導航:首頁 > 編程語言 > stm8編程指南

stm8編程指南

發布時間:2022-12-28 07:19:44

⑴ STM8 ADC_CR1;ADC_CR2;這個是什麼意思呢

ADC_CR1= 0x02; //這里設置分頻系數為2 連續轉換模式 先禁止ADC轉換

ADC_CR2=0x08; //設置數據右對齊 禁止掃描模式

STM8模擬/數字轉換器(ADC)簡介

ADC1和ADC2是10位的逐次比較型模擬數字轉換器。提供多達16個多功能的輸入通道(實際准確的通道數量在數據手冊的引腳描述說明)。A/D轉換的各個通道可以執行單次和連續的轉換模式。

相對於ADC2,ADC1具有一些擴展功能,包括掃描模式,帶緩存的連續模式以及模擬看門狗。
請參考STM8數據手冊來了解不同產品型號的ADC1和ADC2的功能信息。

主要特點

ADC1和ADC2的功能如下:

⑵ stm8配置位元組一般怎麼設置好

如果FLASH空間允許,可以在程序里加入對配置位元組進行IAP編程的部分,這樣就只需要燒寫FLASH,然後程序自己對配置位元組進行配置。

⑶ 有誰精通stm8, 我有一個編程的問題要請教,能否留下QQ指導下 謝謝

最近用STM8S,請問什麼問題。

⑷ 本人正在學習stm8,使用IAR編程,求代碼把蜂鳴器弄響

你用的是「 ST MCU 三合一體驗套件 」 裡面的那套STM8S的開發板嚒·?
如果是的話可以參考以下常式:是在微雪電子那采購的官方套件光碟中的示常式序,不知道能不能幫到你! 有分的話給點分用用,嘿嘿!
/*============================================================================*/
/* PROJECT: DRIVING BUZZER THROUGH STM8 TIMER2 PWM DEMO SYSTEM */
/* MODULE: main.c */
/* COMPILER: STM8 Cosmic C Compiler */
/* DATE: Feb 2009 */
/*----------------------------------------------------------------------------*/
/* DESCRIPTION: Demonstration firmware for STM8 Mini Kit */
/* playing a tune through its buzzer. */
/*============================================================================*/
/******************************************************************************
*
* THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
* WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
* TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
* DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
* FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
* CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
*
* COPYRIGHT 2008 STMicroelectronics
******************************************************************************
*/

/* Includes ------------------------------------------------------------------*/
#include "STM8S105C_S.h" /* Registers and memory mapping file. */

/******************************************************************************/
/* Macro definitions
/******************************************************************************/
/* Music instruction and note coding. */
#define _END_ 0xFF /* Music END. */
#define _PAUSE_ 0xFE /* Pause between different tunes. */

/* Note tone definition...... */
#define _FA0 0x00 /* FA- */
#define _SOL0 0x01 /* SOL- */
#define _LA0 0x02 /* LA- */

#define _SI0 0x03 /* SI- */
#define _DO 0x04 /* DO */
#define _RE 0x05 /* RE */
#define _MI 0x06 /* MI */
#define _FA 0x07 /* FA */
#define _SOL 0x08 /* SOL */
#define _LA 0x09 /* LA */
#define _SI 0x0A /* SI */
#define _DO2 0x0B /* DO+ */
#define _M 0x0C /* MUTE */
#define _RE2 0x0D /* RE+ */
#define _SOL2 0x0E /* SOL+ */
#define _FAd 0x0F /* FA# */

/* Note length definition...... */
#define sq 0x10 /* Semiquaver notes. */
#define q 0x20 /* Quaver notes. */
#define qp 0x30 /* 1.5 quaver notes. */
#define c 0x40 /* Crotchet notes. */
#define cn 0x60 /* 1.5 crotchet notes.*/
#define m 0x80 /* Minim notes. */

/*a note is defined here by a combination of a tone and a length, both parts
being easily retrievable with the AND binary operator: note = tone+length,
and tone&length=0*/

/******************************************************************************/
/* RAM SEGMENT variables */
/******************************************************************************/
/* Global variable used to store the ADC result. */
unsigned int AD_Value;

/* Global variable used to store the Key pressed for changing octave. */
unsigned char Flag_Octave_Chg;

/* Global variable used as index for the array of notes: position in the tune.*/
unsigned int current_note = 0;

/* Global variable used as index for the array of notes. */
unsigned char c1,c1_buf;

/* Music note coding ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */
/* FA0 SOL0 LA0 SI0 DO RE MI FA SOL LA SI DO2 MUTE RE2 SOL2 FA# */
/* TIM2 CCR1 High byte. */
const unsigned char Low_Note_h[] /* Lower octave */
={0x2C,0x27,0x23,0x1F,0x1D,0x1A,0x17,0x16,0x13,0x11,0x0F,0x0E,0x00, 0x0D, 0x09, 0x15 };
const unsigned char Hi_Note_h[] /* Higher octave */
={0x16,0x13,0x11,0x0F,0x0E,0x0D,0x0B,0x0B,0x09,0x08,0x07,0x07,0x00, 0x06, 0x04, 0x0A };

/* TIM2 CCR1 Low byte. */
const unsigned char Low_Note_l[] /* Lower octave */
={0xA4,0xDC,0x82,0xA1,0xEE,0xA9,0xAC,0x62,0xEE,0xC1,0xD0,0xF0,0x00, 0x4F, 0xF7, 0x2C };
const unsigned char Hi_Note_l[] /* Higher octave */
={0x52,0xEE,0xC1,0xD0,0xF7,0x54,0xD6,0x31,0xF7,0xE0,0xE8,0x78,0x00, 0xA7, 0xFB, 0x96 };

/* The actual tune sequence: an array of notes. */
const unsigned char tune[] =
{
_M+sq, _M+sq, /* Two "buffer" mutes needed to manage smoothly the */
/* current_note/current_note_init comparison. */

/*------------------ DO RE MI FA SOL LA SI DO2 --------------------------*/
/*------------------ DO2 SI LA SOL FA MI RE DO --------------------------*/
_DO+c,_RE+c,_MI+c,_FA+c,_SOL+c,_LA+c,_SI+c,_DO2+c,_M+m, _PAUSE_,
_DO2+c,_SI+c,_LA+c,_SOL+c,_FA+c,_MI+c,_RE+c,_DO+c,_M+m, _PAUSE_,

/*---------------------------- 新年好 ------------------------------------*/
_DO+c,_DO+c,_DO+c,_M+sq,_DO+m,_SOL0+m,_MI+c,_MI+c,_M+sq,_MI+m,_DO+m,_DO+c,
_MI+c,_M+sq,_SOL+m,_SOL+m,_FA+c,_MI+c,_M+sq,_RE+m,_RE+m,_M+sq,_RE+c,_MI+c,
_FA+m,_M+sq,_FA+m,_MI+c,_RE+c,_MI+m,_DO+m,_M+sq,_DO+c,_MI+c,_RE+m,_SOL0+m,
_SI0+c,_RE+c,_DO+m,_DO+m,_PAUSE_,

/*--------------------------- 兩只老虎 -----------------------------------*/
_DO+c,_RE+c,_MI+c,_DO+c,_DO+c,_RE+c,_MI+c,_DO+c,_MI+c,_FA+c,_SOL+m,_MI+c,
_FA+c,_SOL+m,_SOL+qp,_LA+sq,_SOL+qp,_FA+sq,_MI+c,_DO+c,_SOL+qp,_LA+sq,
_SOL+qp,_FA+sq,_MI+c,_DO+c,_M+sq,_DO+c,_SOL0+c,_DO+m,_M+sq,_DO+c,_SOL0+c,
_DO+m,_M+sq,_PAUSE_,

/*---------------------------- 甜蜜蜜 ------------------------------------*/
_MI+m,_SOL+c,_LA+c,_MI+m,_MI+c,_DO+c,_RE+cn,_DO+q,_RE+c,_MI+q,_SOL+q,_MI+m,
_MI+m,_RE+c,_RE+c,_RE+c,_RE+q,_MI+q,_RE+q,_DO+cn,_LA0+q,_SOL0+cn,_DO+m,
_DO+c,_RE+c,_MI+cn,_RE+q,_MI+q,_RE+q,_MI+q,_SOL+q,_RE+m,_RE+m,_RE+m,_RE+m,
_MI+m,_SOL+c,_LA+c,_MI+m,_MI+c,_DO+c,_RE+cn,_DO+q,_RE+c,_MI+q,_SOL+q,_MI+m,
_MI+m,_RE+c,_RE+c,_RE+c,_RE+q,_MI+q,_RE+q,_DO+cn,_LA0+q,_SOL0+cn,_DO+m,
_DO+c,_MI+c,_RE+q,_DO+q,_DO+c,_LA0+q,_SOL0+cn,_DO+m,_DO+m,_DO+m,_DO+m,_MI+m,
_MI+m,_SOL0+m,_LA0+q,_DO+q,_SOL0+q,_LA0+q,_DO+m,_DO+m,_DO+m,_DO+m,_LA0+c,
_SI0+c,_LA0+c,_SI0+c,_LA0+c,_LA0+q,_DO+q,_LA0+q,_SOL0+q,_SOL0+c,_MI+m,_MI+m,
_MI+m,_MI+m,_LA0+c,_SI0+c,_LA0+c,_SI0+c,_LA0+c,_LA0+q,_DO+q,_LA0+q,_SOL0+q,
_SOL0+c,_MI+m,_MI+m,_MI+m,_M+c,_SOL+q,_LA+q,_SOL+m,_M+c,_SOL+q,_LA+q,_SOL+m,
_M+c,_SOL+q,_LA+q,_SOL+c,_SOL+q,_LA+q,_SOL+c,_SOL+q,_LA+q,_SOL+m,_SOL+m,
_MI+m,_SOL+c,_LA+c,_MI+m,_MI+c,_DO+c,_RE+cn,_DO+q,_RE+c,_RE+q,_SOL+q,_MI+m,
_MI+m,_RE+c,_RE+c,_RE+c,_RE+q,_MI+q,_RE+q,_DO+cn,_LA0+q,
_SOL0+cn,_DO+m,_DO+c,_MI+c,_RE+q,_DO+q,_DO+c,_LA0+q,_SOL0+cn,_DO+m,_DO+m,
_DO+m,_DO+m,_MI+m,_MI+m,_SOL0+m,_LA0+q,_DO+q,_SOL0+q,_LA0+q,_DO+m,_DO+m,
_DO+m,_DO+m,_PAUSE_,

/*------------------ _END_ marks to end of the tune ----------------------*/
_END_
};

/******************************************************************************/
/* Function definitions */
/******************************************************************************/
/* -------------------------------------------------------------------------- */
/* ROUTINE NAME: Buzz_Init */
/* INPUT/OUTPUT: None. */
/* DESCRIPTION: Initialize the TIM2 as PWM mode for BUZZ control. */
/* -------------------------------------------------------------------------- */
void Buzz_Init ( void )
{
PD_DDR |= 0x10; /* Configure PD4 as output (for the PWM). */
PD_CR1 |= 0x10; /* PD4 Push pull output. */
TIM2_CCMR1 |= 0x70; /* Output mode PWM2. */
TIM2_CCER1 |= 0x03; /* CC polarity low,enable PWM output */

TIM2_ARR = 0; /* Freq control register: ARR */
TIM2_CCR1 = 0; /* Dutycycle control register: CCR */

TIM2_PSCR |= 0x00; /* fCK_CNT is equal to fCK_PSC. */
TIM2_CR1 |= 0x01; /* Enable TIM2. */
current_note = 1;
}

/* -------------------------------------------------------------------------- */
/* ROUTINE NAME: Buzz_Wait */
/* INPUT/OUTPUT: Note ration (4bit MSB information) / None. */
/* DESCRIPTION: 1) Sample AIN voltage and store in AD_Value. */
/* 2) Polling wait routine for note ration(based on 4ms delay).*/
/* ration: Quaver (2), crotchet (4) or minim (8) selection. */
/* ---------------------------------------------------------------------------*/
void Buzz_Wait(unsigned char ration)
{
int i = 0;
unsigned char uc = 0;
unsigned long Temp;

/* Sample AIN voltage in ADC single mode. */
ADC_CR1 |= 0x01; /* First set ADON to power on the ADC mole. */
i = 6; /* Wait >7us to ensure the ADC power on finished.*/
while(i--);
ADC_CR1 |= 0x01; /* Set ADON again to start AD convert. */
while(!(ADC_CSR & 0x80));/* Waiting for AD convert finished (EOP=1). */

/* Store ADC value to AD_Value */
AD_Value = ((((unsigned int)ADC_DRH)<<2)+ADC_DRL)>>2;
if (AD_Value < 0x01)
{ AD_Value = 0x01; }

if (AD_Value > 0xC0)
{ AD_Value = 0xC0; }

if (Flag_Octave_Chg==1)
{
Temp = ((((unsigned int) Low_Note_h [c1_buf])<<8)+Low_Note_l [c1_buf]);
}
else
{
Temp = ((((unsigned int) Hi_Note_h [c1_buf])<<8)+Hi_Note_l [c1_buf]);
}
Temp = (Temp*AD_Value)>>9;

/* The new ty cycle value is written in CCR */
TIM2_CCR1H=(unsigned char)(((unsigned int)Temp & 0xff00)>>8);
TIM2_CCR1L=(unsigned char)((unsigned int)Temp & 0x00ff);

/* Delay time = ration * Y */

while ( uc < ration ) /* The following loop is run "ration" times. */
{
while ( i < 1200 ) /* This loop "Y" waits approximately 4.3ms. */
{
i++;
}
i = 0;
uc++;

}

}

/* -------------------------------------------------------------------------- */
/* ROUTINE NAME: Buzz_PlayTune */
/* INPUT/OUTPUT: None. */
/* DESCRIPTION: Plays a music score (one tune at a time). */
/* -------------------------------------------------------------------------- */
void Buzz_PlayTune ( void )
{
unsigned ui;
unsigned long temp_DCR;
unsigned char temp;

while(1)
{
if(tune[current_note] == _END_)
{
/* End of the music, reset to beginning. 1 is a mute at the */
/* beginning of the array of notes; differs from 0. */
current_note = 1;
break;
}
else if(tune[current_note] == _PAUSE_)
{
/* End of a tune, save the position in the music, stop playing. */
current_note++;
break;
}
else
{
c1 = tune[current_note];
/* Loads a note (or mute) on the relevant registers */
/* The note information is carried only by the 4 lowest bits. */

c1_buf= c1 & 0x0f;

if (Flag_Octave_Chg==1)
{
temp_DCR = ((((unsigned int)Low_Note_h [c1_buf])<<8)+Low_Note_l[c1_buf]);
TIM2_ARRH = Low_Note_h [c1_buf];
TIM2_ARRL = Low_Note_l [c1_buf];
}
else
{
temp_DCR = ((((unsigned int) Hi_Note_h [c1_buf])<<8)+Hi_Note_l [c1_buf]);
TIM2_ARRH = Hi_Note_h [c1_buf];
TIM2_ARRL = Hi_Note_l [c1_buf];
}

temp_DCR = (temp_DCR*AD_Value)>>9;

/* The new ty cycle value is written in DCR0. */
temp=((unsigned int)temp_DCR & 0xff00)>>8;
TIM2_CCR1H=(unsigned char)temp;
temp=((unsigned int)temp_DCR & 0x00ff);
TIM2_CCR1L=(unsigned char)temp;
/* Waits for the ration of the note. */
/* The ration info is carried by the 4 highest bits. */
Buzz_Wait(c1&0xF0);
/* Progressing in the array of notes: the tune. */
current_note++;
}
}
}

/* -------------------------------------------------------------------------- */
/* ROUTINE NAME: GPIO_Init */
/* INPUT/OUTPUT: None. */
/* DESCRIPTION: Initialize the GPIO for LED,TLI. */
/* -------------------------------------------------------------------------- */
void GPIO_Init(void)
{
/* LED IO Configuration */
/* LD3: PD3 */
/* LD2: PD1 */
/* LD1: PD0 */
PD_DDR |= 0x0D; /* Output. */
PD_CR1 |= 0x0D; /* PushPull. */
PD_CR2 = 0x00; /* Output speed up to 2MHz. */

/* PD7 external interrupt */
EXTI_CR1 = 0x00; /* External interrupt (TLI) sensitivity. */
EXTI_CR2 = 0x00;
PD_DDR &=~0x80; /* PD7: Input */
PD_CR2 |= 0x80; /* Enable TLI interrupt. */
}

/* -------------------------------------------------------------------------- */
/* ROUTINE NAME: CLK_Init */
/* INPUT/OUTPUT: None. */
/* DESCRIPTION: Initialize the clock source */
/* -------------------------------------------------------------------------- */
void CLK_Init(void)
{
/* Configure HSI prescaler*/
CLK_CKDIVR &= ~0x10; /* 01: fHSI= fHSI RC output/2. */

/* Configure CPU clock prescaler */
CLK_CKDIVR |= 0x01; /* 001: fCPU=fMASTER/2. */
}

/* -------------------------------------------------------------------------- */
/* ROUTINE NAME: ADC_Init */
/* INPUT/OUTPUT: None. */
/* DESCRIPTION: Initialize the AD converter. */
/* -------------------------------------------------------------------------- */
void ADC_Init(void)
{
ADC_CR2 = 0x00;
ADC_CR1 = 0x00;
ADC_CSR = 0x03;
ADC_TDRL = 0x20;
}

/* -------------------------------------------------------------------------- */
/* ROUTINE NAME: TIM_Init */
/* INPUT/OUTPUT: None. */
/* DESCRIPTION: Initialize the TIM4 as LED timebase. */
/* -------------------------------------------------------------------------- */
void TIM_Init(void)
{
/* TIM4 Peripheral Configuration */
/* Time Base configuration */
TIM4_PSCR = 0x04; /* Configure TIM4 prescaler. */
TIM4_ARR = 0xFF; /* Configure TIM4 period. */

/*TIM4 counter enable */
TIM4_CR1 |= 0x01; /* Enable TIM4. */
TIM4_IER |= 0x01; /* Enable TIM4 OVR interrupt. */
}

/* -------------------------------------------------------------------------- */
/* ROUTINE: main */
/* main entry */
/* -------------------------------------------------------------------------- */
void main ( void )
{
unsigned int j;
_asm("sim"); /* Disable interrupts. */

Flag_Octave_Chg=0;

CLK_Init();

GPIO_Init();

TIM_Init();

ADC_Init();

_asm("rim"); /* Enable interrupts. */

Buzz_Init (); /* Init TIMER peripheral. */

while ( 1 )
{
/* Play the current score. */
Buzz_PlayTune();
Buzz_Wait(0x80); /* Wait around one second. */
}
}
/* --------------------------- End of file -----------------------------------*/

⑸ 求STM8S家族的微控制晶元的 中文的 編程手冊(pm0044)

同問,希望朋友們提供[email protected]

⑹ STM8當中的GPIO各模式如何用

TM8的通用輸入/輸出口用於晶元和外部進行數據傳輸。一個IO埠可以包括多達8個引腳,每個引腳可以被獨立編程作為數字輸入或者數字輸出口。另外部分口還可能會有如模擬輸入,外部中斷,片上外設的輸入/輸出等復用功能。但是在同一時刻僅有一個復用功能可以映射到引腳上。
復用功能的映射是通過選項位元組控制的。請參考數據手冊關於選項位元組的描述。
每個埠都分配有一個輸出數據寄存器,一個輸入引腳寄存器,一個數據方向寄存器,一個選擇寄存器,和一個配置寄存器。一個I/O口工作在輸入還是輸出是取決於該口的數據方向寄存器的狀態。

GPIO主要功能

⑺ STM8的C語言延時及外部中斷編程

研究了下,你描述的邏輯好像有矛盾,
我疑問如下:

控制過程如下:
pin17(PC7)收到低電平脈沖信號(脈沖長度多少?),
計時器啟動(計數時間5秒?),
pin19(PD2)輸出高電平(在計數計數結束後輸出低電平?);
當m為奇數時,pin13(PC3)輸出高電平(PIN14輸出低電平?);
當m為偶數時,pin14(PC4)輸出高電平(PIN13輸出低電平?)。

最終計數結束後輸出狀態如何?

pin10(PA3)有高電平脈沖信號輸入時(脈沖長度多少?),
pin19(PD2)停止輸出(輸出低電平還是高電平?);
如果在一個計時周期內(5秒嗎?),
pin10(PA3)沒有高電平信號輸入(一直維持低電平嗎?),
則pin18(PD1)輸出高電平(有高電平脈沖信號時輸出低電平?)。

pin15(PC5)有高電平脈沖信號輸入時(脈沖長度多少?),
pin13(PC3)停止輸出(輸出低電平還是高電平?);
如果在一個計時周期內(5秒嗎?),
pin15(PC5)沒有高電平信號輸入(一直維持低電平嗎?),
且計數器值m為奇數,則pin18(PD1)輸出高電平(m是偶數時怎麼處理?)。

。。。。。。。。。。。

主要程序到底是觸發後輸出一個序列電平還是測量輸入脈沖?

⑻ 什麼是單片機STM8

ST的8位微控制器平台基於高性能8位內核,配有先進的成套外設。 該平台採用ST的130 nm嵌入式非易性存儲器專有技術。 STM8通過增強型堆棧指針運算、先進的定址模式和新指令實現快速、安全的開發。 STM8平台支持三種主要產品線:
STM8S,通用微控制器
STM8L,超低功耗EnergyLite™微控制器
STM8A,汽車級微控制器
以上是ST公司官方給出的介紹。對於選型來講STM8的主要特點是最高工作頻率24MHz,性能可以達到20MIPS。定時器等外設資源的架構和現在炙手可熱的STM32系列ARM基本相同,可以用類似的方式控制,官方提供了軟體架構庫FWLib,可以簡化開發過程。中斷的處理方式與AVR不大相同,幾種中斷源可能對應一個中斷向量,據說類似51,但是我沒用過51,所以沒有考證。價格上與AVR的定位類似,感覺性價比稍微高於AVR一些。模擬器為ST-Link,可以在淘寶上買到,只需要100多就可以,所以上手成本也比較低。
不知道這些信息是否能夠滿足您的需求。

⑼ stm8編程用iar編譯器哪個版本好

stm8編程用iar編譯器用22版本好。stm8編程iar編譯器22版是最新版本,功能最全。

⑽ 如何實現STM8的程序加密可以使用其RC校驗碼嗎

stm8具有唯一id,可以利用這個id做程序加密

例如


#define ID_ENCRYPT_EOR_RESULT_ADDRESS (0x9ff0)

#define ID_ENCRYPT_ADD_RESULT_ADDRESS (0x9ff4)

void Stm8s103EncryptDemo(void)

{

uint32 *u16IdAddress;

uint16 u32EorRslt, u16AddRslt;

//千萬別顯式的讀取ID,即要把0x4865運算成隱式的,例如此例中0x4865 = (0x1194 * 4) + 0x215;

//這樣,別人就算破解出了你的程序,也查找不到0x4865,這樣就不能輕易的軟解密,這樣處理後如果要軟解密,

//一定要反匯編出來進行復雜逆向分析,難度極大,代價極高,很難搞定軟加密了,達到保護產品的目的。

gU16IdAdressVar = 0x1194;

gU16IdAdressVar <<= 2;

u16IdAddress = (uint16*)(gU16IdAdressVar + 0x215);//0x4865

//讀取單片機的ID,並進行運算,具體演算法可以自己定,這里只用到簡單的異或及和運算

u16EorRslt = (*u16IdAddress) ^ (*(u16IdAddress + 1)) ^ (*(u16IdAddress + 2));

u16AddRslt = (*u16IdAddress) + (*(u16IdAddress + 1)) + (*(u16IdAddress + 2));

//進行對比,如果運算結果與FLASH保存的結果不一樣,說明非法,運行錯誤代碼

if(u16EorRslt != *((uint16*)ID_ENCRYPT_EOR_RESULT_ADDRESS))

{

while(1);//異或演算法結果不正確,進行錯誤分支

}

if(u16AddRslt != *((uint32*)ID_ENCRYPT_ADD_RESULT_ADDRESS))

{

while(1);//和演算法結果不正確,進行錯誤分支

}

}

1,如果板子上有外部存儲器,可以先編寫一個程序,利用演算法把id計算得到一些值存入外部存儲器,然後再燒寫真正的程序,真正的程序去校驗外部存儲器的數據是否合法即可

2,利用板子上按鍵組合,或是上電按住某些鍵,程序在這個時候利用演算法把id計算得到一些值存入程序區(stm8為EE區),程序運行時去驗證程序區數據是否正確

3,軒微編程器有軟體加密的功能,編程器會讀晶元id,根據演算法直接改寫緩沖區,達到軟體加密的作用

4,讀出的id通過一定演算法,例如異或加上一個數,得到的數據存入flash(只運行一次,運行後標志位也存入flash),下次讀到這個標志位,就不運行這個程序



閱讀全文

與stm8編程指南相關的資料

熱點內容
dvd光碟存儲漢子演算法 瀏覽:757
蘋果郵件無法連接伺服器地址 瀏覽:962
phpffmpeg轉碼 瀏覽:671
長沙好玩的解壓項目 瀏覽:144
專屬學情分析報告是什麼app 瀏覽:564
php工程部署 瀏覽:833
android全屏透明 瀏覽:736
阿里雲伺服器已開通怎麼辦 瀏覽:803
光遇為什麼登錄時伺服器已滿 瀏覽:302
PDF分析 瀏覽:484
h3c光纖全工半全工設置命令 瀏覽:143
公司法pdf下載 瀏覽:381
linuxmarkdown 瀏覽:350
華為手機怎麼多選文件夾 瀏覽:683
如何取消命令方塊指令 瀏覽:349
風翼app為什麼進不去了 瀏覽:778
im4java壓縮圖片 瀏覽:362
數據查詢網站源碼 瀏覽:150
伊克塞爾文檔怎麼進行加密 瀏覽:892
app轉賬是什麼 瀏覽:163