導航:首頁 > 編程語言 > python圖片庫

python圖片庫

發布時間:2022-12-14 21:56:18

㈠ 10 個 python 圖像編輯工具

以下提到的這些 Python 工具在編輯圖像、操作圖像底層數據方面都提供了簡單直接的方法。

-- Parul Pandey

當今的世界充滿了數據,而圖像數據就是其中很重要的一部分。但只有經過處理和分析,提高圖像的質量,從中提取出有效地信息,才能利用到這些圖像數據。

常見的圖像處理操作包括顯示圖像,基本的圖像操作,如裁剪、翻轉、旋轉;圖像的分割、分類、特徵提取;圖像恢復;以及圖像識別等等。Python 作為一種日益風靡的科學編程語言,是這些圖像處理操作的最佳選擇。同時,在 Python 生態當中也有很多可以免費使用的優秀的圖像處理工具。

下文將介紹 10 個可以用於圖像處理任務的 Python 庫,它們在編輯圖像、查看圖像底層數據方面都提供了簡單直接的方法。

scikit-image 是一個結合 NumPy 數組使用的開源 Python 工具,它實現了可用於研究、教育、工業應用的演算法和應用程序。即使是對於剛剛接觸 Python 生態圈的新手來說,它也是一個在使用上足夠簡單的庫。同時它的代碼質量也很高,因為它是由一個活躍的志願者社區開發的,並且通過了 同行評審(peer review)。

scikit-image 的 文檔 非常完善,其中包含了豐富的用例。

可以通過導入 skimage 使用,大部分的功能都可以在它的子模塊中找到。

圖像濾波(image filtering):

使用 match_template() 方法實現 模板匹配(template matching):

在 展示頁面 可以看到更多相關的例子。

NumPy 提供了對數組的支持,是 Python 編程的一個核心庫。圖像的本質其實也是一個包含像素數據點的標准 NumPy 數組,因此可以通過一些基本的 NumPy 操作(例如切片、 掩膜(mask)、 花式索引(fancy indexing)等),就可以從像素級別對圖像進行編輯。通過 NumPy 數組存儲的圖像也可以被 skimage 載入並使用 matplotlib 顯示。

在 NumPy 的 官方文檔 中提供了完整的代碼文檔和資源列表。

使用 NumPy 對圖像進行 掩膜(mask)操作:

像 NumPy 一樣, SciPy 是 Python 的一個核心科學計算模塊,也可以用於圖像的基本操作和處理。尤其是 SciPy v1.1.0 中的 scipy.ndimage 子模塊,它提供了在 n 維 NumPy 數組上的運行的函數。SciPy 目前還提供了 線性和非線性濾波(linear and non-linear filtering)、 二值形態學(binary morphology)、 B 樣條插值(B-spline interpolation)、 對象測量(object measurements)等方面的函數。

在 官方文檔 中可以查閱到 scipy.ndimage 的完整函數列表。

使用 SciPy 的 高斯濾波 對圖像進行模糊處理:

PIL (Python Imaging Library) 是一個免費 Python 編程庫,它提供了對多種格式圖像文件的打開、編輯、保存的支持。但在 2009 年之後 PIL 就停止發布新版本了。幸運的是,還有一個 PIL 的積極開發的分支 Pillow ,它的安裝過程比 PIL 更加簡單,支持大部分主流的操作系統,並且還支持 Python 3。Pillow 包含了圖像的基礎處理功能,包括像素點操作、使用內置卷積內核進行濾波、顏色空間轉換等等。

Pillow 的 官方文檔 提供了 Pillow 的安裝說明自己代碼庫中每一個模塊的示例。

使用 Pillow 中的 ImageFilter 模塊實現圖像增強:

OpenCV(Open Source Computer Vision 庫)是計算機視覺領域最廣泛使用的庫之一, OpenCV-Python 則是 OpenCV 的 Python API。OpenCV-Python 的運行速度很快,這歸功於它使用 C/C++ 編寫的後台代碼,同時由於它使用了 Python 進行封裝,因此調用和部署的難度也不大。這些優點讓 OpenCV-Python 成為了計算密集型計算機視覺應用程序的一個不錯的選擇。

入門之前最好先閱讀 OpenCV2-Python-Guide 這份文檔。

使用 OpenCV-Python 中的 金字塔融合(Pyramid Blending)將蘋果和橘子融合到一起:

SimpleCV 是一個開源的計算機視覺框架。它支持包括 OpenCV 在內的一些高性能計算機視覺庫,同時不需要去了解 位深度(bit depth)、文件格式、 色彩空間(color space)之類的概念,因此 SimpleCV 的學習曲線要比 OpenCV 平緩得多,正如它的口號所說,「將計算機視覺變得更簡單」。SimpleCV 的優點還有:

官方文檔 簡單易懂,同時也附有大量的學慣用例。

文檔 包含了安裝介紹、示例以及一些 Mahotas 的入門教程。

Mahotas 力求使用少量的代碼來實現功能。例如這個 Finding Wally 游戲 :

ITK (Insight Segmentation and Registration Toolkit)是一個為開發者提供普適性圖像分析功能的開源、跨平台工具套件, SimpleITK 則是基於 ITK 構建出來的一個簡化層,旨在促進 ITK 在快速原型設計、教育、解釋語言中的應用。SimpleITK 作為一個圖像分析工具包,它也帶有 大量的組件 ,可以支持常規的濾波、圖像分割、 圖像配准(registration)功能。盡管 SimpleITK 使用 C++ 編寫,但它也支持包括 Python 在內的大部分編程語言。

有很多 Jupyter Notebooks 用例可以展示 SimpleITK 在教育和科研領域中的應用,通過這些用例可以看到如何使用 Python 和 R 利用 SimpleITK 來實現互動式圖像分析。

使用 Python + SimpleITK 實現的 CT/MR 圖像配准過程:

pgmagick 是使用 Python 封裝的 GraphicsMagick 庫。 GraphicsMagick 通常被認為是圖像處理界的瑞士軍刀,因為它強大而又高效的工具包支持對多達 88 種主流格式圖像文件的讀寫操作,包括 DPX、GIF、JPEG、JPEG-2000、PNG、PDF、PNM、TIFF 等等。

pgmagick 的 GitHub 倉庫 中有相關的安裝說明、依賴列表,以及詳細的 使用指引 。

圖像縮放:

邊緣提取:

Cairo 是一個用於繪制矢量圖的二維圖形庫,而 Pycairo 是用於 Cairo 的一組 Python 綁定。矢量圖的優點在於做大小縮放的過程中不會丟失圖像的清晰度。使用 Pycairo 可以在 Python 中調用 Cairo 的相關命令

Pycairo 的 GitHub 倉庫 提供了關於安裝和使用的詳細說明,以及一份簡要介紹 Pycairo 的 入門指南 。

使用 Pycairo 繪制線段、基本圖形、 徑向漸變(radial gradients):

以上就是 Python 中的一些有用的圖像處理庫,無論你有沒有聽說過、有沒有使用過,都值得試用一下並了解它們。

via: https://opensource.com/article/19/3/python-image-manipulation-tools

作者: Parul Pandey 選題: lujun9972 譯者: HankChow 校對: wxy

㈡ pillow教程

在Python圖像庫中最重要的類是同名模塊中定義的 Image 類。您可以利用以下方法創造該類的實例:從文件中導入圖像、處理其他的圖像以及從零開始創建圖像。

從文件中導入圖像,使用在 Image 模塊中的 open() 函數:

如果成功。該函數返回一個 Image 對象。您現在可以使用實例的屬性來檢查文件內容了:

format 屬性識別圖像的來源。如果圖像不是從圖像中讀取,則該屬性設置為None。 size 屬性是一個一個包含寬和高(像素)的二元組。 mode 屬性定義圖像頻段的數量和名稱,以及像素的類型和深度。常用的模式(mode)為表示灰色圖像的「L」,表示真彩色圖像的處理問題「RGB」,以及印前圖像的畫面「CMYK」。

如何圖像不能被打開,則會報出 OSError 異常。

一旦您有 Image 類的實例,您可以使用類中定義的方法來處理和操作圖像。比如,讓我們顯示導入的圖像:

show() 的標准版本不是非常的高效,因為該函數會把圖像保存到一個臨時文件並調用實用程序來顯示圖像。如果您沒有安裝一個合適的實用程序,它甚至不會起作用。雖然當它不起作用時,調試和測試是非常方便的。

下面的章節概括了該庫提供的不同函數。

該Python圖像庫支持大量的圖像文件格式。為了從磁碟中閱讀文件,使用在 Image 模塊中的 open() 。您不需要知道打開文件的文件格式。該庫能夠自動地根據文件的內容決定格式。

為了保存一個文件,使用 Image 類中的 save() 方法。當保存文件時,名字非常重要。除非您指定格式,該庫使用文件名的後綴來發現將要使用的文件存儲格式。

提供給 save() 方法的第二個參數精準地制定了一個文件的格式。如果您使用了非標準的後綴,您必須一直使用以下方式指定格式:

值得注意的是,非必要情況該庫不會解碼或載入柵格數據(raster data)。當您打開一個文件時,文件頭將被讀取用於確定文件格式以及提取如模式、尺寸等其他解碼文件需要的性質,但是文件餘下的部分會稍後再處理。

這意味著打開一個圖像是最後的操作,它與文件大小和壓縮類型無關。這里有一種簡單的腳本可以塊度地識別圖像文件集:

Image類包含允許您操作圖像內區域的方法。為了從圖像中提取子矩形,使用crop()方法。

一個區域是一個4元組,其中坐標為(左,上,右,下)。該Python圖像庫使用左上角坐標為(0,0)的坐標系統。同樣值得注意的是,坐標是指像素間的位置,因此上例中的區域正好為300x300的像素。

該區域現在能以某種方法進行處理並粘貼回去。

當將區域粘貼回去時,區域的大小必須准確地匹配給定的區域。此外,區域不能拓展到圖像之外。然而,原始圖像和區域的模式不必相匹。如果相同,則區域會在被粘貼前自動地轉換(有關詳細信息,請參閱下面的 顏色轉換 部分)。

這里有一個額外的例子:

對於更高級的技巧,paste方法可以將透明掩碼(transparency mask)作為可選參數。在掩碼中,數值255被粘貼的圖像在該位置是不透明的(即,被粘貼的圖像就是原圖粘貼)。數值0表示被粘貼的圖像是完全透明的。在0和255之間的數值表示不同級別的透明程度。例如,粘貼一個RGBA圖像並將其作為掩碼會粘貼圖像的不透明部分,但不會粘貼其透明背景。

該Python圖像庫也允許您在多頻段圖像中的單個頻段中進行工作,例如RGB圖像。split方法創造了新的圖像集,每一個都包含了來自原始多頻段圖像的一個頻段。合並函數將一個模式和圖像組作為輸入,並將其組合為新圖像。下面示例交換了一個RGB圖像的三個頻段:

值得注意的是,對一個單波段圖像而言, split() 返回圖像本身。要在單個顏色頻段上工作,您可能需要首先將圖像轉換為"RGB"。

PIL.Image.Image 類包含調整( resize() )和旋轉( rotate() )一個圖像的方法。前者通過輸入元組來確定新的圖片大小,後者通過輸入的角度以逆時間旋轉圖片。

若要90度旋轉圖像,您即可以使用 rotate() 方法,也可以使用 transpose() 方法。後者還可以在水平或垂直軸周圍翻轉圖像。

transpose(ROTATE)也可以和 rotate() 執行的結果相同,前提是rotate()中的expand標志設置為真,用以提供圖像尺寸的相同更改。

圖像轉換的一種更一般的形式是通過 transform() 方法執行。

該Python圖像庫允許您使用convert()方法在不同的像素表示間轉換圖像。

該庫可以在每個支持的模式和「L」以及「RGB」模式間進行轉換。為了在其他模式間進行轉換,您可能會使用到一個中間圖像(通常為「RGB」圖像)。

該Python圖像庫提供了大量的方法和模塊用於增強圖像。

ImageFilter 模塊包含了許多能和 filter() 方法一起使用的預定義的增強過濾器。

point() 方法用於翻譯圖像的像素值(如圖像對比度操作)。在多數情況下,一個函數對象期望一個傳遞給方法的參數。每一個像素都按照函數進行處理:

使用以上方法,您可以快速地在圖像上應用任何簡單的表達式。您還可以通過結合 point() 和 paste() 方法來有選擇性地修改圖像:

以下語法用於創造掩碼:

Python僅評估確定結果所需的邏輯表達部分,並返回作為表達結果檢查的最後值。因此,如果以上表達式為假(0),Python不再查看第二個操作數,並返回0。相反地,返回255。

對更先進的圖像增強,您可以使用 ImageEnhance 模塊中的類。一旦從圖像創建,增強對象可用於快速嘗試不同的設置。

您可以通過這種方式調整對比度、亮度、顏色平衡和銳度。

該Python圖像庫包含一些對圖像序列(也稱為動畫支持)的基礎支持。支持的序列格式包括FLI/FLC,GIF,以及一些實驗格式。TIgFF文件還可以包含多個幀。

當您打開一個序列文件,PIL自動地導入序列的第一幀。您可以使用seek並告訴方法在不同幀之間移動:

如例所見,當序列結束時,您會得到一個 EOFError 異常。

下列類允許您使用for語句循環序列:

該Python圖像庫包含在PostScript列印機上列印圖像、文本以及圖形的功能。下面是一個簡單的示例:

如早前描述的一樣, Image 模塊中的 open() 函數用於打開圖像文件。在大部分情況下,您簡單地傳入文件名作為一個參數。Image.open能作為文本管理器:

您可以使用一個類文件對象來代替文件名。這個對戲必須實現必須實現file.read、file.seek和file.tell方法,且必須以二進制模式打開。

要從二進制數據中讀取圖像,請使用 Bytes10 類:

請注意,庫在閱讀圖像頭部之前會倒帶文件(使用seek(0))。此外,當讀取圖像數據時(通過load方法),還將使用seek。如果圖像文件嵌入到較大的文件中,例如tar文件,您可以使用 ContainerIO 或 TarIO 模塊來訪問它。

一些解碼器允許您在從文件中讀取圖像時對其進行操作。這通常被用於創建縮略圖(當速度遠大於質量時)和列印到單色激光列印機(當只需要圖像的灰度版本時)的解碼過程。

draft()方法操縱打開但尚未載入的圖像,以便盡可能與給定的模式和大小匹配。這是通過重新配置圖像解碼器來完成的。

這只適用於JPEG和MPO文件。

列印結果如下:

值得注意的是,生成的圖像可能不會精確地匹配要求的模式和尺寸。為了確保圖像不大於給定的尺寸,請使用thumbnail方法。

㈢ python圖像識別需要哪些庫

主流Python圖像庫:
1.opencv
2.PIL(pillow)
3.matplotlib.image
4.scipy.misc
5.skimage

㈣ python 如何把圖片存入資料庫

作者:小風寒吶
鏈接:https://zhuanlan.hu.com/p/30212013
來源:知乎
著作權歸作者所有。商業轉載請聯系作者獲得授權,非商業轉載請註明出處。
首先我們讀取圖庫中所有圖片的名稱,保存在fileNames中。然後讀取Data.csv中所有數據。
提取出Data.csv的最後一列(一共10002列,第10001列說明該數字是什麼數字,第10002列是圖片的名稱),也就是資料庫中存儲的所有圖片的名稱,存儲在item中。
將新加入圖庫的圖片名稱保存在newFileNames中。如果Data.csv為空,那麼就直接令newFileNames
=
fileNames。也就是說如果資料庫中什麼也沒有,那麼圖庫中所有圖片都是新加入的。
如果Data.csv不為空,那麼就將item裡面的內容與fileNames的內容比較,如果出現了fileNames裡面有的名稱item中沒有,那麼就將這些名稱放進newFileNames中。如果item里有的名稱fileNames中沒有,那就不管。
也就是說,我令我們的資料庫只進不出。
現在我們得到了新加入圖庫的圖片的名稱newFileNames。
將newFileNames中的名稱的圖片帶入上一文中函數GetTrainPicture進行處理,得到了一個nx10001的矩陣,每一行代表一個新加入的圖片,前10000列是圖片向量,第10001列是該圖片的數字,保存在pic中。

㈤ python:PIL圖像處理

PIL (Python Imaging Library)

Python圖像處理庫,該庫支持多種文件格式,提供強大的圖像處理功能。

PIL中最重要的類是Image類,該類在Image模塊中定義。

從文件載入圖像:

如果成功,這個函數返回一個Image對象。現在你可以使用該對象的屬性來探索文件的內容。

format 屬性指定了圖像文件的格式,如果圖像不是從文件中載入的則為 None 。
size 屬性是一個2個元素的元組,包含圖像寬度和高度(像素)。
mode 屬性定義了像素格式,常用的像素格式為:「L」 (luminance) - 灰度圖, 「RGB」 , 「CMYK」。

如果文件打開失敗, 將拋出IOError異常。

一旦你擁有一個Image類的實例,你就可以用該類定義的方法操作圖像。比如:顯示

( show() 的標准實現不是很有效率,因為它將圖像保存到一個臨時文件,然後調用外部工具(比如系統的默認圖片查看軟體)顯示圖像。該函數將是一個非常方便的調試和測試工具。)

接下來的部分展示了該庫提供的不同功能。

PIL支持多種圖像格式。從磁碟中讀取文件,只需使用 Image 模塊中的 open 函數。不需要提供文件的圖像格式。PIL庫將根據文件內容自動檢測。

如果要保存到文件,使用 Image 模塊中的 save 函數。當保存文件時,文件名很重要,除非指定格式,否則PIL庫將根據文件的擴展名來決定使用哪種格式保存。

** 轉換文件到JPEG **

save 函數的第二個參數可以指定使用的文件格式。如果文件名中使用了一個非標準的擴展名,則必須通過第二個參數來指定文件格式。

** 創建JPEG縮略圖 **

需要注意的是,PIL只有在需要的時候才載入像素數據。當你打開一個文件時,PIL只是讀取文件頭獲得文件格式、圖像模式、圖像大小等屬性,而像素數據只有在需要的時候才會載入。

這意味著打開一個圖像文件是一個非常快的操作,不會受文件大小和壓縮演算法類型的影響。

** 獲得圖像信息 **

Image 類提供了某些方法,可以操作圖像的子區域。提取圖像的某個子區域,使用 crop() 函數。

** 復制圖像的子區域 **

定義區域使用一個包含4個元素的元組,(left, upper, right, lower)。坐標原點位於左上角。上面的例子提取的子區域包含300x300個像素。

該區域可以做接下來的處理然後再粘貼回去。

** 處理子區域然後粘貼回去 **

當往回粘貼時,區域的大小必須和參數匹配。另外區域不能超出圖像的邊界。然而原圖像和區域的顏色模式無需匹配。區域會自動轉換。

** 滾動圖像 **

paste() 函數有個可選參數,接受一個掩碼圖像。掩碼中255表示指定位置為不透明,0表示粘貼的圖像完全透明,中間的值表示不同級別的透明度。

PIL允許分別操作多通道圖像的每個通道,比如RGB圖像。 split() 函數創建一個圖像集合,每個圖像包含一個通道。 merge() 函數接受一個顏色模式和一個圖像元組,然後將它們合並為一個新的圖像。接下來的例子交換了一個RGB圖像的三個通道。

** 分離和合並圖像通道 **

對於單通道圖像, split() 函數返回圖像本身。如果想處理各個顏色通道,你可能需要先將圖像轉為RGB模式。

resize() 函數接受一個元組,指定圖像的新大小。
rotate() 函數接受一個角度值,逆時針旋轉。

** 基本幾何變換 **

圖像旋轉90度也可以使用 transpose() 函數。 transpose() 函數也可以水平或垂直翻轉圖像。

** transpose **

transpose() 和 rotate() 函數在性能和結果上沒有區別。

更通用的圖像變換函數為 transform() 。

PIL可以轉換圖像的像素模式。

** 轉換顏色模式 **

PIL庫支持從其他模式轉為「L」或「RGB」模式,其他模式之間轉換,則需要使用一個中間圖像,通常是「RGB」圖像。

ImageFilter 模塊包含多個預定義的圖像增強過濾器用於 filter() 函數。

** 應用過濾器 **

point() 函數用於操作圖像的像素值。該函數通常需要傳入一個函數對象,用於操作圖像的每個像素:

** 應用點操作 **

使用以上技術可以快速地對圖像像素應用任何簡單的表達式。可以結合 point() 函數和 paste 函數修改圖像。

** 處理圖像的各個通道 **

注意用於創建掩碼圖像的語法:

Python計算邏輯表達式採用短路方式,即:如果and運算符左側為false,就不再計算and右側的表達式,而且返回結果是表達式的結果。比如 a and b 如果a為false則返回a,如果a為true則返回b,詳見Python語法。

對於更多高級的圖像增強功能,可以使用 ImageEnhance 模塊中的類。

可以調整圖像對比度、亮度、色彩平衡、銳度等。

** 增強圖像 **

PIL庫包含對圖像序列(動畫格式)的基本支持。支持的序列格式包括 FLI/FLC 、 GIF 和一些實驗性的格式。 TIFF 文件也可以包含多個幀。

當打開一個序列文件時,PIL庫自動載入第一幀。你可以使用 seek() 函數 tell() 函數在不同幀之間移動。

** 讀取序列 **

如例子中展示的,當序列到達結尾時,將拋出EOFError異常。

注意當前版本的庫中多數底層驅動只允許seek到下一幀。如果想回到前面的幀,只能重新打開圖像。

以下迭代器類允許在for語句中循環遍歷序列:

** 一個序列迭代器類 **

PIL庫包含一些函數用於將圖像、文本列印到Postscript列印機。以下是一個簡單的例子。

** 列印到Postscript **

如前所述,可以使用 open() 函數打開圖像文件,通常傳入一個文件名作為參數:

如果打開成功,返回一個Image對象,否則拋出IOError異常。

也可以使用一個file-like object代替文件名(暫可以理解為文件句柄)。該對象必須實現read,seek,tell函數,必須以二進制模式打開。

** 從文件句柄打開圖像 **

如果從字元串數據中讀取圖像,使用StringIO類:

** 從字元串中讀取 **

如果圖像文件內嵌在一個大文件里,比如 tar 文件中。可以使用ContainerIO或TarIO模塊來訪問。

** 從tar文檔中讀取 **

** 該小節不太理解,請參考原文 **

有些解碼器允許當讀取文件時操作圖像。通常用於在創建縮略圖時加速解碼(當速度比質量重要時)和輸出一個灰度圖到激光列印機時。

draft() 函數。

** Reading in draft mode **

輸出類似以下內容:

注意結果圖像可能不會和請求的模式和大小匹配。如果要確保圖像不大於指定的大小,請使用 thumbnail 函數。

Python2.7 教程 PIL
http://www.liaoxuefeng.com/wiki//

Python 之 使用 PIL 庫做圖像處理
http://www.cnblogs.com/way_testlife/archive/2011/04/17/2019013.html

來自 http://effbot.org/imagingbook/introction.htm

㈥ python的pillow庫怎麼使用

Pillow是Python里的圖像處理庫(PIL:Python Image Library),提供了了廣泛的文件格式支持,強大的圖像處理能力,主要包括圖像儲存、圖像顯示、格式轉換以及基本的圖像處理操作等。

1)使用 Image 類
PIL最重要的類是 Image class, 你可以通過多種方法創建這個類的實例;你可以從文件載入圖像,或者處理其他圖像, 或者從 scratch 創建。

要從文件載入圖像,可以使用open( )函數,在Image模塊中:

[python]view plain

㈦ 最受歡迎的 15 大 Python 庫有哪些

Python常用庫大全,看看有沒有你需要的。
環境管理
管理 Python 版本和環境的工具
p – 非常簡單的互動式 python 版本管理工具。
pyenv – 簡單的 Python 版本管理工具。
Vex – 可以在虛擬環境中執行命令。
virtualenv – 創建獨立 Python 環境的工具。
virtualenvwrapper- virtualenv 的一組擴展。
包管理
管理包和依賴的工具。
pip – Python 包和依賴關系管理工具。
pip-tools – 保證 Python 包依賴關系更新的一組工具。
conda – 跨平台,Python 二進制包管理工具。
Curdling – 管理 Python 包的命令行工具。
wheel – Python 分發的新標准,意在取代 eggs。
包倉庫
本地 PyPI 倉庫服務和代理。
warehouse – 下一代 PyPI。
Warehousebandersnatch – PyPA 提供的 PyPI 鏡像工具。
devpi – PyPI 服務和打包/測試/分發工具。
localshop – 本地 PyPI 服務(自定義包並且自動對 PyPI 鏡像)。
分發
打包為可執行文件以便分發。
PyInstaller – 將 Python 程序轉換成獨立的執行文件(跨平台)。
dh-virtualenv – 構建並將 virtualenv 虛擬環境作為一個 Debian 包來發布。
Nuitka – 將腳本、模塊、包編譯成可執行文件或擴展模塊。
py2app – 將 Python 腳本變為獨立軟體包(Mac OS X)。
py2exe – 將 Python 腳本變為獨立軟體包(Windows)。
pynsist – 一個用來創建 Windows 安裝程序的工具,可以在安裝程序中打包 Python本身。
構建工具
源碼編譯成軟體。
buildout – 一個構建系統,從多個組件來創建,組裝和部署應用。
BitBake – 針對嵌入式 Linux 的類似 make 的構建工具。
fabricate – 對任何語言自動找到依賴關系的構建工具。
PlatformIO – 多平台命令行構建工具。
PyBuilder – 純 Python 實現的持續化構建工具。
SCons – 軟體構建工具。
互動式解析器
互動式 Python 解析器。
IPython – 功能豐富的工具,非常有效的使用互動式 Python。
bpython- 界面豐富的 Python 解析器。
ptpython – 高級互動式Python解析器, 構建於python-prompt-toolkit 之上。
文件
文件管理和 MIME(多用途的網際郵件擴充協議)類型檢測。
imghdr – (Python 標准庫)檢測圖片類型。
mimetypes – (Python 標准庫)將文件名映射為 MIME 類型。
path.py – 對 os.path 進行封裝的模塊。
pathlib – (Python3.4+ 標准庫)跨平台的、面向對象的路徑操作庫。
python-magic- 文件類型檢測的第三方庫 libmagic 的 Python 介面。
Unipath- 用面向對象的方式操作文件和目錄
watchdog – 管理文件系統事件的 API 和 shell 工具
日期和時間
操作日期和時間的類庫。
arrow- 更好的 Python 日期時間操作類庫。
Chronyk – Python 3 的類庫,用於解析手寫格式的時間和日期。
dateutil – Python datetime 模塊的擴展。
delorean- 解決 Python 中有關日期處理的棘手問題的庫。
moment – 一個用來處理時間和日期的Python庫。靈感來自於Moment.js。
PyTime – 一個簡單易用的Python模塊,用於通過字元串來操作日期/時間。
pytz – 現代以及歷史版本的世界時區定義。將時區資料庫引入Python。
when.py – 提供用戶友好的函數來幫助用戶進行常用的日期和時間操作。
文本處理
用於解析和操作文本的庫。
通用
chardet – 字元編碼檢測器,兼容 Python2 和 Python3。
difflib – (Python 標准庫)幫助我們進行差異化比較。
ftfy – 讓Unicode文本更完整更連貫。
fuzzywuzzy – 模糊字元串匹配。
Levenshtein – 快速計算編輯距離以及字元串的相似度。
pangu.py – 在中日韓語字元和數字字母之間添加空格。
pyfiglet -figlet 的 Python實現。
shortuuid – 一個生成器庫,用以生成簡潔的,明白的,URL 安全的 UUID。
unidecode – Unicode 文本的 ASCII 轉換形式 。
uniout – 列印可讀的字元,而不是轉義的字元串。
xpinyin – 一個用於把漢字轉換為拼音的庫。

㈧ python圖像處理庫 哪個好 知乎

1.scikit-image
scikit-image是一個開源的Python包,適用於numpy數組。它實現了用於研究,教育和工業應用的演算法和實用工具。即使是那些剛接觸Python生態系統的人,它也是一個相當簡單直接的庫。此代碼是由活躍的志願者社區編寫的,具有高質量和同行評審的性質。
2.Numpy
Numpy是Python編程的核心庫之一,並為數組提供支持。圖像本質上是包含數據點像素的標准Numpy數組。因此,我們可以通過使用基本的NumPy操作,例如切片、掩膜和花式索引,來修改圖像的像素值。可以使用skimage載入圖像並使用matplotlib顯示圖像。
3.Scipy
scipy是Python的另一個類似Numpy的核心科學模塊,可用於基本的圖像操作和處理任務。特別是子模塊scipy.ndimage,提供了在n維NumPy數組上操作的函數。該包目前包括線性和非線性濾波,二值形態學,B樣條插值和對象測量等功能函數。
4. PIL/Pillow
PIL是Python編程語言的一個免費庫,它支持打開、操作和保存許多不同的文件格式的圖像。然而,隨著2009年的最後一次發布,它的開發停滯不前。但幸運的是還有Pillow,一個PIL積極開發的且更容易安裝的分支,它能運行在所有主要的操作系統,並支持Python3。這個庫包含了基本的圖像處理功能,包括點運算、使用一組內置卷積核的濾波和色彩空間的轉換。
5.OpenCV-Python
OpenCV是計算機視覺應用中應用最廣泛的庫之一
。OpenCV-Python是OpenCV的python版API。OpenCV-Python的優點不只有高效,這源於它的內部組成是用C/C++編寫的,而且它還容易編寫和部署。這使得它成為執行計算密集型計算機視覺程序的一個很好的選擇。
6.SimpleCV
SimpleCV也是一個用於構建計算機視覺應用程序的開源框架。有了它,你就可以訪問幾個高性能的計算機視覺庫,如OpenCV,而且不需要先學習了解位深度、文件格式、顏色空間等。它的學習曲線大大小於OpenCV,正如它們的口號所說「計算機視覺變得簡單」。
7.Mahotas
Mahotas是另一個計算機視覺和圖像處理的Python庫。它包括了傳統的圖像處理功能例如濾波和形態學操作以及更現代的計算機視覺功能用於特徵計算,包括興趣點檢測和局部描述符。該介面是Python語言,適合於快速開發,但是演算法是用C語言實現的,並根據速度進行了調優。Mahotas庫速度快,代碼簡潔,甚至具有最小的依賴性。
8.SimpleITK
ITK或者Insight Segmentation and Registration
Toolkit是一個開源的跨平台系統,為開發人員提供了一套廣泛的圖像分析軟體工具
。其中,SimpleITK是建立在ITK之上的簡化層,旨在促進其在快速原型設計、教育、解釋語言中的應用。SimpleITK是一個圖像分析工具包,包含大量支持一般過濾操作、圖像分割和匹配的組件。SimpleITK本身是用C++寫的,但是對於包括Python以內的大部分編程語言都是可用的。
9.pgmagick
pgmagick是GraphicsMagick庫的一個基於python的包裝。GraphicsMagick圖像處理系統有時被稱為圖像處理的瑞士軍刀。它提供了一個具有強大且高效的工具和庫集合,支持以88種主要格式讀取、寫入和操作圖像。
10.Pycairo
Pycairo是圖像處理庫cairo的一組Python捆綁。Cairo是一個用於繪制矢量圖形的2D圖形庫。矢量圖形很有趣,因為它們在調整大小或轉換時不會失去清晰度。Pycairo是cairo的一組綁定,可用於從Python調用cairo命令。

㈨ Python 常用的標准庫以及第三方庫有哪些

Python常用庫大全,看看有沒有你需要的。
環境管理
管理 Python 版本和環境的工具
p – 非常簡單的互動式 python 版本管理工具。
pyenv – 簡單的 Python 版本管理工具。
Vex – 可以在虛擬環境中執行命令。
virtualenv – 創建獨立 Python 環境的工具。
virtualenvwrapper- virtualenv 的一組擴展。
包管理
管理包和依賴的工具。
pip – Python 包和依賴關系管理工具。
pip-tools – 保證 Python 包依賴關系更新的一組工具。
conda – 跨平台,Python 二進制包管理工具。
Curdling – 管理 Python 包的命令行工具。
wheel – Python 分發的新標准,意在取代 eggs。
包倉庫
本地 PyPI 倉庫服務和代理。
warehouse – 下一代 PyPI。
Warehousebandersnatch – PyPA 提供的 PyPI 鏡像工具。
devpi – PyPI 服務和打包/測試/分發工具。
localshop – 本地 PyPI 服務(自定義包並且自動對 PyPI 鏡像)。
分發
打包為可執行文件以便分發。
PyInstaller – 將 Python 程序轉換成獨立的執行文件(跨平台)。
dh-virtualenv – 構建並將 virtualenv 虛擬環境作為一個 Debian 包來發布。
Nuitka – 將腳本、模塊、包編譯成可執行文件或擴展模塊。
py2app – 將 Python 腳本變為獨立軟體包(Mac OS X)。
py2exe – 將 Python 腳本變為獨立軟體包(Windows)。
pynsist – 一個用來創建 Windows 安裝程序的工具,可以在安裝程序中打包 Python本身。
構建工具
將源碼編譯成軟體。
buildout – 一個構建系統,從多個組件來創建,組裝和部署應用。
BitBake – 針對嵌入式 Linux 的類似 make 的構建工具。
fabricate – 對任何語言自動找到依賴關系的構建工具。
PlatformIO – 多平台命令行構建工具。
PyBuilder – 純 Python 實現的持續化構建工具。
SCons – 軟體構建工具。
互動式解析器
互動式 Python 解析器。
IPython – 功能豐富的工具,非常有效的使用互動式 Python。
bpython- 界面豐富的 Python 解析器。
ptpython – 高級互動式Python解析器, 構建於python-prompt-toolkit 之上。
文件
文件管理和 MIME(多用途的網際郵件擴充協議)類型檢測。
imghdr – (Python 標准庫)檢測圖片類型。
mimetypes – (Python 標准庫)將文件名映射為 MIME 類型。
path.py – 對 os.path 進行封裝的模塊。
pathlib – (Python3.4+ 標准庫)跨平台的、面向對象的路徑操作庫。
python-magic- 文件類型檢測的第三方庫 libmagic 的 Python 介面。
Unipath- 用面向對象的方式操作文件和目錄
watchdog – 管理文件系統事件的 API 和 shell 工具
日期和時間
操作日期和時間的類庫。
arrow- 更好的 Python 日期時間操作類庫。
Chronyk – Python 3 的類庫,用於解析手寫格式的時間和日期。
dateutil – Python datetime 模塊的擴展。
delorean- 解決 Python 中有關日期處理的棘手問題的庫。
moment – 一個用來處理時間和日期的Python庫。靈感來自於Moment.js。
PyTime – 一個簡單易用的Python模塊,用於通過字元串來操作日期/時間。
pytz – 現代以及歷史版本的世界時區定義。將時區資料庫引入Python。
when.py – 提供用戶友好的函數來幫助用戶進行常用的日期和時間操作。
文本處理
用於解析和操作文本的庫。
通用
chardet – 字元編碼檢測器,兼容 Python2 和 Python3。
difflib – (Python 標准庫)幫助我們進行差異化比較。
ftfy – 讓Unicode文本更完整更連貫。
fuzzywuzzy – 模糊字元串匹配。
Levenshtein – 快速計算編輯距離以及字元串的相似度。
pangu.py – 在中日韓語字元和數字字母之間添加空格。
pyfiglet -figlet 的 Python實現。
shortuuid – 一個生成器庫,用以生成簡潔的,明白的,URL 安全的 UUID。
unidecode – Unicode 文本的 ASCII 轉換形式 。
uniout – 列印可讀的字元,而不是轉義的字元串。
xpinyin – 一個用於把漢字轉換為拼音的庫。

㈩ Python如何圖像識別

首先,先定位好問題是屬於圖像識別任務中的哪一類,最好上傳一張植物葉子的圖片。因為目前基於深度學習的卷積神經網路(CNN)確實在圖像識別任務中取得很好的效果,深度學習屬於機器學習,其研究的範式,或者說處理圖像的步驟大體上是一致的。

1、第一步,准備好數據集,這里是指,需要知道輸入、輸出(視任務而定,針對你這個問題,建議使用有監督模型)是什麼。你可以准備一個文件夾,裡面存放好植物葉子的圖像,而每張圖像對應一個標簽(有病/沒病,或者是多類別標簽,可能具體到哪一種病)。
具體實現中,會將數據集分為三個:訓練集(計算模型參數)、驗證集(調參,這個經常可以不需要實現劃分,在python中可以用scikit-learn中的函數解決。測試集用於驗證模型的效果,與前面兩個的區別是,模型使用訓練集和驗證集時,是同時使用了輸入數據和標簽,而在測試階段,模型是用輸入+模型參數,得到的預測與真實標簽進行對比,進而評估效果。
2、確定圖像識別的任務是什麼?

圖像識別的任務可以分為四個:圖像分類、目標檢測、語義分割、實例分割,有時候是幾個任務的結合。
圖像分類是指以圖像為輸入,輸出對該圖像內容分類的描述,可以是多分類問題,比如貓狗識別。通過足夠的訓練數據(貓和狗的照片-標簽,當然現在也有一系列的方法可以做小樣本訓練,這是細節了,這里並不敞開講),讓計算機/模型輸出這張圖片是貓或者狗,及其概率。當然,如果你的訓練數據還有其它動物,也是可以的,那就是圖像多分類問題。
目標檢測指將圖像或者視頻中的目標與不感興趣的部分區分開,判斷是否存在目標,並確定目標的具體位置。比如,想要確定這只狗所佩戴的眼睛的位置,輸入一張圖片,輸出眼睛的位置(可視化後可以講目標區域框出來)。

看到這里,應該想想植物葉子診斷疾病的問題,只需要輸入一整張植物葉子的圖片,輸出是哪種疾病,還是需要先提取葉子上某些感興趣區域(可能是病變區域),在用病變區域的特徵,對應到具體的疾病?
語義分割是當今計算機視覺領域的關鍵問題之一,宏觀上看,語義分割是一項高層次的任務。其目的是以一些原始圖像作為輸入,輸出具有突出顯示的感興趣的掩膜,其實質上是實現了像素級分類。對於輸入圖片,輸出其舌頭區域(注意可以是不規則的,甚至不連續的)。

而實例分割,可以說是在語義分割的基礎上,在像素層面給出屬於每個實例的像素。

看到這里,可以具體思考下自己的問題是對應其中的哪一類問題,或者是需要幾種任務的結合。

3、實際操作
可以先通過一個簡單的例子入手,先了解構建這一個框架需要准備什麼。手寫數字識別可以說是深度學習的入門數據集,其任務也經常作為該領域入門的案例,也可以自己在網上尋找。

閱讀全文

與python圖片庫相關的資料

熱點內容
dvd光碟存儲漢子演算法 瀏覽:758
蘋果郵件無法連接伺服器地址 瀏覽:963
phpffmpeg轉碼 瀏覽:672
長沙好玩的解壓項目 瀏覽:145
專屬學情分析報告是什麼app 瀏覽:564
php工程部署 瀏覽:833
android全屏透明 瀏覽:737
阿里雲伺服器已開通怎麼辦 瀏覽:803
光遇為什麼登錄時伺服器已滿 瀏覽:302
PDF分析 瀏覽:486
h3c光纖全工半全工設置命令 瀏覽:143
公司法pdf下載 瀏覽:383
linuxmarkdown 瀏覽:350
華為手機怎麼多選文件夾 瀏覽:683
如何取消命令方塊指令 瀏覽:350
風翼app為什麼進不去了 瀏覽:779
im4java壓縮圖片 瀏覽:362
數據查詢網站源碼 瀏覽:151
伊克塞爾文檔怎麼進行加密 瀏覽:893
app轉賬是什麼 瀏覽:163