A. 炒股軟體的實時數據是怎麼獲取的
如果你只是需要進行實時選股,則可以採用通達信、大智慧、同花順等看盤軟體。通達信、大智慧等軟體中有一個「鷹眼盯盤」的功能(各家叫法不同,但意思一樣的),結合自己在這些軟體中編寫的自編公式、指標,可實現實時的的股票監控。
如果你需要的是實時獲取股票數據,則有專門的股票實時行情API介面,例如微盛的股票實時API介面,通過這樣的介面,編程即可取得實時的股票數據。
B. 股票軟體怎麼開發股票軟體開發需要注意哪些
股票軟體開發開發過程包括以下五個階段:
一、股票軟體開發定製分析
然後把它用軟體工程開發語言(形式功能規約,軟體需求分析就是回答做什麼的問題。一個對用戶的需求進行去粗取精、去偽存真、正確理解。即需求規格說明書)表達進去的過程。本階段的基本任務是和用戶一起確定要解決的問題,建立軟體的邏輯模型,編寫需求規格說明書文檔並最終得到用戶的認可。需求分析的主要方法有結構化分析方法、數據流程圖和數據字典等方法。本階段的工作是根據需求說明書的要求,設計建立相應的軟體系統的體系結構,並將整個系統分解成若干個子系統或模塊,定義子系統或模塊間的介面關系,對各子系統進行具體設計定義,編寫軟體概要設計和詳細設計說明書,資料庫或數據結構設計說明書,組裝測試計劃。
二、股票軟體開發設計
也可以是可組合、可分解和可更換的功能單元。模塊,股票軟體設計可以分為概要設計和詳細設計兩個階段。實際上軟體設計的主要任務就是將軟體分解成模塊是指能實現某個功能的數據和程序說明、可執行程序的順序單元。可以是一個函數、過程、子程序、一段帶有順序說明的獨立的順序和數據。然後進行模塊設計。概要設計就是結構設計,其主要目標就是給出軟體的模塊結構,用軟體結構圖表示。詳細設計的首要任務就是設計模塊的順序流程、演算法和數據結構,主要任務就是設計資料庫,常用方法還是結構化順序設計方法。
三、股票軟體開發定製編碼
即寫成以某一順序設計語言表示的"源程序清單"充沛了解軟體開發語言、工具的特性和編程風格,軟體編碼是指把軟體設計轉換成計算機可以接受的順序。有助於開發工具的選擇以及保證軟體產品的開發質量。
四、股票軟體開發測試
關鍵在於理解測試方法。不同的測試方法有不同的測試用例設計方法。兩種常用的測試方法是白盒法測試對象是源程序,股票軟體測試的目的以較小的代價發現盡可能多的錯誤。要實現這個目標的關鍵在於設計一套出色的測試用例(測試數據和預期的輸出結果組成了測試用例)如何才幹設計出一套出色的測試用例。依據的順序內部的邏輯結構來發現軟體的編程錯誤、結構錯誤和數據錯誤。結構錯誤包括邏輯、數據流、初始化等錯誤。用例設計的關鍵是以較少的用例覆蓋盡可能多的內部順序邏輯結果。白盒法和黑盒法依據的軟體的功能或軟體行為描述,發現軟體的介面、功能和結構錯誤。其中介面錯誤包括內部/外部介面、資源管理、集成化以及系統錯誤。
五、股票軟體開發與維護
對軟體產品所進行的一些軟體工程的活動。即根據軟體運行的情況,維護是指在已完成對軟體的研製(分析、設計、編碼和測試)工作並交付使用以後。對軟體進行適當修改,以適應新的要求,以及糾正運行中發現的錯誤。編寫軟體問題演講、軟體修改演講。
C. 股票軟體如何開發的用什麼語言數據的獲得方式
K-JAVA功能可以做移動商務、移動辦公 、信息點播、股票、外匯、地址簿、日歷、文件管理 、天氣預報等;
股票軟體使用的是JAVA語言,該可以跨平台運行,軟體開發商可以很容易的開發應用程序;股票行情軟體是基於Java計算機編程語言上的,也就是K-JAVA即J2ME軟體平台,專門用於嵌入式設備的JAVA軟體。
Java包含了一種計算機編程語言和一個平台,隨著K-Java技術的不斷完善與發展,發展商們將對具有K-Java功能的手機用戶提供更還更全面的服務。如: 互動游戲、互動新聞 、增強手機連接到無線網路後進行數據交換的安全性、 載以Java語言寫成的內容、遙控家用電器。
軟體開發商以K-Java編程語言為手機開發應用程序,可以提供,游戲,個人信息處理,股票,電子地圖等服務程序。 Java有許多值得稱道的優點,如簡單、面向對象、分布式、解釋性、可靠、安全、結構中立性、可移植性、高性能、多線程、動態性等。
D. 如何選取過去每個月股票的市值 python
類似,可以修改一下
股票漲跌幅數據是量化投資學習的基本數據資料之一,下面以python代碼編程為工具,獲得所需要的歷史數據。主要步驟有:
(1) #按照市值從小到大的順序活得N支股票的代碼;
(2) #分別對這一百隻股票進行100支股票操作;
(3) #獲取從2016.05.01到2016.11.17的漲跌幅數據;
(4) #選取記錄大於40個的數據,去除次新股;
(5) #將文件名名為「股票代碼.csv」。
具體代碼如下:
# -*- coding: utf-8 -*-
"""
Created on Thu Nov 17 23:04:33 2016
獲取股票的歷史漲跌幅,並分別存為csv格式
@author: yehxqq151376026
"""
import numpy as np
import pandas as pd
#按照市值從小到大的順序活得100支股票的代碼
df = get_fundamentals(
query(fundamentals.eod_derivative_indicator.market_cap)
.order_by(fundamentals.eod_derivative_indicator.market_cap.asc())
.limit(100),'2016-11-17', '1y'
)
#分別對這一百隻股票進行100支股票操作
#獲取從2016.05.01到2016.11.17的漲跌幅數據
#選取記錄大於40個的數據,去除次新股
#將文件名名為「股票代碼.csv」
for stock in range(100):
priceChangeRate = get_price_change_rate(df['market_cap'].columns[stock], '20160501', '20161117')
if priceChangeRate is None:
openDays = 0
else:
openDays = len(priceChangeRate)
if openDays > 40:
tempPrice = priceChangeRate[39:(openDays - 1)]
for rate in range(len(tempPrice)):
tempPrice[rate] = "%.3f" %tempPrice[rate]
fileName = ''
fileName = fileName.join(df['market_cap'].columns[i].split('.')) + '.csv'
fileName
tempPrice.to_csv(fileName)