① python如何通過字元或數字動態獲取對象的名稱或者屬性
首先通過一個例子來看一下本文中可能用到的對象和相關概念。
#coding: UTF-8
import sys # 模塊,sys指向這個模塊對象
import inspect
def foo(): pass # 函數,foo指向這個函數對象
class Cat(object): # 類,Cat指向這個類對象
def __init__(self, name='kitty'):
self.name = name
def sayHi(self): # 實例方法,sayHi指向這個方法對象,使用類或實例.sayHi訪問
print self.name, 'says Hi!' # 訪問名為name的欄位,使用實例.name訪問
cat = Cat() # cat是Cat類的實例對象
print Cat.sayHi # 使用類名訪問實例方法時,方法是未綁定的(unbound)
print cat.sayHi # 使用實例訪問實例方法時,方法是綁定的(bound)
有時候我們會碰到這樣的需求,需要執行對象的某個方法,或是需要對對象的某個欄位賦值,而方法名或是欄位名在編碼代碼時並不能確定,需要通過參數傳遞字元串的形式輸入。舉個具體的例子:當我們需要實現一個通用的DBM框架時,可能需要對數據對象的欄位賦值,但我們無法預知用到這個框架的數據對象都有些什麼欄位,換言之,我們在寫框架的時候需要通過某種機制訪問未知的屬性。
這個機制被稱為反射(反過來讓對象告訴我們他是什麼),或是自省(讓對象自己告訴我們他是什麼,好吧我承認括弧里是我瞎掰的- -#),用於實現在運行時獲取未知對象的信息。反射是個很嚇唬人的名詞,聽起來高深莫測,在一般的編程語言里反射相對其他概念來說稍顯復雜,一般來說都是作為高級主題來講;但在Python中反射非常簡單,用起來幾乎感覺不到與其他的代碼有區別,使用反射獲取到的函數和方法可以像平常一樣加上括弧直接調用,獲取到類後可以直接構造實例;不過獲取到的欄位不能直接賦值,因為拿到的其實是另一個指向同一個地方的引用,賦值只能改變當前的這個引用而已。
1. 訪問對象的屬性
以下列出了幾個內建方法,可以用來檢查或是訪問對象的屬性。這些方法可以用於任意對象而不僅僅是例子中的Cat實例對象;Python中一切都是對象。
cat = Cat('kitty')
print cat.name # 訪問實例屬性
cat.sayHi() # 調用實例方法
print dir(cat) # 獲取實例的屬性名,以列表形式返回
if hasattr(cat, 'name'): # 檢查實例是否有這個屬性
setattr(cat, 'name', 'tiger') # same as: a.name = 'tiger'
print getattr(cat, 'name') # same as: print a.name
getattr(cat, 'sayHi')() # same as: cat.sayHi()
dir([obj]):
調用這個方法將返回包含obj大多數屬性名的列表(會有一些特殊的屬性不包含在內)。obj的默認值是當前的模塊對象。
hasattr(obj, attr):
這個方法用於檢查obj是否有一個名為attr的值的屬性,返回一個布爾值。
getattr(obj, attr):
調用這個方法將返回obj中名為attr值的屬性的值,例如如果attr為'bar',則返回obj.bar。
setattr(obj, attr, val):
調用這個方法將給obj的名為attr的值的屬性賦值為val。例如如果attr為'bar',則相當於obj.bar = val。
2. 訪問對象的元數據
當你對一個你構造的對象使用dir()時,可能會發現列表中的很多屬性並不是你定義的。這些屬性一般保存了對象的元數據,比如類的__name__屬性保存了類名。大部分這些屬性都可以修改,不過改動它們意義並不是很大;修改其中某些屬性如function.func_code還可能導致很難發現的問題,所以改改name什麼的就好了,其他的屬性不要在不了解後果的情況下修改。
接下來列出特定對象的一些特殊屬性。另外,Python的文檔中有提到部分屬性不一定會一直提供,下文中將以紅色的星號*標記,使用前你可以先打開解釋器確認一下。
2.0. 准備工作:確定對象的類型
在types模塊中定義了全部的Python內置類型,結合內置方法isinstance()就可以確定對象的具體類型了。
isinstance(object, classinfo):
檢查object是不是classinfo中列舉出的類型,返回布爾值。classinfo可以是一個具體的類型,也可以是多個類型的元組或列表。
types模塊中僅僅定義了類型,而inspect模塊中封裝了很多檢查類型的方法,比直接使用types模塊更為輕松,所以這里不給出關於types的更多介紹,如有需要可以直接查看types模塊的文檔說明。本文第3節中介紹了inspect模塊。
2.1. 模塊(mole)
__doc__: 文檔字元串。如果模塊沒有文檔,這個值是None。
*__name__: 始終是定義時的模塊名;即使你使用import .. as 為它取了別名,或是賦值給了另一個變數名。
*__dict__: 包含了模塊里可用的屬性名-屬性的字典;也就是可以使用模塊名.屬性名訪問的對象。
__file__: 包含了該模塊的文件路徑。需要注意的是內建的模塊沒有這個屬性,訪問它會拋出異常!
import fnmatch as m
print m.__doc__.splitlines()[0] # Filename matching with shell patterns.
print m.__name__ # fnmatch
print m.__file__ # /usr/lib/python2.6/fnmatch.pyc
print m.__dict__.items()[0] # ('fnmatchcase', <function fnmatchcase="" at="" 0xb73deb54="">)</function>
2.2. 類(class)
__doc__: 文檔字元串。如果類沒有文檔,這個值是None。
*__name__: 始終是定義時的類名。
*__dict__: 包含了類里可用的屬性名-屬性的字典;也就是可以使用類名.屬性名訪問的對象。
__mole__: 包含該類的定義的模塊名;需要注意,是字元串形式的模塊名而不是模塊對象。
*__bases__: 直接父類對象的元組;但不包含繼承樹更上層的其他類,比如父類的父類。
print Cat.__doc__ # None
print Cat.__name__ # Cat
print Cat.__mole__ # __main__
print Cat.__bases__ # (<type ?object?="">,)
print Cat.__dict__ # {'__mole__': '__main__', ...}</type>
2.3. 實例(instance)
實例是指類實例化以後的對象。
*__dict__: 包含了可用的屬性名-屬性字典。
*__class__: 該實例的類對象。對於類Cat,cat.__class__ == Cat 為 True。
print cat.__dict__
print cat.__class__
print cat.__class__ == Cat # True
2.4. 內建函數和方法(built-in functions and methods)
根據定義,內建的(built-in)模塊是指使用C寫的模塊,可以通過sys模塊的builtin_mole_names欄位查看都有哪些模塊是內建的。這些模塊中的函數和方法可以使用的屬性比較少,不過一般也不需要在代碼中查看它們的信息。
__doc__: 函數或方法的文檔。
__name__: 函數或方法定義時的名字。
__self__: 僅方法可用,如果是綁定的(bound),則指向調用該方法的類(如果是類方法)或實例(如果是實例方法),否則為None。
*__mole__: 函數或方法所在的模塊名。
2.5. 函數(function)
這里特指非內建的函數。注意,在類中使用def定義的是方法,方法與函數雖然有相似的行為,但它們是不同的概念。
__doc__: 函數的文檔;另外也可以用屬性名func_doc。
__name__: 函數定義時的函數名;另外也可以用屬性名func_name。
*__mole__: 包含該函數定義的模塊名;同樣注意,是模塊名而不是模塊對象。
*__dict__: 函數的可用屬性;另外也可以用屬性名func_dict。
不要忘了函數也是對象,可以使用函數.屬性名訪問屬性(賦值時如果屬性不存在將新增一個),或使用內置函數has/get/setattr()訪問。不過,在函數中保存屬性的意義並不大。
func_defaults: 這個屬性保存了函數的參數默認值元組;因為默認值總是靠後的參數才有,所以不使用字典的形式也是可以與參數對應上的。
func_code: 這個屬性指向一個該函數對應的code對象,code對象中定義了其他的一些特殊屬性,將在下文中另外介紹。
func_globals: 這個屬性指向當前的全局命名空間而不是定義函數時的全局命名空間,用處不大,並且是只讀的。
*func_closure: 這個屬性僅當函數是一個閉包時有效,指向一個保存了所引用到的外部函數的變數cell的元組,如果該函數不是一個內部函數,則始終為None。這個屬性也是只讀的。
下面的代碼演示了func_closure:
#coding: UTF-8
def foo():
n = 1
def bar():
print n # 引用非全局的外部變數n,構造一個閉包
n = 2
return bar
closure = foo()
print closure.func_closure
# 使用dir()得知cell對象有一個cell_contents屬性可以獲得值
print closure.func_closure[0].cell_contents # 2
由這個例子可以看到,遇到未知的對象使用dir()是一個很好的主意 :)
2.6. 方法(method)
方法雖然不是函數,但可以理解為在函數外面加了一層外殼;拿到方法里實際的函數以後,就可以使用2.5節的屬性了。
__doc__: 與函數相同。
__name__: 與函數相同。
*__mole__: 與函數相同。
im_func: 使用這個屬性可以拿到方法里實際的函數對象的引用。另外如果是2.6以上的版本,還可以使用屬性名__func__。
im_self: 如果是綁定的(bound),則指向調用該方法的類(如果是類方法)或實例(如果是實例方法),否則為None。如果是2.6以上的版本,還可以使用屬性名__self__。
im_class: 實際調用該方法的類,或實際調用該方法的實例的類。注意不是方法的定義所在的類,如果有繼承關系的話。
im = cat.sayHi
print im.im_func
print im.im_self # cat
print im.im_class # Cat
這里討論的是一般的實例方法,另外還有兩種特殊的方法分別是類方法(classmethod)和靜態方法(staticmethod)。類方法還是方法,不過因為需要使用類名調用,所以他始終是綁定的;而靜態方法可以看成是在類的命名空間里的函數(需要使用類名調用的函數),它只能使用函數的屬性,不能使用方法的屬性。
2.7. 生成器(generator)
生成器是調用一個生成器函數(generator function)返回的對象,多用於集合對象的迭代。
__iter__: 僅僅是一個可迭代的標記。
gi_code: 生成器對應的code對象。
gi_frame: 生成器對應的frame對象。
gi_running: 生成器函數是否在執行。生成器函數在yield以後、執行yield的下一行代碼前處於frozen狀態,此時這個屬性的值為0。
next|close|send|throw: 這是幾個可調用的方法,並不包含元數據信息,如何使用可以查看生成器的相關文檔。
def gen():
for n in xrange(5):
yield n
g = gen()
print g # <generator object gen at 0x...>
print g.gi_code # <code object gen at 0x...>
print g.gi_frame # <frame object at 0x...>
print g.gi_running # 0
print g.next() # 0
print g.next() # 1
for n in g:
print n, # 2 3 4
接下來討論的是幾個不常用到的內置對象類型。這些類型在正常的編碼過程中應該很少接觸,除非你正在自己實現一個解釋器或開發環境之類。所以這里只列出一部分屬性,如果需要一份完整的屬性表或想進一步了解,可以查看文末列出的參考文檔。
2.8. 代碼塊(code)
代碼塊可以由類源代碼、函數源代碼或是一個簡單的語句代碼編譯得到。這里我們只考慮它指代一個函數時的情況;2.5節中我們曾提到可以使用函數的func_code屬性獲取到它。code的屬性全部是只讀的。
co_argcount: 普通參數的總數,不包括*參數和**參數。
co_names: 所有的參數名(包括*參數和**參數)和局部變數名的元組。
co_varnames: 所有的局部變數名的元組。
co_filename: 源代碼所在的文件名。
co_flags: 這是一個數值,每一個二進制位都包含了特定信息。較關注的是0b100(0×4)和0b1000(0×8),如果co_flags & 0b100 != 0,說明使用了*args參數;如果co_flags & 0b1000 != 0,說明使用了**kwargs參數。另外,如果co_flags & 0b100000(0×20) != 0,則說明這是一個生成器函數(generator function)。
co = cat.sayHi.func_code
print co.co_argcount # 1
print co.co_names # ('name',)
print co.co_varnames # ('self',)
print co.co_flags & 0b100 # 0
2.9. 棧幀(frame)
棧幀表示程序運行時函數調用棧中的某一幀。函數沒有屬性可以獲取它,因為它在函數調用時才會產生,而生成器則是由函數調用返回的,所以有屬性指向棧幀。想要獲得某個函數相關的棧幀,則必須在調用這個函數且這個函數尚未返回時獲取。你可以使用sys模塊的_getframe()函數、或inspect模塊的currentframe()函數獲取當前棧幀。這里列出來的屬性全部是只讀的。
f_back: 調用棧的前一幀。
f_code: 棧幀對應的code對象。
f_locals: 用在當前棧幀時與內建函數locals()相同,但你可以先獲取其他幀然後使用這個屬性獲取那個幀的locals()。
f_globals: 用在當前棧幀時與內建函數globals()相同,但你可以先獲取其他幀……。
def add(x, y=1):
f = inspect.currentframe()
print f.f_locals # same as locals()
print f.f_back # <frame object at 0x...>
return x+y
add(2)
2.10. 追蹤(traceback)
追蹤是在出現異常時用於回溯的對象,與棧幀相反。由於異常時才會構建,而異常未捕獲時會一直向外層棧幀拋出,所以需要使用try才能見到這個對象。你可以使用sys模塊的exc_info()函數獲得它,這個函數返回一個元組,元素分別是異常類型、異常對象、追蹤。traceback的屬性全部是只讀的。
tb_next: 追蹤的下一個追蹤對象。
tb_frame: 當前追蹤對應的棧幀。
tb_lineno: 當前追蹤的行號。
def div(x, y):
try:
return x/y
except:
tb = sys.exc_info()[2] # return (exc_type, exc_value, traceback)
print tb
print tb.tb_lineno # "return x/y" 的行號
div(1, 0)
3. 使用inspect模塊
inspect模塊提供了一系列函數用於幫助使用自省。下面僅列出較常用的一些函數,想獲得全部的函數資料可以查看inspect模塊的文檔。
3.1. 檢查對象類型
is{mole|class|function|method|builtin}(obj):
檢查對象是否為模塊、類、函數、方法、內建函數或方法。
isroutine(obj):
用於檢查對象是否為函數、方法、內建函數或方法等等可調用類型。用這個方法會比多個is*()更方便,不過它的實現仍然是用了多個is*()。
im = cat.sayHi
if inspect.isroutine(im):
im()
對於實現了__call__的類實例,這個方法會返回False。如果目的是只要可以直接調用就需要是True的話,不妨使用isinstance(obj, collections.Callable)這種形式。我也不知道為什麼Callable會在collections模塊中,抱歉!我猜大概是因為collections模塊中包含了很多其他的ABC(Abstract Base Class)的緣故吧:)
3.2. 獲取對象信息
getmembers(object[, predicate]):
這個方法是dir()的擴展版,它會將dir()找到的名字對應的屬性一並返回,形如[(name, value), ...]。另外,predicate是一個方法的引用,如果指定,則應當接受value作為參數並返回一個布爾值,如果為False,相應的屬性將不會返回。使用is*作為第二個參數可以過濾出指定類型的屬性。
getmole(object):
還在為第2節中的__mole__屬性只返回字元串而遺憾嗎?這個方法一定可以滿足你,它返回object的定義所在的模塊對象。
get{file|sourcefile}(object):
獲取object的定義所在的模塊的文件名|源代碼文件名(如果沒有則返回None)。用於內建的對象(內建模塊、類、函數、方法)上時會拋出TypeError異常。
get{source|sourcelines}(object):
獲取object的定義的源代碼,以字元串|字元串列表返回。代碼無法訪問時會拋出IOError異常。只能用於mole/class/function/method/code/frame/traceack對象。
getargspec(func):
僅用於方法,獲取方法聲明的參數,返回元組,分別是(普通參數名的列表, *參數名, **參數名, 默認值元組)。如果沒有值,將是空列表和3個None。如果是2.6以上版本,將返回一個命名元組(Named Tuple),即除了索引外還可以使用屬性名訪問元組中的元素。
def add(x, y=1, *z):
return x + y + sum(z)
print inspect.getargspec(add)
#ArgSpec(args=['x', 'y'], varargs='z', keywords=None, defaults=(1,))
getargvalues(frame):
僅用於棧幀,獲取棧幀中保存的該次函數調用的參數值,返回元組,分別是(普通參數名的列表, *參數名, **參數名, 幀的locals())。如果是2.6以上版本,將返回一個命名元組(Named Tuple),即除了索引外還可以使用屬性名訪問元組中的元素。
def add(x, y=1, *z):
print inspect.getargvalues(inspect.currentframe())
return x + y + sum(z)
add(2)
#ArgInfo(args=['x', 'y'], varargs='z', keywords=None, locals={'y': 1, 'x': 2, 'z': ()})
getcallargs(func[, *args][, **kwds]):
返回使用args和kwds調用該方法時各參數對應的值的字典。這個方法僅在2.7版本中才有。
getmro(cls):
返回一個類型元組,查找類屬性時按照這個元組中的順序。如果是新式類,與cls.__mro__結果一樣。但舊式類沒有__mro__這個屬性,直接使用這個屬性會報異常,所以這個方法還是有它的價值的。
print inspect.getmro(Cat)
#(<class '__main__.Cat'>, <type 'object'>)
print Cat.__mro__
#(<class '__main__.Cat'>, <type 'object'>)
② python中如何提取一組數據中的第一列數據
直接提取會報錯,把array數組轉換成list,即可提取,使用numpy轉換
1、直接提取嘗試:
group=[[1,2],[2,3],[3,4]]
#提取第一列元素
print(group[:,1])
#Out:TypeError: list indices must be integers or slices, not tuple
2、使用numpy轉換:
import numpy as np
group=[[1,2],[2,3],[3,4]]
#numpy轉化
ar=np.array(group)
print(ar[:,1])
#Out:[2 3 4]
numpy詳解
Numpy對象是數組,稱為ndarray
維度(dimensions)稱作軸(axes),軸的個數叫做秩(rank)。註:有幾級中括弧就有幾個維度
一、ndarray.attrs:
ndarray.ndim 秩
ndarray.shape 例如一個2排3列的矩陣,它的shape屬性是(2,3)
ndarray.size 數組元素的總個數
ndarray.dtype 元素類型,NumPy提供自己的數據類型
ndarray.itemsize 數組中每個元素的位元組大小
二、數組創建函數:
array
asarray將輸入轉換成ndarray
arange
ones
zeros
empty 只分配內存空間不填充任何值
eye 創建N*N單位矩陣(對角線為1)
三、數組和標量之間的運算
numpy數組的一個特點,不用編寫循環就可對數據執行批量運算,這通常稱作矢量化(vectorization)。
四、基本的索引和切片
numpy數組的索引是一個內容豐富的主題,因為選取數據子集或單個元素的方式有很多。這里我僅詳細介紹常用的方法,對於高級功能的方式我列舉名稱,讀者可以等到要用的時候自行查閱資料。
③ python關於object的問題
通過+運算符連接兩個數組
.
第一個:x = x + [5]
x = x + [5] 的是賦值,+運算連接數組以創建新數組也即是全新的了,所以第一個不同,
----------------------------------
x = [1, 2, 3, 4]
y = x //指向x相同的數據地址即 y=[1, 2, 3, 4]
x = x + [5] //創建新數組了,內存地址與前面的y不同了x=[1, 2, 3, 4, 5]
----------------------------------
所以print(x == y) 是False。
.
第二個:x += [5]
像+=、-=、*= 的寫法是自變賦值,使用自變賦值時,僅計算一次,常規寫法計算兩次,自變賦值會修改原始數組,而不是創建一個新數組,所以第二個是相同的
------------------------
x = [1, 2, 3, 4]
y = x //這里不是復制數組,指向同一地址,那麼x變什麼y就是什麼了,即 y=[1, 2, 3, 4]
x += [5] //x的數據地址沒有改變 y=x=[1, 2, 3, 4, 5]
------------------------
所以print(x == y)是 True。
.
第三個不用問吧,根據上面解釋,雖然地址是不同,但都是 [1, 2, 3, 4, 5] ,當然是 True。
④ python中如何列印object對象的屬性值
def prn_obj(obj):
print ', '.join(['%s:%s' % item for item in obj.__dict__.items()])
⑤ python提取excel表中的數據兩列
1、首先打開excel表格,在單元格中輸入兩列數據,需要將這兩列數據進行比對相同數據。
2、然後在C1單元格中輸入公式:=VLOOKUP(B1,A:A,1,0),意思是比對B1單元格中A列中是否有相同數據。
3、點擊回車,即可將公式的計算結果顯示出來,可以看到C1中顯示的是B1在A列中找到的相同數據。
4、將公式向下填充,即可發現C列中顯示出的數字即為有相同數據的,顯示「#N/A」的為沒有找到匹配數據的。
5、將C1-C4中的數據進行復制並粘貼成數值,即可完成相同數據的提取操作。
在實際研究中,我們經常需要獲取大量數據,而這些數據很大一部分以pdf表格的形式呈現,如公司年報、發行上市公告等。面對如此多的數據表格,採用手工復制黏貼的方式顯然並不可取。那麼如何才能高效提取出pdf文件中的表格數據呢?
Python提供了許多可用於pdf表格識別的庫,如camelot、tabula、pdfplumber等。綜合來看,pdfplumber庫的性能較佳,能提取出完整、且相對規范的表格。因此,本推文也主要介紹pdfplumber庫在pdf表格提取中的作用。
作為一個強大的pdf文件解析工具,pdfplumber庫可迅速將pdf文檔轉換為易於處理的txt文檔,並輸出pdf文檔的字元、頁面、頁碼等信息,還可進行頁面可視化操作。使用pdfplumber庫前需先安裝,即在cmd命令行中輸入:
pip install pdfplumber
pdfplumber庫提供了兩種pdf表格提取函數,分別為.extract_tables( )及.extract_table( ),兩種函數提取結果存在差異。為進行演示,我們網站上下載了一份短期融資券主體信用評級報告,為pdf格式。任意選取某一表格,其界面如下:
接下來,我們簡要分析兩種提取模式下的結果差異。
(1).extract_tables( )
可輸出頁面中所有表格,並返回一個嵌套列表,其結構層次為table→row→cell。此時,頁面上的整個表格被放入一個大列表中,原表格中的各行組成該大列表中的各個子列表。若需輸出單個外層列表元素,得到的便是由原表格同一行元素構成的列表。例如,我們執行如下程序:
輸出結果:
(2).extract_table( )
返回多個獨立列表,其結構層次為row→cell。若頁面中存在多個行數相同的表格,則默認輸出頂部表格;否則,僅輸出行數最多的一個表格。此時,表格的每一行都作為一個單獨的列表,列表中每個元素即為原表格的各個單元格內容。若需輸出某個元素,得到的便是具體的數值或字元串。如下:
輸出結果:
在此基礎上,我們詳細介紹如何從pdf文件中提取表格數據。其中一種思路便是將提取出的列表視為一個字元串,結合Python的正則表達式re模塊進行字元串處理後,將其保存為以標准英文逗號分隔、可被Excel識別的csv格式文件,即進行如下操作:
輸出結果:
盡管能獲得完整的表格數據,但這種方法相對不易理解,且在處理結構不規則的表格時容易出錯。由於通過pdfplumber庫提取出的表格數據為整齊的列表結構,且含有數字、字元串等數據類型。因此,我們可調用pandas庫下的DataFrame( )函數,將列表轉換為可直接輸出至Excel的DataFrame數據結構。DataFrame的基本構造函數如下:
DataFrame([data,index, columns])
三個參數data、index和columns分別代表創建對象、行索引和列索引。DataFrame類型可由二維ndarray對象、列表、字典、元組等創建。本推文中的data即指整個pdf表格,提取程序如下:
其中,table[1:]表示選定整個表格進行DataFrame對象創建,columns=table[0]表示將表格第一行元素作為列變數名,且不創建行索引。輸出Excel表格如下:
通過以上簡單程序,我們便提取出了完整的pdf表格。但需注意的是,面對不規則的表格數據提取,創建DataFrame對象的方法依然可能出錯,在實際操作中還需進行核對。
關於我們
微信公眾號「爬蟲俱樂部」分享實用的stata命令,歡迎轉載、打賞。爬蟲俱樂部是由李春濤教授領導下的研究生及本科生組成的大數據分析和數據挖掘團隊。
投稿要求:
1)必須原創,禁止抄襲;
2)必須准確,詳細,有例子,有截圖;
⑥ python 如何查看object有哪些屬性值
dir([obj]):
調用這個方法將返回包含obj大多數屬性名的列表(會有一些特殊的屬性不包含在內)。obj的默認值是當前的模塊對象。
hasattr(obj, attr):
這個方法用於檢查obj是否有一個名為attr的值的屬性,返回一個布爾值。
getattr(obj, attr):
調用這個方法將返回obj中名為attr值的屬性的值,例如如果attr為』bar』,則返回obj.bar。
setattr(obj, attr, val):
調用這個方法將給obj的名為attr的值的屬性賦值為val。例如如果attr為』bar』,則相當於obj.bar = val。
⑦ python 新手: 已存在的object添加屬性!
for obj in obj_list:
obj.c = None #直接設置屬性即可
⑧ python 如何根據一個對象的屬性值查詢該對象其他某個屬性值
在 Chrom 類中新增一個類函數,遍歷存儲列表並返回匹配的對象
大概寫了個樣例
⑨ python如何獲取指定列表名和其中的值
從整個資料庫中獲取列名(假設資料庫包含超過100行,超過50列),基於pandas中特定列中包含的特定值.
在Bkmm3(來自印度的成員)的幫助下,我在數字術語上取得了成功但在字母術語上失敗了.我試過的方式是這樣的:
df = pd.DataFrame({'A':['APPLE','BALL','CAT'],
'B':['ACTION','BATMAN','CATCHUP'],
'C':['ADVERTISE','BEAST','CARTOON']})
response = input("input")
for i in df.columns: if(len(df.query(i + '==' + str(response))) > 0):
print(i)`
然後輸出出現錯誤:
Traceback (most recent call last): NameError: name 'APPLE' is not defined
你們的任何幫助都會非常感謝,謝謝. . .
解決方法:
isin / eq適用於DataFrames,您可以100%向量化:
df.columns[df.isin(['APPLE']).any()] # df.isin([response])
要麼,
df.columns[df.eq(response).any()]
索引([『A』],dtype =』對象』)
這是使用DataFrame.eval和np.logical_or的迂迴方式(你是在循環列上):
df.columns[
np.logical_or.rece(
[df.eval(f"{repr(response)} in {i}") for i in df]
)]
Index(['A'], dtype='object')
⑩ 可以使用Python讀取java寫入redis 的object數據,並解析嗎
-redis 本來就只支持存儲一些基本類型(數值,字元...)的。java將對象存儲在redis中是將對象序列化後的位元組數組存入redis的,所以你用python取到的redis中的數據時,會帶有特殊的前綴,表示序列化後java的類信息。java獲取這些數據的時候會有反序列的操作,所以不影響。但python取到數據後是無法解析的。
-Java 存儲與python共享數據時,應避免將String字元串當做對象進行序列化存儲,應直接以字元串的形式存儲,如果需要共享對象,對象轉化為json串存儲。
-另外spring的redisTemplate 進行Hash操作時,就算你存儲的是String類型的數據,也會被當做String對象序列化後存儲。所以 如果過要操作redis的hash結構,建議實例化一個Jedis客戶端進行操作。