Ⅰ python繪制直方圖設置y數量
python繪制直方圖設置y數量需要用到matplotlib_pyplot_hist方法。Python由荷蘭數學和計算機科學研究學會的吉多·范羅蘇姆於1990年代初設計,作為一門叫做ABC語言的替代品。Python提供了高效的高級數據結構,還能簡單有效地面向對象編程。Python語法和動態類型,以及解釋型語言的本質,使它成為多數平台上寫腳本和快速開發應用的編程語言,隨著版本的不斷更新和語言新功能的添加,逐漸被用於獨立的、大型項目的開發。
Ⅱ Python 數據可視化:繪制箱線圖、餅圖和直方圖
上一課介紹了柱形圖和條形圖,本課將介紹另外幾種統計圖表。
Box Plot 有多種翻譯,盒須圖、盒式圖、盒狀圖或箱線圖、箱形圖等,不管什麼名稱,它的基本結構是這樣的:
這種圖是由美國著名統計學家約翰·圖基(John Tukey)於 1977 年發明的,它能顯示出一組數據的上限、下限、中位數及上下四分位數。
為了更深入理解箱線圖的含義,假設有這樣一組數據:[1, 3, 5, 8, 10,11, 16, 98 ],共有 8 個數字。
首先要計算箱線圖中的「四分位數」,注意不是 4 個數:
對於已經排序的數據 [1, 3, 5, 8, 10,11, 16, 98 ],下四分位數(Q1)的位置是數列中從小到大第 2.25 個數,當然是不存在這個數字的——如果是第 2 個或者第 3 個,則存在。但是,可以用下面的原則,計算出此位置的數值。
四分位數等於與該位置兩側的兩個整數的加權平均數,此權重取決於相對兩側整數的距離遠近,距離越近,權重越大,距離越遠,權重越小,權數之和等於 1。
根據這個原則,可以分別計算本例中數列的 3 個四分位數。
在此計算基礎上,還可以進一步計算四分位間距和上限、下限的數值。
先看一個簡單示例,了解基本的流程。
輸出結果:
這里繪制了兩張箱線圖,一張沒有顯示平均值,另外一張顯示了平均值,所使用的方法就是 boxplot,其完整參數列表為:
參數很多,不要擔心記憶問題,更別擔心理解問題。首先很多參數都是可以「望文生義」的,再有,與以前所使用的其他方法(函數)的參數含義也大同小異。
輸出結果:
所謂的「凹槽」,不是簡單形狀的改變,左右折線的上限區間表示了數據分布的置信區間,橫線依然是上限和下限。
Ⅲ 如何用python畫出直方圖的包絡線
有一組數據想用直方圖畫出他們的數值分布,使用代碼:
num=20
histo=plt.hist(data,num)
plt.plot(histo[1][0:num],histo[0],"r",linewidth=2) 畫出的直方圖的bar是分散的如圖,紅色曲線為每條bar的包絡線。現在想做出所有bar的包絡線,比如圖中所有bar的分布可以畫出一條類似高斯曲線的包絡線,表示數據是高斯分布,請問如何實現
這個問題解決了,其實很簡單,更改bins的寬度即可
Ⅳ 如何用python繪制各種圖形
1.環境
系統:windows10
python版本:python3.6.1
使用的庫:matplotlib,numpy
2.numpy庫產生隨機數幾種方法
import numpy as np
numpy.random
rand(d0,d1,...,dn)
In [2]: x=np.random.rand(2,5)
In [3]: x
Out[3]:
array([[ 0.84286554, 0.50007593, 0.66500549, 0.97387807, 0.03993009],
[ 0.46391661, 0.50717355, 0.21527461, 0.92692517, 0.2567891 ]])
randn(d0,d1,...,dn)查詢結果為標准正態分布
In [4]: x=np.random.randn(2,5)
In [5]: x
Out[5]:
array([[-0.77195196, 0.26651203, -0.35045793, -0.0210377 , 0.89749635],
[-0.20229338, 1.44852833, -0.10858996, -1.65034606, -0.39793635]])
randint(low,high,size)
生成low到high之間(半開區間 [low, high)),size個數據
In [6]: x=np.random.randint(1,8,4)
In [7]: x
Out[7]: array([4, 4, 2, 7])
random_integers(low,high,size)
生成low到high之間(閉區間 [low, high)),size個數據
In [10]: x=np.random.random_integers(2,10,5)
In [11]: x
Out[11]: array([7, 4, 5, 4, 2])
3.散點圖
x x軸
y y軸
s 圓點面積
c 顏色
marker 圓點形狀
alpha 圓點透明度#其他圖也類似這種配置
N=50# height=np.random.randint(150,180,20)# weight=np.random.randint(80,150,20)
x=np.random.randn(N)
y=np.random.randn(N)
plt.scatter(x,y,s=50,c='r',marker='o',alpha=0.5)
plt.show()
8.箱型圖
import matplotlib.pyplot as pltimport numpy as npdata=np.random.normal(loc=0,scale=1,size=1000)#sym 點的形狀,whis虛線的長度plt.boxplot(data,sym="o",whis=1.5)plt.show()
#sym 點的形狀,whis虛線的長度
Ⅳ Python Matplotlib畫圖
主要用於作圖、可視化問題
pip install matplotlib
導入模塊 pyplot 和 pylab ,可以參考下面鏈接觀察兩者區別:
https://www.cnblogs.com/Shoesy/p/6673947.html
(說白了就是pylay=pyplot+numpy)
輸入這三行解決
主要使用 plot() 來展示,裡面前兩個參數代表 x , y 坐標(注意x,y數量要一樣),第三個參數可以用來設置散點圖( 'o' )或者顏色、線條形式等各種樣式,並且第三個參數可以同時傳入多個,比如要紅色的散點圖就: Ɔr'
(1)顏色樣式:
(2)線條樣式:
(3)點的樣式:
(4)坐標區間:
或者分別設置x、y的區間:
註:
設置點的樣式時默認就是散點圖,以及同類樣式只能設置一個(比如不能設置兩種顏色),並且還可以把多個圖集合在一起展示,那就多 plot 幾個,plot就相當於一個畫布,每plot一個就相當於在上面畫一張圖,再弄就繼續在上面畫
主要用 hist() 來顯示,實現方式很簡單,把一組數據放入括弧里就行了,例如隨機生成一堆正態分布的數,然後直方圖顯示:
其中如果要設置直方圖格式(寬度、上下限、是否要輪廓)可以這樣:
註:
直方圖和折線圖這些不太一樣,折線圖是傳入兩個等長數據,然後每個x、y坐標一一對應展示出來。而直方圖是:第一個參數代表你傳入的所有數據,第二個參數代表你傳入的x軸范圍,然後直方圖會將第一個參數里傳入的數據一個個計算在某個范圍內含有的數據量,因此傳入的兩個參數數據不一定要等長,例如下面的例子:
結果如圖:
可以看出數據被自動分配到對應的范圍內上了
使用 subplot(row, col, area) :三個參數分別是行數、列數和區域,比如要將原圖分成2行2列(切成4份),然後要左下角那個圖就:
如果想4個圖都顯示就4個 subplot ,分別1、2、3、4就行了,然後在各圖的subplot之後寫的都是每個圖的內容,現在我們試試弄一個2行,第一行兩列的圖片(想像下滑鼠的樣子),而且分別是不同的內容:
註:
labels 、 sizes 、 colors 和 explode 的長度都要一樣
1.導入3D圖相關模塊:
2.將畫圖板加到3D模塊里,然後加入數據即可:
3D散點圖舉例:
通過 imread() 讀取,舉例:
https://blog.csdn.net/qq_34859482/article/details/80617391
Ⅵ python matplotlib畫的直方圖怎麼加兩條豎線做參考線
雙曲螺線,又稱為倒數螺線,是阿基米德螺線的倒數,極徑與極角成反比的點的軌跡稱為雙曲螺線。
Ⅶ python畫hist直方圖
簡單說下圖形選擇啦,通常我們最常用的圖形是折線圖、扇形圖、條形圖,它們的功能簡單概括為:
折線圖:表示變化情況;
扇形圖:表示各類別的分布佔比情況;
條形圖:表示具體數值;
接下來要說的直方圖是以條形圖的形式展現的,在統計學中, 直方圖 (英語:Histogram)是一種對數據分布情況的圖形表示。
以下展示了python畫直方圖的幾種方式,這里涉及到了3個包:matplotlib、pandas、seanborn。
1、使用 matplotlib.pyplot.hist 函數(本文主要講解該方法畫直方圖)
2、使用 pandas.DataFrame.plot.hist 函數
3、使用 pandas.DataFrame.hist 函數
4、使用 seaborn.distplot 函數
以下為 matplotlib.pyplot.hist 函數介紹:
參數:
返回值:
模擬真實場景:我們通過分析打分,給1000個客戶進行了排名,排名越靠前,說明客戶越優異,為了找到特定的200個客戶的排名處於這1000個客戶中的位置,使用了直方圖對比的方式。以下使用的數據是為模擬場景,隨機出來的結果排名比較靠後,所以這些客戶質量並不高:
hist: https://my.oschina.net/u/2474629/blog/1793008
matplotlib中文亂碼: https://www.jianshu.com/p/c0f19f87036f
Ⅷ python繪圖篇
1,xlable,ylable設置x,y軸的標題文字。
2,title設置標題。
3,xlim,ylim設置x,y軸顯示範圍。
plt.show()顯示繪圖窗口,通常情況下,show()會阻礙程序運行,帶-wthread等參數的環境下,窗口不會關閉。
plt.saveFig()保存圖像。
面向對象繪圖
1,當前圖表和子圖可以用gcf(),gca()獲得。
subplot()繪制包含多個圖表的子圖。
configure subplots,可調節子圖與圖表邊框距離。
可以通過修改配置文件更改對象屬性。
圖標顯示中文
1,在程序中直接指定字體。
2, 在程序開始修改配置字典reParams.
3,修改配置文件。
Artist對象
1,圖標的繪制領域。
2,如何在FigureCanvas對象上繪圖。
3,如何使用Renderer在FigureCanvas對象上繪圖。
FigureCanvas和Render處理底層圖像操作,Artist處理高層結構。
分為簡單對象和容器對象,簡單的Aritist是標準的繪圖元件,例如Line 2D,Rectangle,Text,AxesImage等,而容器類型包含許多簡單的的 Aritist對象,使他們構成一個整體,例如Axis,Axes,Figure等。
直接創建Artist對象進項繪圖操作步奏:
1,創建Figure對象(通過figure()函數,會進行許多初始化操作,不建議直接創建。)
2,為Figure對象創建一個或多個Axes對象。
3,調用Axes對象的方法創建各類簡單的Artist對象。
Figure容器
如何找到指定的Artist對象。
1,可調用add_subplot()和add_axes()方法向圖表添加子圖。
2,可使用for循環添加柵格。
3,可通過transform修改坐標原點。
Axes容器
1,patch修改背景。
2,包含坐標軸,坐標網格,刻度標簽,坐標軸標題等內容。
3,get_ticklabels(),,get-ticklines獲得刻度標簽和刻度線。
1,可對曲線進行插值。
2,fill_between()繪制交點。
3,坐標變換。
4,繪制陰影。
5,添加註釋。
1,繪制直方圖的函數是
2,箱線圖(Boxplot)也稱箱須圖(Box-whisker Plot),是利用數據中的五個統計量:最小值、第一四分位
數、中位數、第三四分位數與最大值來描述數據的一種方法,它可以粗略地看出數據是否具有對稱性以及分
布的分散程度等信息,特別可以用於對幾個樣本的比較。
3,餅圖就是把一個圓盤按所需表達變數的觀察數劃分為若干份,每一份的角度(即面積)等價於每個觀察
值的大小。
4,散點圖
5,QQ圖
低層繪圖函數
類似於barplot(),dotchart()和plot()這樣的函數採用低層的繪圖函數來畫線和點,來表達它們在頁面上放置的位置以及其他各種特徵。
在這一節中,我們會描述一些低層的繪圖函數,用戶也可以調用這些函數用於繪圖。首先我們先講一下R怎麼描述一個頁面;然後我們講怎麼在頁面上添加點,線和文字;最後講一下怎麼修改一些基本的圖形。
繪圖區域與邊界
R在繪圖時,將顯示區域劃分為幾個部分。繪制區域顯示了根據數據描繪出來的圖像,在此區域內R根據數據選擇一個坐標系,通過顯示出來的坐標軸可以看到R使用的坐標系。在繪制區域之外是邊沿區,從底部開始按順時針方向分別用數字1到4表示。文字和標簽通常顯示在邊沿區域內,按照從內到外的行數先後顯示。
添加對象
在繪制的圖像上還可以繼續添加若干對象,下面是幾個有用的函數,以及對其功能的說明。
•points(x, y, ...),添加點
•lines(x, y, ...),添加線段
•text(x, y, labels, ...),添加文字
•abline(a, b, ...),添加直線y=a+bx
•abline(h=y, ...),添加水平線
•abline(v=x, ...),添加垂直線
•polygon(x, y, ...),添加一個閉合的多邊形
•segments(x0, y0, x1, y1, ...),畫線段
•arrows(x0, y0, x1, y1, ...),畫箭頭
•symbols(x, y, ...),添加各種符號
•legend(x, y, legend, ...),添加圖列說明
Ⅸ python matplotlib畫的直方圖怎麼加兩條豎線做參考線
使用plt.axvline()方法:
importnumpyasnp
importmatplotlib.pyplotasplt
x=np.random.normal(600,20,1000)
plt.hist(x,bins=50,color='g')
plt.axvline(550)
plt.axvline(620)
plt.show()
參考來源:https://www.hu.com/question/57461549
Ⅹ 直方圖知道每組頻數如何用python畫出直方圖
可以使用Pycharts庫來完成,你可以網路一下學習教程,幾分鍾就可以學會。
下面是我給出的一個示例,僅供參考:
frompyechartsimportBar
bar=Bar('我的第一個圖表','這里是副標題')
kwargs=dict(
name='柱形圖',
x_axis=['襯衫','羊毛衫','雪紡衫','褲子','高跟鞋','襪子'],
y_axis=[5,20,36,10,75,90]
)
bar.add(**kwargs)
bar.render('bar01.html')