導航:首頁 > 編程語言 > 谷歌人工智慧自動編程

谷歌人工智慧自動編程

發布時間:2023-01-03 07:51:23

㈠ 15 個開源的頂級人工智慧工具

斯坦福的專家在人工智慧報告中得出的結論:"越來越強大的人工智慧應用,可能會對我們的 社會 和經濟產生深遠的積極影響,這將出現在從現在到2030年的時間段里。"

以下這些開源人工智慧應用都處於人工智慧研究的最前沿。

1.Caffe

它是由賈揚清在加州大學伯克利分校的讀博時創造的,Caffe是一個基於表達體系結構和可擴展代碼的深度學習框架。使它聲名鵲起的是它的速度,這讓它受到研究人員和企業用戶的歡迎。根據其網站所言,它可以在一天之內只用一個NVIDIA K40 GPU處理6000萬多個圖像。它是由伯克利視野和學習中心(BVLC)管理的,並且由NVIDIA和亞馬遜等公司資助來支持它的發展。

2. CNTK

它是計算機網路工具包(Computational Network Tookit)的縮寫,CNTK是一個微軟的開源人工智慧工具。不論是在單個CPU、單個GPU、多個GPU或是擁有多個GPU的多台機器上它都有優異的表現。微軟主要用它做語音識別的研究,但是它在機器翻譯、圖像識別、圖像字幕、文本處理、語言理解和語言建模方面都有著良好的應用。

3.Deeplearning4j

Deeplearning4j是一個java虛擬機(JVM)的開源深度學習庫。它運行在分布式環境並且集成在Hadoop和Apache Spark中。這使它可以配置深度神經網路,並且它與Java、Scala和其他JVM語言兼容。

4.DMTK

DMTK分布式集齊學習工具(Distributed Machine Learning Toolkit)的縮寫,和CNTK一樣,是微軟的開源人工智慧工具。作為設計用於大數據的應用程序,它的目標是更快的訓練人工智慧系統。它包括三個主要組件:DMTK框架、LightLDA主題模型演算法和分布式(多義)字嵌入演算法。為了證明它的速度,微軟聲稱在一個八集群的機器上,它能夠"用100萬個主題和1000萬個單詞的詞彙表(總共10萬億參數)訓練一個主題模型,在一個文檔中收集1000億個符號,"。這一成績是別的工具無法比擬的。

5.H20

相比起科研,H2O更注重將AI服務於企業用戶,因此H2O有著大量的公司客戶,比如第一資本金融公司、思科、Nielsen Catalina、PayPal和泛美都是它的用戶。它聲稱任何人都可以利用機器學習和預測分析的力量來解決業務難題。它可以用於預測建模、風險和欺詐分析、保險分析、廣告技術、醫療保健和客戶情報。

它有兩種開源版本:標准版H2O和Sparking Water版,它被集成在Apache Spark中。也有付費的企業用戶支持。

6.Mahout

它是Apache基金會項目,Mahout是一個開源機器學習框架。根據它的網站所言,它有著三個主要的特性:一個構建可擴展演算法的編程環境、像Spark和H2O一樣的預制演算法工具和一個叫Samsara的矢量數學實驗環境。使用Mahout的公司有Adobe、埃森哲咨詢公司、Foursquare、英特爾、領英、Twitter、雅虎和其他許多公司。其網站列了出第三方的專業支持。

7.MLlib

由於其速度,Apache Spark成為一個最流行的大數據處理工具。MLlib是Spark的可擴展機器學習庫。它集成了Hadoop並可以與NumPy和R進行交互操作。它包括了許多機器學習演算法如分類、回歸、決策樹、推薦、集群、主題建模、功能轉換、模型評價、ML管道架構、ML持久、生存分析、頻繁項集和序列模式挖掘、分布式線性代數和統計。

8.NuPIC

由Numenta公司管理的NuPIC是一個基於分層暫時記憶理論的開源人工智慧項目。從本質上講,HTM試圖創建一個計算機系統來模仿人類大腦皮層。他們的目標是創造一個"在許多認知任務上接近或者超越人類認知能力"的機器。

除了開源許可,Numenta還提供NuPic的商業許可協議,並且它還提供技術專利的許可證。

9.OpenNN

作為一個為開發者和科研人員設計的具有高級理解力的人工智慧,OpenNN是一個實現神經網路演算法的c++編程庫。它的關鍵特性包括深度的架構和快速的性能。其網站上可以查到豐富的文檔,包括一個解釋了神經網路的基本知識的入門教程

10.OpenCyc

由Cycorp公司開發的OpenCyc提供了對Cyc知識庫的訪問和常識推理引擎。它擁有超過239,000個條目,大約2,093,000個三元組和大約69,000 owl:這是一種類似於鏈接到外部語義庫的命名空間。它在富領域模型、語義數據集成、文本理解、特殊領域的專家系統和 游戲 AI中有著良好的應用。該公司還提供另外兩個版本的Cyc:一個可免費的用於科研但是不開源,和一個提供給企業的但是需要付費。

11.Oryx 2

構建在Apache Spark和Kafka之上的Oryx 2是一個專門針對大規模機器學習的應用程序開發框架。它採用一個獨特的三層λ架構。開發者可以使用Orys 2創建新的應用程序,另外它還擁有一些預先構建的應用程序可以用於常見的大數據任務比如協同過濾、分類、回歸和聚類。大數據工具供應商Cloudera創造了最初的Oryx 1項目並且一直積極參與持續發展。

12.PredictionIO

今年的二月,Salesforce收購了PredictionIO,接著在七月,它將該平台和商標貢獻給Apache基金會,Apache基金會將其列為孵育計劃。所以當Salesforce利用PredictionIO技術來提升它的機器學習能力時,成效將會同步出現在開源版本中。它可以幫助用戶創建帶有機器學習功能的預測引擎,這可用於部署能夠實時動態查詢的Web服務。

13.SystemML

最初由IBM開發,SystemML現在是一個Apache大數據項目。它提供了一個高度可伸縮的平台,可以實現高等數學運算,並且它的演算法用R或一種類似python的語法寫成。企業已經在使用它來跟蹤 汽車 維修客戶服務、規劃機場交通和連接 社會 媒體數據與銀行客戶。它可以在Spark或Hadoop上運行。

14.TensorFlow

TensorFlow是一個谷歌的開源人工智慧工具。它提供了一個使用數據流圖進行數值計算的庫。它可以運行在多種不同的有著單或多CPU和GPU的系統,甚至可以在移動設備上運行。它擁有深厚的靈活性、真正的可移植性、自動微分功能,並且支持Python和c++。它的網站擁有十分詳細的教程列表來幫助開發者和研究人員沉浸於使用或擴展他的功能。

15.Torch

Torch將自己描述為:"一個優先使用GPU的擁有機器學習演算法廣泛支持的科學計算框架",它的特點是靈活性和速度。此外,它可以很容易的通過軟體包用於機器學習、計算機視覺、信號處理、並行處理、圖像、視頻、音頻和網路等方面。它依賴一個叫做LuaJIT的腳本語言,而LuaJIT是基於Lua的。

歡迎關注~

微信公眾號: IT百戰程序員 ,免費提供人工智慧、大數據、雲計算等資料~~不管你在地球哪個方位,歡迎你的關注!

㈡ 谷歌TPU是什麼意思 專為人工智慧打造的算力神器

說起人工智慧,大家一定都會有所耳聞,其實各個企業或者國家之前關於人工智慧的競爭,歸根到底是演算法和算力的競爭,這篇文章就跟大家聊聊谷歌專為人工智慧開發的TPU!

TPU項目開始於2014年,簡單來說兩個原因: 1. 計算任務不同了, 深度神經網路開始興起,矩陣乘加成為重要的計算loading。 2. CPU和GPU太貴了,Google需要找便宜的方法,要降低TCO。所以要自己搞晶元的想法就出來了。

簡單地說,它是谷歌在2015年6月的I/O開發者大會上推出的計算神經網路專用晶元,為優化自身的TensorFlow機器學習框架而打造,主要用於AlphaGo系統,以及谷歌地圖、谷歌相冊和谷歌翻譯等應用中,進行搜索、圖像、語音等模型和技術的處理。

區別於GPU,谷歌TPU是一種ASIC晶元方案。ASIC全稱為Application-Specific Integrated Circuit(應用型專用集成電路),是一種專為某種特定應用需求而定製的晶元。但一般來說,ASIC晶元的開發不僅需要花費數年的時間,且研發成本也極高。

對於數據中心機房中AI工作負載的高算力需求,許多廠商更願意繼續採用現有的GPU集群或GPU+CPU異構計算解決方案,也甚少在ASIC領域冒險。

實際上,谷歌在2006年起就產生了要為神經網路研發一款專用晶元的想法,而這一需求在2013年也開始變得愈發急迫。當時,谷歌提供的谷歌圖像搜索、谷歌照片、谷歌雲視覺API、谷歌翻譯等多種產品和服務,都需要用到深度神經網路。

在龐大的應用規模下,谷歌內部意識到,這些夜以繼日運行的數百萬台伺服器,它們內部快速增長的計算需求,使得數據中心的數量需要再翻一倍才能得到滿足。然而,不管是從成本還是從算力上看,內部中心已不能簡單地依靠GPU和CPU來維持。

神經網路演算法一直在演變和發展,這套方法的理論還不成熟,應用場景也會在未來幾年發生巨大的變化。大家可以想像一下安防、無人機、智慧大樓、無人駕駛,等等等等。每一個子領域都有 系統/功耗/性能 一系列問題和各種權衡。一方面,是演算法多變的情況下,如何發掘計算的內在並行性,又給上層程序員提供一個高效的編程介面,是一個很重要很實際的問題。

綜合以上信息,TPU是谷歌搞出來的一個專用晶元,國內的晶元公司在搞ASIC挖礦,谷歌在搞ASIC訓練人工智慧,如果之後人工智慧在各個領域發力,tpu也表現良好的話,以後的電腦上說不定就得加上這個硬體!

㈢ 為何人工智慧(AI)首選Python

為何人工智慧(AI)首選Python?

讀完這篇文章你就知道了。我們看谷歌的TensorFlow基本上所有的代碼都是C++和Python,其他語言一般只有幾千行 。如果講運行速度的部分,用C++,如果講開發效率,用Python,誰會用Java這種高不成低不就的語言搞人工智慧呢?

Python雖然是腳本語言,但是因為容易學,迅速成為科學家的工具(MATLAB也能搞科學計算,但是軟體要錢,且很貴),從而積累了大量的工具庫、架構,人工智慧涉及大量的數據計算,用Python是很自然的,簡單高效。

Python有非常多優秀的深度學習庫可用,現在大部分深度學習框架都支持Python,不用Python用誰?人生苦短,就用Python。

python新手學習交流扣扣群,如果有想學習python或者交流經驗的都可以加入,一起互相學習交流:→→→點擊我即可加入圈子,群里有不錯的學習教程和開發工具。學習大數據有任何問題(學習方法,學習效率,如何就業),可以隨時來咨詢我

二、Python現狀與發展趨勢

python現在的確已經很火了,這已是一個不需要爭論的問題。如果說三年前,Matlab、Scala、R、Java
和 還各有機會,局面尚且不清楚,那麼三年之後,趨勢已經非常明確了,特別是前兩天 Facebook 開源了 PyTorch 之後,Python
作為 AI 時代頭牌語言的位置基本確立,未來的懸念僅僅是誰能坐穩第二把交椅。

Python 已經是數據分析和 AI的第一語言,網路攻防的第一黑客語言,正在成為編程入門教學的第一語言,雲計算系統管理第一語言。

Python 也早就成為Web 開發、游戲腳本、計算機視覺、物聯網管理和機器人開發的主流語言之一,隨著 Python 用戶可以預期的增長,它還有機會在多個領域里登頂。

三、Python與人工智慧

如果要從科技領域找出最大的變化和革新,那麼我們很難不說到「人工智慧」這個關鍵詞。人工智慧催生了大量新技術、新企業和新業態,為個人、企業、國家乃至全球提供了新的經濟增長點,上到谷歌、蘋果、網路等巨頭,下到各類創業公司,人工智慧已成為一個現象級的風口。短短幾年時間,圖片自動歸類、人臉識別已經成為非常通用的功能,自然語言作為一種交互方式正在被各種語音助理廣泛運用,無人車駕駛突飛猛進,AlphaGo戰勝圍棋冠軍,仿生機器人的技術迭代,未來幾十年的城市交通和人類的生活方式都將會被人工智慧所改變。

Python作為人工智慧首選編程語言,隨著人工智慧時代的到來,Python開發效率非常高,Python有非常強大的第三方庫,基本上你想通過計算機實現任何功能,Python官方庫里都有相應的模塊進行支持,直接下載調用後,在基礎庫的基礎上再進行開發,大大降低開發周期,避免重復造輪子,還有python的是可移植性、可擴展性、可嵌入性、少量代碼可以做很多事,這就是為何人工智慧(AI)首選Python。

㈣ Google有哪些黑科技

谷歌作為 科技 類公司,有很多很牛的技術,其中有一個鮮為人知的技術就是實時自動生成字幕!隨著人工智慧的快速發展,語音識別技術准確率越來越好,實時生成字幕的效率越來越高。

谷歌在YouTobe中早已引入實時字幕生成功能,而且在其他產品,例如android和chrome中也有這個功能。

首先說Android。在安卓10版本中,谷歌加入了實時字幕功能,不過默認是關閉的,需要手動啟用,啟用後,該功能會應用在手機正在播放的媒體文件,不管是視頻還是語音消息,都可以生成實時字幕。不過只支持英文。

接著說說chrome。首先將chrome更新到canary84.0.4246.1或更高版本,接著進入實驗功能界面,搜索「live captions」,將這個實時字幕的選項打開。重啟chrome,進入到設置界面,在「高級」中找到「無障礙」,就可以看到實時字幕功能,開啟即可。

谷歌Google公司,被公認為全球最大的搜索引擎公司,業務包括了互聯網搜索、雲計算、廣告技術等涉及領域廣。我認為 我認為谷歌的「黑 科技 」,有以下領域體現:



強大的互聯網搜索引擎

互聯網搜索引擎是我們上網幾乎必備的查找網站關鍵詞的入口,而谷歌就是互聯網搜索引擎的鼻祖。在1998年,美國斯坦福大學的學生拉里·佩奇和謝爾蓋·布林在宿舍共同開發了谷歌在線搜索引擎。發展至今,谷歌已經建立強大的搜索服務和數據挖掘能力。涉及的服務包括:網頁,圖片,音樂,視頻,地圖以及新聞等,這依賴於強大的搜索演算法。為了處理海量的數據,提高網站排名質量,搜索演算法經過了反復的修正,在2013年,谷歌依靠強大的「蜂鳥」(Hummingbird)演算法,徹底代替舊版搜索演算法,以應對來自網路用戶更長、更復雜的查詢。 總之,谷歌強大的互聯網搜索引擎黑 科技 ,更加便利搜索關鍵詞找到全球范圍內的相關網站。



硬核的雲計算能力

谷歌搭建的雲計算平台能力強大,甚至能夠幫助人類分析病毒基因序列解決高難度問題。據今年的新聞報道,谷歌向全球COVID-19計劃提供大規模並行計算工作,以篩選出潛在的抗病毒葯物,幫助醫葯研發。通過強大的計算機運算能力,發現高質量的新穎分子。 因此,谷歌硬核的雲計算能力,能夠幫助解決現實世界的科學難題,造福人類。



成熟精準的廣告和網站分析技術

谷歌擁有成熟精準的廣告和網站分析技術。對於廣告分析,我們平時有目共睹,比較成熟精準,我們可以在平時的互聯網訪問過程中發現谷歌的推送廣告,基本也都是和自身相關度高,而且人性化可以屏蔽不展示。

對於網站分析技術,我們完全可以看當下各大電商、互聯網平台網站,通過他們的代碼都可以看出,都是接入的谷歌分析服務GoogleAnalytics(GA)。這是因為,谷歌提供了各種維度的數據分析能力,包括PV、UV等等眾多數據統計。這已經成為行業標准和標桿,普遍公認的網站分析技術。



先進的 科技 創造能力

谷歌的 科技 創造能力是世界領先的,人工智慧、無人駕駛等高尖端 科技 ,谷歌都有涉及。這依賴於谷歌擁有全世界頂尖的 科技 人才。在編程領域方面,谷歌的Android操作系統被廣泛在世界范圍內運行,提供的安卓開發框指引領世界開發者。谷歌還開發出了Go語言、Dart語言等,谷歌的 科技 引領世界技術的發展潮流。 谷歌擁有先進的 科技 創造能力黑 科技 ,引領著世界范圍內的科學技術更新換代。


結尾

作為引領世界 科技 發展、擁有眾多黑 科技 的谷歌,正在引領世界 科技 發展,推動人類文明進步。在這個時代,發揮重要價值。我們應當學習谷歌的這種不斷更新 科技 的能力,提高我國的信息化建設,推動 社會 發展。

1,google機器人最近很火,但知道到屬不屬實
2,android7.0 的全新架構讓性能提升20%以上,但除了內部程序員,沒人知道google怎麼達成的。
3,谷歌翻譯里,你將攝像頭對准你要翻譯的語言,它就會直接把你拍到的外文改為選定的目標語言。
4,谷歌郵箱的附件空間從第一天使用起會變得越來越大,速度奇快。

一、智能可穿戴設備的雷達感知手部動作技術

谷歌的Project Soli是其正在研發中的用於可穿戴設備的手勢操作感應技術,它能利用微晶元雷達識別出細微的手指活動,旨在實現非觸控用戶界面操控。自去年Google I/O 2015現場公布了Project Soli,似乎已經有開發人員獲得了谷歌最新的開發工具包

二、互聯網熱氣球,讓發展中國家人民免費上網

Project Loon氣球互聯網項目是Google最神秘的部門Google X於2013年推出的一項計劃,該計劃試圖通過熱氣球為世界上最偏遠的地區覆蓋網路,以及在災後幫助人們提供互聯網連接。等

㈤ 人工智慧用的編程語言是哪些

人工智慧是一種未來性的技術,目前正在致力於研究自己的一套工具。一系列的進展在過去的幾年中發生了:無事故駕駛超過300000英里並在三個州合法行駛迎來了自動駕駛的一個里程碑;IBM Waston擊敗了Jeopardy兩屆冠軍;統計學習技術從對消費者興趣到以萬億記的圖像的復雜數據集進行模式識別。這些發展必然提高了科學家和巨匠們對人工智慧的興趣,這也使得開發者們了解創建人工智慧應用的真實本質。

谷歌的AI擊敗了一位圍棋大師,是一種衡量人工智慧突然的快速發展的方式,也揭示了這些技術如何發展而來和將來可以如何發展。

哪一種編程語言適合人工智慧?

你所熟練掌握的每一種編程語言都可以是人工智慧的開發語言。人工智慧程序可以使用幾乎所有的編程語言實現,最常見的有:Lisp,Prolog,C/C++,近來又有Java,最近還有Python.

LISP

像LISP這樣的高級語言在人工智慧中備受青睞,因為在各高校多年的研究後選擇了快速原型而舍棄了快速執行。垃圾收集,動態類型,數據函數,統一的語法,互動式環境和可擴展性等一些特性使得LIST非常適合人工智慧編程。

PROLOG

這種語言有著LISP高層和傳統優勢有效結合,這對AI是非常有用的。它的優勢是解決「基於邏輯的問題」。Prolog提供了針對於邏輯相關問題的解決方案,或者說它的解決方案有著簡潔的邏輯特徵。它的主要缺點(恕我直言)是學起來很難。

機器學習庫

PyBrain 一個靈活,簡單而有效的針對機器學習任務的演算法,它是模塊化的Python機器學習庫。它也提供了多種預定義好的環境來測試和比較你的演算法。

PyML 一個用Python寫的雙邊框架,重點研究SVM和其他內核方法。它支持Linux和Mac OS X。

scikit-learn旨在提供簡單而強大的解決方案,可以在不同的上下文中重用:機器學習作為科學和工程的一個多功能工具。它是python的一個模塊,集成了經典的機器學習的演算法,這些演算法是和python科學包(numpy,scipy.matplotlib)緊密聯系在一起的。

MDP-Toolkit這是一個Python數據處理的框架,可以很容易的進行擴展。它海收集了有監管和沒有監管的學習算飯和其他數據處理單元,可以組合成數據處理序列或者更復雜的前饋網路結構。新演算法的實現是簡單和直觀的。可用的演算法是在不斷的穩定增加的,包括信號處理方法(主成分分析、獨立成分分析、慢特徵分析),流型學習方法(局部線性嵌入),集中分類,概率方法(因子分析,RBM),數據預處理方法等等。 自然語言和文本處理庫

NLTK 開源的Python模塊,語言學數據和文檔,用來研究和開發自然語言處理和文本分析。有windows,Mac OSX和Linux版本。

結論

python因為提供像 scikit-learn的好的框架,在人工智慧方面扮演了一個重要的角色:Python中的機器學習,實現了這一領域中大多的需求。D3.js JS中數據驅動文檔時可視化最強大和易於使用的工具之一。處理框架,它的快速原型製造使得它成為一門不可忽視的重要語言。AI需要大量的研究,因此沒有必要要求一個500KB的Java樣板代碼去測試新的假說。python中幾乎每一個想法都可以迅速通過20-30行代碼來實現(JS和LISP也是一樣)。因此,它對於人工智慧是一門非常有用的語言。

案例

做了一個實驗,一個使用人工智慧和物聯網做員工行為分析的軟體。該軟體通過員工情緒和行為的分心提供了一個有用的反饋給員工,從而提高了管理和工作習慣。

使用Python機器學習庫,opencv和haarcascading概念來培訓。建立了樣品POC來檢測通過安置在不同地點的無線攝像頭傳遞回來基礎情感像幸福,生氣,悲傷,厭惡,懷疑,蔑視,譏諷和驚喜。收集到的數據會集中到雲資料庫中,甚至整個辦公室都可以通過在Android設備或桌面點擊一個按鈕來取回。

開發者在深入分析臉部情感上復雜點和挖掘更多的細節中取得進步。在深入學習演算法和機器學習的幫助下,可以幫助分析員工個人績效和適當的員工/團隊反饋。

㈥ 人工智慧的應用領域有哪些

應用領域
機器翻譯,智能控制,專家系統,機器人學,語言和圖像理解,遺傳編程機器人工廠,自動程序設計,航天應用,龐大的信息處理,儲存與管理,執行化合生命體無法執行的或復雜或規模龐大的任務等等。
值得一提的是,機器翻譯是人工智慧的重要分支和最先應用領域。不過就已有的機譯成就來看,機譯系統的譯文質量離終極目標仍相差甚遠;而機譯質量是機譯系統成敗的關鍵。中國數學家、語言學家周海中教授曾在論文《機器翻譯五十年》中指出:要提高機譯的質量,首先要解決的是語言本身問題而不是程序設計問題;單靠若干程序來做機譯系統,肯定是無法提高機譯質量的;另外在人類尚未明了大腦是如何進行語言的模糊識別和邏輯判斷的情況下,機譯要想達到「信、達、雅」的程度是不可能的。智能家居之後,人工智慧成為家電業的新風口,而長虹正成為將這一浪潮掀起的首個家電巨頭。長虹發布兩款CHiQ智能電視新品,主打手機遙控器、帶走看、隨時看、分類看功能

閱讀全文

與谷歌人工智慧自動編程相關的資料

熱點內容
dvd光碟存儲漢子演算法 瀏覽:757
蘋果郵件無法連接伺服器地址 瀏覽:962
phpffmpeg轉碼 瀏覽:671
長沙好玩的解壓項目 瀏覽:142
專屬學情分析報告是什麼app 瀏覽:564
php工程部署 瀏覽:833
android全屏透明 瀏覽:732
阿里雲伺服器已開通怎麼辦 瀏覽:803
光遇為什麼登錄時伺服器已滿 瀏覽:301
PDF分析 瀏覽:484
h3c光纖全工半全工設置命令 瀏覽:141
公司法pdf下載 瀏覽:381
linuxmarkdown 瀏覽:350
華為手機怎麼多選文件夾 瀏覽:683
如何取消命令方塊指令 瀏覽:349
風翼app為什麼進不去了 瀏覽:778
im4java壓縮圖片 瀏覽:362
數據查詢網站源碼 瀏覽:150
伊克塞爾文檔怎麼進行加密 瀏覽:890
app轉賬是什麼 瀏覽:163