❶ python極簡教程06:生成式和裝飾器
測試奇譚,BUG不見。
這一場,主講python的 生成式和裝飾器。
目的:掌握四種生成式(列表、生成器、集合、字典),裝飾器的原理和使用。
能夠用一行代碼,快速高效的生成數據。(這就不需要再通俗的講解了吧)
舉個例子:提取1-100之間的奇數
使用(),而不是 []
舉個例子:列表元素去重
舉個例子:字典kv反轉
顧名思義:增強函數或類的功能的一個函數。
裝飾器的作用:增強函數的功能,確切的說,可以裝飾函數,也可以裝飾類。
初學的你,還是太難理解?
你開視頻聊天,覺得自己的顏值不在線,於是乎,你使用美顏,增強裝飾自己的顏值。
對於美顏這個功能來說,你可以用,我可以用,所有人都可以用,以此來增強裝飾自己的顏值。
方法一:不用語法糖@符號
方法二:採用語法糖@符號
再舉個例子:計算函數時間
❷ Python之裝飾器簡介
python函數式編程之裝飾器
1.開放封閉原則
簡單來說,就是對擴展開放,對修改封閉。
在面向對象的編程方式中,經常會定義各種函數。一個函數的使用分為定義階段和使用階段,一個函數定義完成以後,可能會在很多位置被調用。這意味著如果函數的定義階段代碼被修改,受到影響的地方就會有很多,此時很容易因為一個小地方的修改而影響整套系統的崩潰,所以對於現代程序開發行業來說,一套系統一旦上線,系統的源代碼就一定不能夠再改動了。然而一套系統上線以後,隨著用戶數量的不斷增加,一定會為一套系統擴展添加新的功能。
此時,又不能修改原有系統的源代碼,又要為原有系統開發增加新功能,這就是程序開發行業的開放封閉原則,這時就要用到裝飾器了。
相關推薦:《Python視頻教程》
2.什麼是裝飾器??
裝飾器,顧名思義,就是裝飾,修飾別的對象的一種工具。
所以裝飾器可以是任意可調用的對象,被裝飾的對象也可以是任意可調用對象。
3.裝飾器的作用
在不修改被裝飾對象的源代碼以及調用方式的前提下為被裝飾對象添加新功能。
原則:
1.不修改被裝飾對象的源代碼
2.不修改被裝飾對象的調用方式
目標:
為被裝飾對象添加新功能。
❸ 什麼是Python裝飾器
所謂裝飾器就是把函數包裝一下,為函數添加一些附加功能,裝飾器就是一個函數,參數為被包裝的函數,返回包裝後的函數:你可以試下:
defd(fp):
def_d(*arg,**karg):
print"dosthbeforefp.."
r=fp(*arg,**karg)
print"dosthafterfp.."
returnr
return_d
@d
deff():
print"callf"
#上面使用@d來表示裝飾器和下面是一個意思
#f=d(f)
f()#調用f
❹ Python閉包和裝飾器
由於裝飾器的本質跟閉包關系很大,所以在看裝飾器之前先看閉包是什麼。
一句話總結閉包:一個返回值是函數的函數
怎麼理解呢?
在一個外函數中定義了一個內函數,內函數里運用了外函數的臨時變數,並且外函數的返回值是內函數的引用。這樣就構成了一個閉包。
一般情況下,在我們認知當中,如果一個函數結束,函數的內部所有東西都會釋放掉,還給內存,局部變數都會消失。但是閉包是一種特殊情況,如果外函數在結束的時候發現有自己的臨時變數將來會在內部函數中用到,就把這個臨時變數綁定給了內部函數,然後自己再結束。
由於Python的一切皆對象的原因,才有了現在的操作哈哈哈。
以下是我個人的理解:
裝飾器是一個閉包,然後使用裝飾器的函數作為閉包的參數傳輸給閉包的內函數,使用裝飾器,就不需要跟閉包一樣去調用閉包函數再運行內函數,直接調用裝飾器的函數就可以實現這一步,由於傳給裝飾器的參數是函數,所以相當於可以裝飾器是修改他人函數內容的函數,因為傳進去被裝飾的函數,所以最後閉包里的函數會有所被該函數一些數據代替。
假如我們傳兩個參數進去
假如我們傳兩個參數進去 但是如果傳多個參數呢,不能一直這樣子變數吧,要通用一點,所以python有一個*args接受多個參數。
但是如果帶keyword的參數怎麼辦呢?
python有一個**kargs接受多個參數 **代表兩個元素,約定俗成的,所以可以這樣子去記住。
日積月累,厚積薄發,循序漸進。
❺ 「低門檻 手把手」python 裝飾器(Decorators)原理說明
本文目的是由淺入深地介紹python裝飾器原理
裝飾器(Decorators)是 Python 的一個重要部分
其功能是, 在不修改原函數(類)定義代碼的情況下,增加新的功能
為了理解和實現裝飾器,我們先引入2個核心操作:
在這個例子中,函數hi的形參name,默認為'world'
在函數內部,又定義了另一個函數 howdoyoudo,定義這個函數時,將形參name作為新函數的形參name2的默認值。
因此,在函數內部調用howdoyoudo()時,將以調用hi時的實參為默認值,但也可以給howdoyoudo輸入其他參數。
上面的例子運行後輸出結果為:
這里新定義的howdoyoudo可以稱作一個「閉包」。不少關於裝飾器的blog都提到了這個概念,但其實沒必要給它取一個多專業的名字。我們知道閉包是 函數內的函數 就可以了
當我們進行 def 的時候,我們在做什麼?
這時,hi函數,列印一個字元串,同時返回一個字元串。
但hi函數本身也是一個對象,一個可以執行的對象。執行的方式是hi()。
這里hi和hi()有本質區別,
hi 代表了這個函數對象本身
hi() 則是運行了函數,得到函數的返回值。
作為對比,可以想像以下代碼
此時也是b存在,可以正常使用。
我們定義2個函數,分別實現自加1, 自乘2,
再定義一個函數double_exec,內容是將某個函數調用2次
在調用double_exec時,可以將函數作為輸入傳進來
輸出結果就是
7
27
同樣,也可以將函數作為輸出
輸出結果為
6
10
有了以上兩個核心操作,我們可以嘗試構造裝飾器了。
裝飾器的目的: 在不修改原函數(類)定義代碼的情況下,增加新的功能
試想一下,現在有一個原函數
在不修改原函數定義代碼的情況下,如果想進行函數內容的添加,可以將這個函數作為一個整體,添加到這樣的包裹中:
我們定義了一個my_decorator函數,這個函數進行了一種操作:
對傳入的f,添加操作(運行前後增加列印),並把添加操作後的內容連同運行原函數的內容,一起傳出
這個my_decorator,定義了一種增加前後列印內容的行為
調用my_decorator時,對這個行為進行了操作。
因此,new_function是一個在original_function上增加了前後列印行為的新函數
這個過程被可以被稱作裝飾。
這里已經可以發現,裝飾器本身對於被裝飾的函數是什麼,是不需要考慮的。裝飾器本身只定義了一種裝飾行為,這個行為是通過裝飾器內部的閉包函數()進行定義的。
運行裝飾前後的函數,可以清晰看到裝飾的效果
我們復現一下實際要用裝飾器的情況,我們往往有一種裝飾器,想應用於很多個函數,比如
此時,如果我們想給3個print函數都加上裝飾器,需要這么做
實際調用的時候,就需要調用添加裝飾器的函數名了
當然,也可以賦值給原函數名
這樣至少不需要管理一系列裝飾前後的函數。
同時,在不需要進行裝飾的時候,需要把
全部刪掉。
事實上,這樣並不方便,尤其對於更復雜的裝飾器來說
為此,python提供了一種簡寫方式
這個定義print1函數前的@my_decorator,相當於在定義完print1後,自動直接運行了
不論採用@my_decorator放在新函數前,還是顯示地重寫print1 = my_decorator(print1),都會存在一個問題:
裝飾後的函數,名字改變了(其實不止名字,一系列的索引都改變了)
輸出結果為:
這個現象的原因是,裝飾行為本身,是通過構造了一個新的函數(例子中是wrap_func函數)來實現裝飾這個行為的,然後把這個修改後的函數賦給了原函數名。
這樣,會導致我們預期的被裝飾函數的一些系統變數(比如__name__)發生了變化。
對此,python提供了解決方案:
經過這個行為後,被裝飾函數的系統變數問題被解決了
輸出結果為
剛才的例子都比較簡單,被裝飾的函數是沒有參數的。如果被裝飾的函數有參數,只需要在定義裝飾行為時(事實上,這個才更通用),增加(*args, **kwargs)描述即可
之前的描述中可以感受到,對於例子中的裝飾行為(前後加列印),函數被裝飾後,本質上是調用了新的裝飾函數wrap_func。
因此,如果原函數需要有輸入參數傳遞,只需要在wrap_func(或其他任意名字的裝飾函數)定義時,也增加參數輸入(*args, **kwargs),並將這些參數,原封不動地傳給待裝飾函數f。
這種定義裝飾行為的方式更具有普遍性,忘記之前的定義方式吧
我們試一下
輸出
這里需要注意的是,如果按照以下的方式定義裝飾器
那麼以下語句將不會執行
因為裝飾後實際的函數wrap_func(雖然名字被改成了原函數,系統參數也改成了原函數),運行到return f(*args, **kwargs) 的時候已經結束了
因為裝飾器my_decorator本身也是可以輸入的,因此,只需要在定義裝飾器時,增加參數,並在後續函數中使用就可以了,比如
此時裝飾器已經可以有輸入參數了
輸出
你可能發現,為什麼不用簡寫版的方法了
因為以上代碼會報錯!!
究其原因,雖然
等價於
但是,
並不等價於
這本身和@語法有關,使用@my_decorator時,是系統在應用一個以單個函數作為參數的閉包函數。即,@是不能帶參數的。
但是你應該發現了,之前的@wraps(f)不是帶參數了嗎?請仔細觀察以下代碼
通過一層嵌套,my_decorator_with_parma本質上是返回了一個參數僅為一個函數的函數(my_decorator),但因為my_decorator對my_decorator_with_parma來說是一個閉包,my_decorator_with_parma是可以帶參數的。(這句話真繞)
通過以上的定義,我們再來看
可以這么理解,my_decorator_with_parma(msg='yusheng')的結果是原來的my_decorator函數,同時,因為my_decorator_with_parma可以傳參,參數實際上是參與了my_decorator的(因為my_decorator對my_decorator_with_parma是閉包), my_decorator_with_parma(msg='yusheng') 全等於 一個有參數參加的my_decorator
因此,以上代碼等價於有參數msg傳遞的
比較繞,需要理解一下,或者乾脆強記這種範式:
以上範式包含函數的輸入輸出、裝飾器的輸入,可以應對大部分情況了。
實驗一下:
輸出
以上是一個log裝飾器,利用datetime統計了函數的耗時,
並且,裝飾器可以進行輸出文件操作,如果給出了文件路徑,則輸出文件,否則就列印。
利用這個裝飾器,可以靈活地進行耗時統計
不設置輸出文件地址,則列印。運行結果為:
也可以輸出到文件
輸出結果為
同時在當前目錄生成了一個test.log 文件,內容為:
以上的裝飾器都是以函數形式出現的,但我們可以稍做改寫,將裝飾器以類的形式實現。
這個裝飾器類Log 上個例子里的裝飾器函數log功能是一樣的,同時,這個裝飾器類還可以作為基類被其他繼承,進一步增加功能。
原文 http://www.cnblogs.com/yushengchn/p/15636944.html
❻ Python筆記:Python裝飾器
裝飾器是通過裝飾器函數修改原函數的一些功能而不需要修改原函數,在很多場景可以用到它,比如① 執行某個測試用例之前,判斷是否需要登錄或者執行某些特定操作;② 統計某個函數的執行時間;③ 判斷輸入合法性等。合理使用裝飾器可以極大地提高程序的可讀性以及運行效率。本文將介紹Python裝飾器的使用方法。
python裝飾器可以定義如下:
輸出:
python解釋器將test_decorator函數作為參數傳遞給my_decorator函數,並指向了內部函數 wrapper(),內部函數 wrapper() 又會調用原函數 test_decorator(),所以decorator()的執行會先列印'this is wrapper',然後列印'hello world', test_decorator()執行完成後,列印 'bye' ,*args和**kwargs,表示接受任意數量和類型的參數。
裝飾器 my_decorator() 把真正需要執行的函數 test_decorator() 包裹在其中,並且改變了它的行為,但是原函數 test_decorator() 不變。
一般使用如下形式使用裝飾器:
@my_decorator就相當於 decorator = my_decorator(test_decorator) 語句。
內置裝飾器@functools.wrap可用於保留原函數的元信息(將原函數的元信息,拷貝到對應的裝飾器函數里)。先來看看沒有使用functools的情況:
輸出:
從上面的輸出可以看出test_decorator() 函數被裝飾以後元信息被wrapper() 函數取代了,可以使用@functools.wrap裝飾器保留原函數的元信息:
輸出:
裝飾器可以接受自定義參數。比如定義一個參數來設置裝飾器內部函數的執行次數:
輸出:
Python 支持多個裝飾器嵌套:
裝飾的過程:
順序從里到外:
test_decorator('hello world') 執行順序和裝飾的過程相反。
輸出:
類也可以作為裝飾器,類裝飾器主要依賴__call__()方法,是python中所有能被調用的對象具有的內置方法(python魔術方法),每當調用一個類的實例時,__call__()就會被執行一次。
下面的類裝飾器實現統計函數執行次數:
輸出:
下面介紹兩種裝飾器使用場景
統計函數執行所花費的時間
輸出:
在使用某些web服務時,需要先判斷用戶是否登錄,如果沒有登錄就跳轉到登錄頁面或者提示用戶登錄:
--THE END--
❼ python裝飾器使用
裝飾器是從英文decorator翻譯過來的,從字面上來看就是對某個東西進行修飾,增強被修飾物的功能,下面我們對裝飾器做下簡單介紹。
一、怎麼編寫裝飾器
裝飾器的實現很簡單,本質是一個可調用對象,可以是函數、方法、對象等,它既可以裝飾函數也可以裝飾類和方法,為了簡單說明問題,我們實現一個函數裝飾器,如下代碼:
有了這個裝飾器,我們就可以列印出什麼時候開始和結束調用函數,對於排查函數的調用鏈非常方便。
二、帶參數的裝飾器
上面的例子無論什麼時候調用sum都會輸出信息,如果我們需要按需輸出信息怎麼實現呢,這時就要用到帶參數的裝飾器了,如下代碼:
對sum使用裝飾器時沒有參數,這時debug為0,所以調用sum時不會輸出函數調用相關信息。
對multi使用裝飾器時有參數,這時debug為1,所以調用multi時會輸出函數調用相關信息。
三、函數名字問題
當我們列印被裝飾後的函數名字時,不知道大家有沒發現輸出的不是函數本身的名字,如下代碼會輸出『wrap』而不是『sum』:
有時這種表現並不是我們想要的,我們希望被裝飾後的函數名字還是函數本身,那要怎麼實現呢?很簡單,只需要引入functools.wraps即可,如下代碼就會輸出『sum』了:
看完後是不是覺得python裝飾器很簡單,只要了解它的本質,怎麼寫都行,有好多種玩法呢。
❽ 在python里如何使用裝飾器
不知道,可能不能在裝飾器跳出主函數吧
❾ 兩個很實用的Python裝飾器詳解
這個函數的作用在於可以給任意可能會hang住的函數添加超時功能,這個功能在編寫外部API調用 、網路爬蟲、資料庫查詢的時候特別有用
timeout裝飾器的代碼如下
使用:
## 輸出
---------------------------------------------------------------------------
TimeoutError Traceback (most recent call last)
有時候出於演示目的或者調試目的,我們需要程序運行的時候列印出每一步的運行順序 和調用邏輯。類似寫bash的時候的bash -x調試功能,然後Python解釋器並沒有 內置這個時分有用的功能,那麼我們就「自己動手,豐衣足食」。
Trace裝飾器的代碼如下:
使用:
## 輸出
(3): print 1 # @trace 的輸出
1
(4): print 22 # @trace 的輸出
22
(5): print 333 # @trace 的輸出
333