㈠ 求大神,java信號量是什麼意思。
Java的信號量實際上是一個功能完畢的計數器,對控制一定資源的消費與回收有著很重要的意義,信號量常常用於多線程的代碼中,並能監控有多少數目的線程等待獲取資源,並且通過信號量可以得知可用資源的數目等等,這里總是在強調「數目」二字,但不能指出來有哪些在等待,哪些資源可用。
因此,本人認為,這個信號量類如果能返回數目,還能知道哪些對象在等待,哪些資源可使用,就非常完美了,僅僅拿到這些概括性的數字,對精確控制意義不是很大。目前還沒想到更好的用法。
㈡ java 信號量semaphore;true怎麼理解
號量維護一個許可集,若有必要,會在獲得許可之前阻塞每一個線程:
//從此信號量獲取給定數目的許可,在提供這些許可前一直將線程阻塞。
acquireUninterruptibly(int permits){}
每一個release()添加一個許可,從而可能釋放一個正在阻塞的獲取者。
Semaphore只對可用許可的號碼進行計數,並採取相應的行動。
如何獲得Semaphore對象?
public Semaphore(int permits,boolean fair)
permits:初始化可用的許
㈢ java 並發信號量和普通鎖的區別
本質上並沒有區別,都是鎖跟鑰匙的關系。
普通鎖,就是只有一把鑰匙的情況。
而信號量就是提供了可設定鑰匙的數量的操作,當它的鑰匙數量為1時,跟普通鎖沒有區別,至少在功能上是這樣的。
原理都是有鑰匙可以做事,沒鑰匙等著,做完事再把鑰匙還回去。唯一的不同就是,鑰匙的數量,從只能是一把,變成可以多把,而多把意味著同一時間可以做事的人變多了,提升性能,隨之就是並行導致的一系列多線程問題了,這就不展開了。
㈣ java如何實現信號量集,請注意,是信號量集,而不是信號量,求大神指點
信號量:一個整數;
大於或等於0時代表可供並發進程使用的資源實體數;
小於0時代表正在等待使用臨界區的進程數;
用於互斥的信號量初始值應大於0;
只能通過P、V原語操作而改變;
信號量元素組成:
1、表示信號量元素的值;
2、最後操作信號量元素的進程ID
3、等待信號量元素值+1的進程數;
4、等待信號量元素值為0的進程數;
二、主要函數
1.1 創建信號量
int semget(
key_t key, //標識信號量的關鍵字,有三種方法:1、使用IPC——PRIVATE讓系統產生,
// 2、挑選一個隨機數,3、使用ftok從文件路徑名中產生
int nSemes, //信號量集中元素個數
int flag //IPC_CREAT;IPC_EXCL 只有在信號量集不存在時創建
)
成功:返回信號量句柄
失敗:返回-1
1.2 使用ftok函數根據文件路徑名產生一個關鍵字
key_t ftok(const char *pathname,int proj_id);
路徑名稱必須有相應許可權
1.3 控制信號量
int semctl(
int semid, //信號量集的句柄
int semnum, //信號量集的元素數
int cmd, //命令
/*union senum arg */... //
)
成功:返回相應的值
失敗:返回-1
命令詳細說明:
cmd: IPC_RMID 刪除一個信號量
IPC_EXCL 只有在信號量集不存在時創建
IPC_SET 設置信號量的許可權
SETVAL 設置指定信號量的元素的值為 agc.val
GETVAL 獲得一個指定信號量的值
GETPID 獲得最後操縱此元素的最後進程ID
GETNCNT 獲得等待元素變為1的進程數
GETZCNT 獲得等待元素變為0的進程數
㈤ java的信號量和線程池的區別
線程組:線程組存在的意義,首要原因是安全。java默認創建的線程都是屬於系統線程組,而同一個線程組的線程是可以相互修改對方的數據的。但如果在不同的線程組中,那麼就不能「跨線程組」修改數據,可以從一定程度上保證數據安全。
線程池:線程池存在的意義,首要作用是效率。線程的創建和結束都需要耗費一定的系統時間(特別是創建),不停創建和刪除線程會浪費大量的時間。所以,在創建出一條線程並使其在執行完任務後不結束,而是使其進入休眠狀態,在需要用時再喚醒,那麼
就可以節省一定的時間。如果這樣的線程比較多,那麼就可以使用線程池來進行管理。保證效率。
線程組和線程池共有的特點:1,都是管理一定數量的線程2,都可以對線程進行控制---包括休眠,喚醒,結束,創建,中斷(暫停)--但並不一定包含全部這些操作。
㈥ java的多線程有什麼用處
很誠實的告訴你
我轉自網路
希望對你有用
這是javaeye上非常經典的關於線程的帖子,寫的非常通俗易懂的,適合任何讀計算機的同學.
線程同步
我們可以在計算機上運行各種計算機軟體程序。每一個運行的程序可能包括多個獨立運行的線程(Thread)。
線程(Thread)是一份獨立運行的程序,有自己專用的運行棧。線程有可能和其他線程共享一些資源,比如,內存,文件,資料庫等。
當多個線程同時讀寫同一份共享資源的時候,可能會引起沖突。這時候,我們需要引入線程「同步」機制,即各位線程之間要有個先來後到,不能一窩蜂擠上去搶作一團。
同步這個詞是從英文synchronize(使同時發生)翻譯過來的。我也不明白為什麼要用這個很容易引起誤解的詞。既然大家都這么用,咱們也就只好這么將就。
線程同步的真實意思和字面意思恰好相反。線程同步的真實意思,其實是「排隊」:幾個線程之間要排隊,一個一個對共享資源進行操作,而不是同時進行操作。
因此,關於線程同步,需要牢牢記住的第一點是:線程同步就是線程排隊。同步就是排隊。線程同步的目的就是避免線程「同步」執行。這可真是個無聊的繞口令。
關於線程同步,需要牢牢記住的第二點是 「共享」這兩個字。只有共享資源的讀寫訪問才需要同步。如果不是共享資源,那麼就根本沒有同步的必要。
關於線程同步,需要牢牢記住的第三點是,只有「變數」才需要同步訪問。如果共享的資源是固定不變的,那麼就相當於「常量」,線程同時讀取常量也不需要同步。至少一個線程修改共享資源,這樣的情況下,線程之間就需要同步。
關於線程同步,需要牢牢記住的第四點是:多個線程訪問共享資源的代碼有可能是同一份代碼,也有可能是不同的代碼;無論是否執行同一份代碼,只要這些線程的代碼訪問同一份可變的共享資源,這些線程之間就需要同步。
為了加深理解,下面舉幾個例子。
有兩個采購員,他們的工作內容是相同的,都是遵循如下的步驟:
(1)到市場上去,尋找並購買有潛力的樣品。
(2)回到公司,寫報告。
這兩個人的工作內容雖然一樣,他們都需要購買樣品,他們可能買到同樣種類的樣品,但是他們絕對不會購買到同一件樣品,他們之間沒有任何共享資源。所以,他們可以各自進行自己的工作,互不幹擾。
這兩個采購員就相當於兩個線程;兩個采購員遵循相同的工作步驟,相當於這兩個線程執行同一段代碼。
下面給這兩個采購員增加一個工作步驟。采購員需要根據公司的「布告欄」上面公布的信息,安排自己的工作計劃。
這兩個采購員有可能同時走到布告欄的前面,同時觀看布告欄上的信息。這一點問題都沒有。因為布告欄是只讀的,這兩個采購員誰都不會去修改布告欄上寫的信息。
下面增加一個角色。一個辦公室行政人員這個時候,也走到了布告欄前面,准備修改布告欄上的信息。
如果行政人員先到達布告欄,並且正在修改布告欄的內容。兩個采購員這個時候,恰好也到了。這兩個采購員就必須等待行政人員完成修改之後,才能觀看修改後的信息。
如果行政人員到達的時候,兩個采購員已經在觀看布告欄了。那麼行政人員需要等待兩個采購員把當前信息記錄下來之後,才能夠寫上新的信息。
上述這兩種情況,行政人員和采購員對布告欄的訪問就需要進行同步。因為其中一個線程(行政人員)修改了共享資源(布告欄)。而且我們可以看到,行政人員的工作流程和采購員的工作流程(執行代碼)完全不同,但是由於他們訪問了同一份可變共享資源(布告欄),所以他們之間需要同步。
同步鎖
前面講了為什麼要線程同步,下面我們就來看如何才能線程同步。
線程同步的基本實現思路還是比較容易理解的。我們可以給共享資源加一把鎖,這把鎖只有一把鑰匙。哪個線程獲取了這把鑰匙,才有權利訪問該共享資源。
生活中,我們也可能會遇到這樣的例子。一些超市的外面提供了一些自動儲物箱。每個儲物箱都有一把鎖,一把鑰匙。人們可以使用那些帶有鑰匙的儲物箱,把東西放到儲物箱裡面,把儲物箱鎖上,然後把鑰匙拿走。這樣,該儲物箱就被鎖住了,其他人不能再訪問這個儲物箱。(當然,真實的儲物箱鑰匙是可以被人拿走復制的,所以不要把貴重物品放在超市的儲物箱裡面。於是很多超市都採用了電子密碼鎖。)
線程同步鎖這個模型看起來很直觀。但是,還有一個嚴峻的問題沒有解決,這個同步鎖應該加在哪裡?
當然是加在共享資源上了。反應快的讀者一定會搶先回答。
沒錯,如果可能,我們當然盡量把同步鎖加在共享資源上。一些比較完善的共享資源,比如,文件系統,資料庫系統等,自身都提供了比較完善的同步鎖機制。我們不用另外給這些資源加鎖,這些資源自己就有鎖。
但是,大部分情況下,我們在代碼中訪問的共享資源都是比較簡單的共享對象。這些對象裡面沒有地方讓我們加鎖。
讀者可能會提出建議:為什麼不在每一個對象內部都增加一個新的區域,專門用來加鎖呢?這種設計理論上當然也是可行的。問題在於,線程同步的情況並不是很普遍。如果因為這小概率事件,在所有對象內部都開辟一塊鎖空間,將會帶來極大的空間浪費。得不償失。
於是,現代的編程語言的設計思路都是把同步鎖加在代碼段上。確切的說,是把同步鎖加在「訪問共享資源的代碼段」上。這一點一定要記住,同步鎖是加在代碼段上的。
同步鎖加在代碼段上,就很好地解決了上述的空間浪費問題。但是卻增加了模型的復雜度,也增加了我們的理解難度。
現在我們就來仔細分析「同步鎖加在代碼段上」的線程同步模型。
首先,我們已經解決了同步鎖加在哪裡的問題。我們已經確定,同步鎖不是加在共享資源上,而是加在訪問共享資源的代碼段上。
其次,我們要解決的問題是,我們應該在代碼段上加什麼樣的鎖。這個問題是重點中的重點。這是我們尤其要注意的問題:訪問同一份共享資源的不同代碼段,應該加上同一個同步鎖;如果加的是不同的同步鎖,那麼根本就起不到同步的作用,沒有任何意義。
這就是說,同步鎖本身也一定是多個線程之間的共享對象。
Java語言的synchronized關鍵字
為了加深理解,舉幾個代碼段同步的例子。
不同語言的同步鎖模型都是一樣的。只是表達方式有些不同。這里我們以當前最流行的Java語言為例。Java語言裡面用synchronized關鍵字給代碼段加鎖。整個語法形式表現為
synchronized(同步鎖) {
// 訪問共享資源,需要同步的代碼段
}
這里尤其要注意的就是,同步鎖本身一定要是共享的對象。
… f1() {
Object lock1 = new Object(); // 產生一個同步鎖
synchronized(lock1){
// 代碼段 A
// 訪問共享資源 resource1
// 需要同步
}
}
上面這段代碼沒有任何意義。因為那個同步鎖是在函數體內部產生的。每個線程調用這段代碼的時候,都會產生一個新的同步鎖。那麼多個線程之間,使用的是不同的同步鎖。根本達不到同步的目的。
同步代碼一定要寫成如下的形式,才有意義。
public static final Object lock1 = new Object();
… f1() {
synchronized(lock1){ // lock1 是公用同步鎖
// 代碼段 A
// 訪問共享資源 resource1
// 需要同步
}
你不一定要把同步鎖聲明為static或者public,但是你一定要保證相關的同步代碼之間,一定要使用同一個同步鎖。
講到這里,你一定會好奇,這個同步鎖到底是個什麼東西。為什麼隨便聲明一個Object對象,就可以作為同步鎖?
在Java裡面,同步鎖的概念就是這樣的。任何一個Object Reference都可以作為同步鎖。我們可以把Object Reference理解為對象在內存分配系統中的內存地址。因此,要保證同步代碼段之間使用的是同一個同步鎖,我們就要保證這些同步代碼段的synchronized關鍵字使用的是同一個Object Reference,同一個內存地址。這也是為什麼我在前面的代碼中聲明lock1的時候,使用了final關鍵字,這就是為了保證lock1的Object Reference在整個系統運行過程中都保持不變。
一些求知慾強的讀者可能想要繼續深入了解synchronzied(同步鎖)的實際運行機制。Java虛擬機規范中(你可以在google用「JVM Spec」等關鍵字進行搜索),有對synchronized關鍵字的詳細解釋。synchronized會編譯成 monitor enter, … monitor exit之類的指令對。Monitor就是實際上的同步鎖。每一個Object Reference在概念上都對應一個monitor。
這些實現細節問題,並不是理解同步鎖模型的關鍵。我們繼續看幾個例子,加深對同步鎖模型的理解。
public static final Object lock1 = new Object();
… f1() {
synchronized(lock1){ // lock1 是公用同步鎖
// 代碼段 A
// 訪問共享資源 resource1
// 需要同步
}
}
… f2() {
synchronized(lock1){ // lock1 是公用同步鎖
// 代碼段 B
// 訪問共享資源 resource1
// 需要同步
}
}
上述的代碼中,代碼段A和代碼段B就是同步的。因為它們使用的是同一個同步鎖lock1。
如果有10個線程同時執行代碼段A,同時還有20個線程同時執行代碼段B,那麼這30個線程之間都是要進行同步的。
這30個線程都要競爭一個同步鎖lock1。同一時刻,只有一個線程能夠獲得lock1的所有權,只有一個線程可以執行代碼段A或者代碼段B。其他競爭失敗的線程只能暫停運行,進入到該同步鎖的就緒(Ready)隊列。
每一個同步鎖下面都掛了幾個線程隊列,包括就緒(Ready)隊列,待召(Waiting)隊列等。比如,lock1對應的就緒隊列就可以叫做lock1 - ready queue。每個隊列裡面都可能有多個暫停運行的線程。
注意,競爭同步鎖失敗的線程進入的是該同步鎖的就緒(Ready)隊列,而不是後面要講述的待召隊列(Waiting Queue,也可以翻譯為等待隊列)。就緒隊列裡面的線程總是時刻准備著競爭同步鎖,時刻准備著運行。而待召隊列裡面的線程則只能一直等待,直到等到某個信號的通知之後,才能夠轉移到就緒隊列中,准備運行。
成功獲取同步鎖的線程,執行完同步代碼段之後,會釋放同步鎖。該同步鎖的就緒隊列中的其他線程就繼續下一輪同步鎖的競爭。成功者就可以繼續運行,失敗者還是要乖乖地待在就緒隊列中。
因此,線程同步是非常耗費資源的一種操作。我們要盡量控制線程同步的代碼段范圍。同步的代碼段范圍越小越好。我們用一個名詞「同步粒度」來表示同步代碼段的范圍。
同步粒度
在Java語言裡面,我們可以直接把synchronized關鍵字直接加在函數的定義上。
比如。
… synchronized … f1() {
// f1 代碼段
}
這段代碼就等價於
… f1() {
synchronized(this){ // 同步鎖就是對象本身
// f1 代碼段
}
}
同樣的原則適用於靜態(static)函數
比如。
… static synchronized … f1() {
// f1 代碼段
}
這段代碼就等價於
…static … f1() {
synchronized(Class.forName(…)){ // 同步鎖是類定義本身
// f1 代碼段
}
}
但是,我們要盡量避免這種直接把synchronized加在函數定義上的偷懶做法。因為我們要控制同步粒度。同步的代碼段越小越好。synchronized控制的范圍越小越好。
我們不僅要在縮小同步代碼段的長度上下功夫,我們同時還要注意細分同步鎖。
比如,下面的代碼
public static final Object lock1 = new Object();
… f1() {
synchronized(lock1){ // lock1 是公用同步鎖
// 代碼段 A
// 訪問共享資源 resource1
// 需要同步
}
}
… f2() {
synchronized(lock1){ // lock1 是公用同步鎖
// 代碼段 B
// 訪問共享資源 resource1
// 需要同步
}
}
… f3() {
synchronized(lock1){ // lock1 是公用同步鎖
// 代碼段 C
// 訪問共享資源 resource2
// 需要同步
}
}
… f4() {
synchronized(lock1){ // lock1 是公用同步鎖
// 代碼段 D
// 訪問共享資源 resource2
// 需要同步
}
}
上述的4段同步代碼,使用同一個同步鎖lock1。所有調用4段代碼中任何一段代碼的線程,都需要競爭同一個同步鎖lock1。
我們仔細分析一下,發現這是沒有必要的。
因為f1()的代碼段A和f2()的代碼段B訪問的共享資源是resource1,f3()的代碼段C和f4()的代碼段D訪問的共享資源是resource2,它們沒有必要都競爭同一個同步鎖lock1。我們可以增加一個同步鎖lock2。f3()和f4()的代碼可以修改為:
public static final Object lock2 = new Object();
… f3() {
synchronized(lock2){ // lock2 是公用同步鎖
// 代碼段 C
// 訪問共享資源 resource2
// 需要同步
}
}
… f4() {
synchronized(lock2){ // lock2 是公用同步鎖
// 代碼段 D
// 訪問共享資源 resource2
// 需要同步
}
}
這樣,f1()和f2()就會競爭lock1,而f3()和f4()就會競爭lock2。這樣,分開來分別競爭兩個鎖,就可以大大較少同步鎖競爭的概率,從而減少系統的開銷。
信號量
同步鎖模型只是最簡單的同步模型。同一時刻,只有一個線程能夠運行同步代碼。
有的時候,我們希望處理更加復雜的同步模型,比如生產者/消費者模型、讀寫同步模型等。這種情況下,同步鎖模型就不夠用了。我們需要一個新的模型。這就是我們要講述的信號量模型。
信號量模型的工作方式如下:線程在運行的過程中,可以主動停下來,等待某個信號量的通知;這時候,該線程就進入到該信號量的待召(Waiting)隊列當中;等到通知之後,再繼續運行。
很多語言裡面,同步鎖都由專門的對象表示,對象名通常叫Monitor。
同樣,在很多語言中,信號量通常也有專門的對象名來表示,比如,Mutex,Semphore。
信號量模型要比同步鎖模型復雜許多。一些系統中,信號量甚至可以跨進程進行同步。另外一些信號量甚至還有計數功能,能夠控制同時運行的線程數。
我們沒有必要考慮那麼復雜的模型。所有那些復雜的模型,都是最基本的模型衍生出來的。只要掌握了最基本的信號量模型——「等待/通知」模型,復雜模型也就迎刃而解了。
我們還是以Java語言為例。Java語言裡面的同步鎖和信號量概念都非常模糊,沒有專門的對象名詞來表示同步鎖和信號量,只有兩個同步鎖相關的關鍵字——volatile和synchronized。
這種模糊雖然導致概念不清,但同時也避免了Monitor、Mutex、Semphore等名詞帶來的種種誤解。我們不必執著於名詞之爭,可以專注於理解實際的運行原理。
在Java語言裡面,任何一個Object Reference都可以作為同步鎖。同樣的道理,任何一個Object Reference也可以作為信號量。
Object對象的wait()方法就是等待通知,Object對象的notify()方法就是發出通知。
具體調用方法為
(1)等待某個信號量的通知
public static final Object signal = new Object();
… f1() {
synchronized(singal) { // 首先我們要獲取這個信號量。這個信號量同時也是一個同步鎖
// 只有成功獲取了signal這個信號量兼同步鎖之後,我們才可能進入這段代碼
signal.wait(); // 這里要放棄信號量。本線程要進入signal信號量的待召(Waiting)隊列
// 可憐。辛辛苦苦爭取到手的信號量,就這么被放棄了
// 等到通知之後,從待召(Waiting)隊列轉到就緒(Ready)隊列裡面
// 轉到了就緒隊列中,離CPU核心近了一步,就有機會繼續執行下面的代碼了。
// 仍然需要把signal同步鎖競爭到手,才能夠真正繼續執行下面的代碼。命苦啊。
…
}
}
需要注意的是,上述代碼中的signal.wait()的意思。signal.wait()很容易導致誤解。signal.wait()的意思並不是說,signal開始wait,而是說,運行這段代碼的當前線程開始wait這個signal對象,即進入signal對象的待召(Waiting)隊列。
(2)發出某個信號量的通知
… f2() {
synchronized(singal) { // 首先,我們同樣要獲取這個信號量。同時也是一個同步鎖。
// 只有成功獲取了signal這個信號量兼同步鎖之後,我們才可能進入這段代碼
signal.notify(); // 這里,我們通知signal的待召隊列中的某個線程。
// 如果某個線程等到了這個通知,那個線程就會轉到就緒隊列中
// 但是本線程仍然繼續擁有signal這個同步鎖,本線程仍然繼續執行
// 嘿嘿,雖然本線程好心通知其他線程,
// 但是,本線程可沒有那麼高風亮節,放棄到手的同步鎖
// 本線程繼續執行下面的代碼
…
}
}
需要注意的是,signal.notify()的意思。signal.notify()並不是通知signal這個對象本身。而是通知正在等待signal信號量的其他線程。
以上就是Object的wait()和notify()的基本用法。
實際上,wait()還可以定義等待時間,當線程在某信號量的待召隊列中,等到足夠長的時間,就會等無可等,無需再等,自己就從待召隊列轉移到就緒隊列中了。
另外,還有一個notifyAll()方法,表示通知待召隊列裡面的所有線程。
這些細節問題,並不對大局產生影響。
綠色線程
綠色線程(Green Thread)是一個相對於操作系統線程(Native Thread)的概念。
操作系統線程(Native Thread)的意思就是,程序裡面的線程會真正映射到操作系統的線程,線程的運行和調度都是由操作系統控制的
綠色線程(Green Thread)的意思是,程序裡面的線程不會真正映射到操作系統的線程,而是由語言運行平台自身來調度。
當前版本的Python語言的線程就可以映射到操作系統線程。當前版本的Ruby語言的線程就屬於綠色線程,無法映射到操作系統的線程,因此Ruby語言的線程的運行速度比較慢。
難道說,綠色線程要比操作系統線程要慢嗎?當然不是這樣。事實上,情況可能正好相反。Ruby是一個特殊的例子。線程調度器並不是很成熟。
目前,線程的流行實現模型就是綠色線程。比如,stackless Python,就引入了更加輕量的綠色線程概念。在線程並發編程方面,無論是運行速度還是並發負載上,都優於Python。
另一個更著名的例子就是ErLang(愛立信公司開發的一種開源語言)。
ErLang的綠色線程概念非常徹底。ErLang的線程不叫Thread,而是叫做Process。這很容易和進程混淆起來。這里要注意區分一下。
ErLang Process之間根本就不需要同步。因為ErLang語言的所有變數都是final的,不允許變數的值發生任何變化。因此根本就不需要同步。
final變數的另一個好處就是,對象之間不可能出現交叉引用,不可能構成一種環狀的關聯,對象之間的關聯都是單向的,樹狀的。因此,內存垃圾回收的演算法效率也非常高。這就讓ErLang能夠達到Soft Real Time(軟實時)的效果。這對於一門支持內存垃圾回收的語言來說,可不是一件容易的事情。
㈦ java 中 如何讓一個方法內最多隻能有兩個線程訪問
信號量Semaphore。下面代碼里,一個semp的信號量初始值為5,.acquire()一次-1,.release()一次+1,如果信號量值為0的時候.acquire()就會阻塞線程,直到別的線程.release()。下面的實例是允許最多5個線程同時訪問.acquire()和.release()之間的代碼,你設置初始值為2就可以了。
publicclassSemaphoreTest{
publicstaticvoidmain(String[]args){
//線程池
ExecutorServiceexec=Executors.newCachedThreadPool();
//只能5個線程同時訪問
finalSemaphoresemp=newSemaphore(5);
//模擬20個客戶端訪問
for(intindex=0;index<20;index++){
finalintNO=index;
Runnablerun=newRunnable(){
publicvoidrun(){
try{
//獲取許可
semp.acquire();
System.out.println("Accessing:"+NO);
Thread.sleep((long)(Math.random()*10000));
//訪問完後,釋放,如果屏蔽下面的語句,則在控制台只能列印5條記錄,之後線程一直阻塞
semp.release();
}catch(InterruptedExceptione){
}
}
};
exec.execute(run);
}
//退出線程池
exec.shutdown();
}
}
給你個鏈接看看
http://blog.csdn.net/shihuacai/article/details/8856526
㈧ 如何使用Java編寫多線程程序(1)
一、簡介1、什麼是線程要說線程,就必須先說說進程,進程就是程序的運行時的一個實例。線程呢可以看作單獨地佔有CPU時間來執行相應的代碼的。對早期的計算機(如DOS)而言,線程既是進程,進程既是進程,因為她是單線程的。當然一個程序可以是多線程的,多線程的各個線程看上去像是並行地獨自完成各自的工作,就像一台一台計算機上運行著多個處理機一樣。在多處理機計算機上實現多線程時,它們確實可以並行工作,而且採用適當的分時策略可以大大提高程序運行的效率。但是二者還是有較大的不同的,線程是共享地址空間的,也就是說多線程可以同時讀取相同的地址空間,並且利用這個空間進行交換數據。 2、為什麼要使用線程為什麼要使用多線程呢?學過《計算機體系結構》的人都知道。將順序執行程序和採用多線程並行執行程序相比,效率是可以大大地提高的。比如,有五個線程thread1, thread2, thread3, thread4, thread5,所耗的CPU時間分別為4,5,1,2,7。(假設CPU輪換周期為4個CPU時間,而且線程之間是彼此獨立的)順序執行需要花費1Array個CPU時間,而並行需要的時間肯定少於1Array個CPU時間,至於具體多少時間要看那些線程是可以同時執行的。這是在非常小規模的情況下,要是面對大規模的進程之間的交互的話,效率可以表現得更高。 3、java中是如何實現多線程的與其他語言不一樣的是,線程的觀念在java是語言中是重要的,根深蒂固的,因為在java語言中的線程系統是java語言自建的, java中有專門的支持多線程的API庫,所以你可以以最快的速度寫一個支持線程的程序。在使用java創建線程的時候,你可以生成一個Thread類或者他的子類對象,並給這個對象發送start()消息(程序可以向任何一個派生自 Runnable 介面的類對象發送 start() 消息的),這樣一來程序會一直執行,直到run返回為止,此時該線程就死掉了。在java語言中,線程有如下特點:§ 在一個程序中而言,主線程的執行位置就是main。而其他線程執行的位置,程序員是可以自定義的。值得注意的是對Applet也是一樣。 § 每個線程執行其代碼的方式都是一次順序執行的。 § 一個線程執行其代碼是與其他線程獨立開來的。如果諸線程之間又相互協作的話,就必須採用一定的交互機制。 § 前面已經說過,線程是共享地址空間的,如果控制不當,這里很有可能出現死鎖。 各線程之間是相互獨立的,那麼本地變數對一個線程而言就是完全獨立,私有的。所以呢,線程執行時,每個線程都有各自的本地變數拷貝。對象變數(instance variable)在線程之間是可以共享的,這也就是為什麼在java中共享數據對象是如此的好用,但是java線程不能夠武斷地訪問對象變數:他們是需要訪問數據對象的許可權的。二、准備知識 在分析這個例子之前,然我們先看看關於線程的幾個概念,上鎖,信號量,和java所提供的API。 上鎖對於大多數的程序而言,他們都需要線程之間相互的通訊來完成整個線程的生命周期,二實現線程之間同步的最簡單的辦法就是上鎖。為了防止相互關聯的兩個線程之間錯誤地訪問共享資源,線程需要在訪問資源的時候上鎖和解鎖,對於鎖而言,有讀鎖,寫鎖和讀寫鎖等不同的同步策略。在java中,所有的對象都有鎖;線程只需要使用synchronized關鍵字就可以獲得鎖。在任一時刻對於給定的類的實例,方法或同步的代碼塊只能被一個線程執行。這是因為代碼在執行之前要求獲得對象的鎖。 信號量通常情況下,多個線程所訪問為數不多的資源,那怎麼控制呢?一個比較非常經典而起非常簡單的辦法就是採用信號量機制。信號量機制的含義就是定義一個信號量,也就是說能夠提供的連接數;當有一個線程佔用了一個連接時,信號量就減一;當一個線程是放了連接時,信號量就加一。
㈨ 如何用java實現信號量
package synchronization;
public class Semaphore {
private int value;
public Semaphore(){
this.value = 0;
}
public Semaphore(int v){
this.value = v;
}
public synchronized void down(){
while(value <= 0 ){
try{
wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
value--;
}
public synchronized void up(){
value++;
notify();
}
}
使用的時候Semophore s;
while(true){
s.wait();
//臨界區
s.signal();
}