,18,21]])
b.cumsum(axis=1)#按行進行元素累加
輸出:
array([[0,1,3,6],
[4,9,15,22],
[8,17,27,38]])

universal functions

B=np.arange(3)
np.exp(B)
np.sqrt(B)
C=np.array([2.,-1.,4.])
np.add(B,C)

其他的ufunc函數包括:

all,any,apply_along_axis,argmax,argmin,argsort,average,bincount,ceil,clip,conj,corrcoef,cov,cross,cumprod,cumsum,diff,dot,floor,inner,lexsort,max,maximum,mean,median,min,minimum,nonzero,outer,prod,re,round,sort,std,sum,trace,transpose,var,vdot,vectorize,where

5. 數組索引、切片和迭代

a=np.arange(10)**3
a[2]
a[2:5]
a[::-1]#逆序輸出
foriina:
print(i**(1/3.))
deff(x,y):
return10*x+y
b=np.fromfunction(f,(5,4),dtype=int)
b[2,3]
b[0:5,1]
b[:,1]
b[1:3,:]
b[-1]
c=np.array([[[0,1,2],[10,11,12]],[[100,101,102],[110,111,112]]])
輸出:
array([[[0,1,2],
[10,11,12]],

[[100,101,102],
[110,111,112]]])
c.shape
輸出:
(2L,2L,3L)
c[0,...]
c[0,:,:]
輸出:
array([[0,1,2],
[10,11,12]])
c[:,:,2]
c[...,2]
輸出:
array([[2,12],
[102,112]])

forrowinc:
print(row)

forelementinc.flat:
print(element)
a=np.floor(10*np.random.random((3,4)))
輸出:
array([[3.,9.,8.,4.],
[2.,1.,4.,6.],
[0.,6.,0.,2.]])
a.ravel()
輸出:
array([3.,9.,8.,...,6.,0.,2.])
a.reshape(6,2)
輸出:
array([[3.,9.],
[8.,4.],
[2.,1.],
[4.,6.],
[0.,6.],
[0.,2.]])
a.T
輸出:
array([[3.,2.,0.],
[9.,1.,6.],
[8.,4.,0.],
[4.,6.,2.]])
a.T.shape
輸出:
(4L,3L)
a.resize((2,6))
輸出:
array([[3.,9.,8.,4.,2.,1.],
[4.,6.,0.,6.,0.,2.]])
a.shape
輸出:
(2L,6L)
a.reshape(3,-1)
輸出:
array([[3.,9.,8.,4.],
[2.,1.,4.,6.],
[0.,6.,0.,2.]])

詳查以下函數:

ndarray.shape,reshape,resize,ravel

6. 組合不同的多維數組

a=np.floor(10*np.random.random((2,2)))
輸出:
array([[5.,2.],
[6.,2.]])
b=np.floor(10*np.random.random((2,2)))
輸出:
array([[0.,2.],
[4.,1.]])
np.vstack((a,b))
輸出:
array([[5.,2.],
[6.,2.],
[0.,2.],
[4.,1.]])
np.hstack((a,b))
輸出:
array([[5.,2.,0.,2.],
[6.,2.,4.,1.]])


fromnumpyimportnewaxis
np.column_stack((a,b))
輸出:
array([[5.,2.,0.,2.],
[6.,2.,4.,1.]])


a=np.array([4.,2.])
b=np.array([2.,8.])
a[:,newaxis]
輸出:
array([[4.],
[2.]])
b[:,newaxis]
輸出:
array([[2.],
[8.]])
np.column_stack((a[:,newaxis],b[:,newaxis]))
輸出:
array([[4.,2.],
[2.,8.]])
np.vstack((a[:,newaxis],b[:,newaxis]))
輸出:
array([[4.],
[2.],
[2.],
[8.]])
np.r_[1:4,0,4]
輸出:
array([1,2,3,0,4])
np.c_[np.array([[1,2,3]]),0,0,0,np.array([[4,5,6]])]
輸出:
array([[1,2,3,0,0,0,4,5,6]])

詳細使用請查詢以下函數:

hstack,vstack,column_stack,concatenate,c_,r_

7. 將較大的多維數組分割成較小的多維數組

a=np.floor(10*np.random.random((2,12)))
輸出:
array([[9.,7.,9.,...,3.,2.,4.],
[5.,3.,3.,...,9.,7.,7.]])
np.hsplit(a,3)
輸出:
[array([[9.,7.,9.,6.],
[5.,3.,3.,1.]]),array([[7.,2.,1.,6.],
[7.,5.,0.,2.]]),array([[9.,3.,2.,4.],
[3.,9.,7.,7.]])]
np.hsplit(a,(3,4))
輸出:
[array([[9.,7.,9.],
[5.,3.,3.]]),array([[6.],
[1.]]),array([[7.,2.,1.,...,3.,2.,4.],
[7.,5.,0.,...,9.,7.,7.]])]

實現類似功能的函數包括:

hsplit,vsplit,array_split

8. 多維數組的復制操作

a=np.arange(12)
輸出:
array([0,1,2,...,9,10,11])


notatall

b=a
bisa#True
b.shape=3,4
a.shape#(3L,4L)

deff(x)#,sofunctioncallsmakeno.
print(id(x))#id是python對象的唯一標識符

id(a)#111833936L
id(b)#111833936L
f(a)#111833936L


淺復制

c=a.view()
cisa#False
c.baseisa#True
c.flags.owndata#False
c.shape=2,6
a.shape#(3L,4L)
c[0,4]=1234
print(a)
輸出:
array([[0,1,2,3],
[1234,5,6,7],
[8,9,10,11]])
s=a[:,1:3]
s[:]=10
print(a)
輸出:
array([[0,10,10,3],
[1234,10,10,7],
[8,10,10,11]])


深復制
d=a.()
disa#False
d.baseisa#False
d[0,0]=9999
print(a)
輸出:
array([[0,10,10,3],
[1234,10,10,7],
[8,10,10,11]])

numpy基本函數和方法一覽

Array Creation

arange,array,,empty,empty_like,eye,fromfile,fromfunction,identity,linspace,logspace,mgrid,ogrid,ones,ones_like,r,zeros,zeros_like

Conversions

ndarray.astype,atleast_1d,atleast_2d,atleast_3d,mat

Manipulations

array_split,column_stack,concatenate,diagonal,dsplit,dstack,hsplit,hstack,ndarray.item,newaxis,ravel,repeat,reshape,resize,squeeze,swapaxes,take,transpose,vsplit,vstack

Questionsall,any,nonzero,where

Ordering

argmax,argmin,argsort,max,min,ptp,searchsorted,sort

Operations

choose,compress,cumprod,cumsum,inner,ndarray.fill,imag,prod,put,putmask,real,sum

Basic Statistics

cov,mean,std,var

Basic Linear Algebra

cross,dot,outer,linalg.svd,vdot

完整的函數和方法一覽表鏈接:

https://docs.scipy.org/doc/numpy-dev/reference/routines.html#routines

9. python 3 三維數組或者多維數組 怎麼計算元素的百分比,詳細裡面會具體一點

在Python中,一個像這樣的多維表格可以通過「序列的序列」實現。一個表格是行的序列。每一行又是獨立單元格的序列。這類似於我們使用的數學記號,在數學里我們用Ai,j,而在Python里我們使用A[i][j],代表矩陣的第i行第j列。

這看起來非常像「元組的列表」(Lists of Tuples)。

「列表的列表」示例

我們可以使用嵌套的列表推導式(list comprehension)創建一個表格。 下面的例子創建了一個「序列的序列」構成的表格,並為表格的每一個單元格賦值。
table= [ [ 0 for i in range(6) ] for j in range(6) ]
print table
for d1 in range(6):
for d2 in range(6):
table[d1][d2]= d1+d2+2
print table
123456

程序的輸出結果如下:
[[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]]
[[2, 3, 4, 5, 6, 7], [3, 4, 5, 6, 7, 8], [4, 5, 6, 7, 8, 9],
[5, 6, 7, 8, 9, 10], [6, 7, 8, 9, 10, 11], [7, 8, 9, 10, 11, 12]]
1234

這個程序做了兩件事:創建了一個6 × 6的全0表格。 然後使用兩枚骰子的可能組合的數值填充表格。 這並非完成此功能最有效的方式,但我們通過這個簡單的例子來演示幾項技術。我們仔細看一下程序的前後兩部分。

程序的第一部分創建並輸出了一個包含6個元素的列表,我們稱之為「表格」;表格中的每一個元素都是一個包含6個0元素的列表。它使用列表推導式,對
於范圍從0到6的每一個j都創建對象。每一個對象都是一個0元素列表,由i變數從0到6遍歷產生。初始化完成之後,列印輸出二維全0表格。

推導式可以從里向外閱讀,就像一個普通表達式一樣。內層列表[ 0 for i in range(6) ]創建了一個包含6個0的簡單列表。外層列表[ [...] for j in range(6) ]創建了這些內層列表的6個深拷貝。

程序的第2個部分對2個骰子的每一個組合進行迭代,填充表格的每一個單元格。這由兩層嵌套循環實現,每一個循環迭代一個骰子。外層循環枚舉第一個骰子的所有可能值d1。內層循環枚舉第二個骰子d2。

更新每一個單元格時需要通過table[d1]選擇每一行;這是一個包含6個值的列表。這個列表中選定的單元格通過...[d2]進行選擇。我們將擲骰子的值賦給這個單元格,d1+d2+2

其他示例

列印出的列表的列表不太容易閱讀。下面的循環會以一種更加可讀的形式顯示表格。
>>>
for row in table:

...
print row

...
[2, 3, 4, 5, 6, 7]
[3, 4, 5, 6, 7, 8]
[4, 5, 6, 7, 8, 9]
[5, 6, 7, 8, 9, 10]
[6, 7, 8, 9, 10, 11]
[7, 8, 9, 10, 11, 12]
12345678910111213

作為練習,讀者可以試著在列印列表內容時,再列印出行和列的表頭。提示一下,使用"%2d" % value字元串運算符可以列印出固定長度的數字格式。

顯示索引值(Explicit Index Values)

我們接下來對骰子表格進行匯總統計,得出累計頻率表。我們使用一個包含13個元素的列表(下標從0到12)表示每一個骰子值的出現頻率。觀察可知骰子值2在矩陣中只出現了一次,因此我們期望fq[2]的值為1。遍歷矩陣中的每一個單元格,得出累計頻率表。
fq= 13 * [0]
for i in range(6):
for j in range(6):
c= table[i][j]
fq[ c ] += 1
12345

使用下標i選出表格中的行,用下標j從行中選出一列,得到單元格c。然後用fq統計頻率。

這看起來非常的數學和規范。Python提供了另外一種更簡單一些的方式。

使用列表迭代器而非下標

表格是列表的列表,可以採用無下標的for循環遍歷列表元素。
fq= 13 * [0]
print fq
for row in table:
for c in row:
fq[c] += 1
print fq[2:]

閱讀全文

與多維數組使用python相關的資料

熱點內容
挖掘機程序員哪個好 瀏覽:458
方舟怎麼進上一次進的伺服器 瀏覽:635
pdf怎樣剪切 瀏覽:906
git編譯所有文件命令 瀏覽:694
偽軍pdf 瀏覽:418
如何判斷基本命令 瀏覽:972
pdf批量刪除 瀏覽:943
廣播android靜態動態區別 瀏覽:390
centos7設置為命令行啟動 瀏覽:570
程序員資質資格證 瀏覽:217
常見編碼加密 瀏覽:236
阿狸免費雲伺服器 瀏覽:764
快速配置伺服器bmc地址 瀏覽:968
機械手臂編程自動化 瀏覽:501
怎麼看銀行app的銀行卡號 瀏覽:84
pdf文件改ppt 瀏覽:196
ecs對比雲伺服器 瀏覽:852
必剪app怎麼沒有美顏 瀏覽:176
唯庫的視頻怎麼下載app 瀏覽:465
面度雲伺服器 瀏覽:353