導航:首頁 > 編程語言 > python擬合二次函數

python擬合二次函數

發布時間:2023-01-05 21:42:56

1. python 中的函數擬合

很多業務場景中,我們希望通過一個特定的函數來擬合業務數據,以此來預測未來數據的變化趨勢。(比如用戶的留存變化、付費變化等)
本文主要介紹在 Python 中常用的兩種曲線擬合方法:多項式擬合 和 自定義函數擬合。

通過多項式擬合,我們只需要指定想要擬合的多項式的最高項次是多少即可。

運行結果:

對於自定義函數擬合,不僅可以用於直線、二次曲線、三次曲線的擬合,它可以適用於任意形式的曲線的擬合,只要定義好合適的曲線方程即可。

運行結果:

2. python有沒有哪個庫能實現三維曲面的擬合該如何實現

matlab的話
方法一
用[xx,yy] = meshgrid(x_min:step:x_max,y_min:step:y_max)生成x和y的坐標
用zz = griddata(x,y,z,xx,yy,'v4')插值生成相應的z坐標
方法二
用tri = delaunay(x,y)讓點自行連接成一個個三角形
trisurf(tri,x,y,z)生成曲面
再用shading interp 插值擬合
如果你的曲面在xy平面的投影不是矩形的話,記得用inpolygon吧不在區域內的點刪除掉

3. python求一元二次函數

######python求標準的一元二次方程的解###############
a,b,c= map(float,input("請輸入aX^2+bX+c=0,函數中的三個參數:(空格隔開)").split())
###使用公式b^2-4ac判定是否有解b^2-4ac####
i=b*b-4*a*c
if i<0:
print("該方程無實數解!")
elif i==0:
print("該方程解為:%.2f"%((-1)*b/(2*a)))#有一個解
else:
print("該方程解為:%.2f或%.2f"%((((-1)*b+i**0.5)/(2*a)),(((-1)*b-i**0.5)/(2*a))))
該方法運用是運用公式求解,保留兩位小數,只能求實數解,供參考,有問題可追問

4. python polyfit函數怎麼使用

用polyfit(X,Y,1)得到的擬合函數只能得到a,b,但不能得到線性相關系數R^2。如想要得到其線性相關系數,可以用regress(y,X),其使用格式
[b,bint,r,rint,stats]
=
regress(y,X);
b——擬合系數
bint——b的置信區間
r——殘差值
rint——r的置信區間
stats——檢驗統計量,第一個就是相關系數
例如:
x=[。。。];y=[。。。]
X=[x
ones(n,1)];
%x的行數(列數)
[b,bint,r,rint,stats]
=
regress(y,X);

5. Python最小二乘法擬合與作圖

在函數擬合中,如果用p表示函數中需要確定的參數,那麼目標就是找到一組p,使得下面函數S的值最小:

這種演算法稱為最小二乘法擬合。Python的Scipy數值計算庫中的optimize模塊提供了 leastsq() 函數,可以對數據進行最小二乘擬合計算。

此處利用該函數對一段弧線使用圓方程進行了擬合,並通過Matplotlib模塊進行了作圖,程序內容如下:

Python的使用中需要導入相應的模塊,此處首先用 import 語句

分別導入了numpy, leastsq與pylab模塊,其中numpy模塊常用用與數組類型的建立,讀入等過程。leastsq則為最小二乘法擬合函數。pylab是繪圖模塊。

接下來我們需要讀入需要進行擬合的數據,這里使用了 numpy.loadtxt() 函數:

其參數有:

進行擬合時,首先我們需要定義一個目標函數。對於圓的方程,我們需要圓心坐標(a,b)以及半徑r三個參數,方便起見用p來存儲:

緊接著就可以進行擬合了, leastsq() 函數需要至少提供擬合的函數名與參數的初始值:

返回的結果為一數組,分別為擬合得到的參數與其誤差值等,這里只取擬合參數值。

leastsq() 的參數具體有:

輸出選項有:

最後我們可以將原數據與擬合結果一同做成線狀圖,可採用 pylab.plot() 函數:

pylab.plot() 函數需提供兩列數組作為輸入,其他參數可調控線條顏色,形狀,粗細以及對應名稱等性質。視需求而定,此處不做詳解。

pylab.legend() 函數可以調控圖像標簽的位置,有無邊框等性質。

pylab.annotate() 函數設置注釋,需至少提供注釋內容與放置位置坐標的參數。

pylab.show() 函數用於顯示圖像。

最終結果如下圖所示:

用Python作科學計算

numpy.loadtxt

scipy.optimize.leastsq

6. 怎麼用Python將圖像邊界用最小二乘法擬合成曲線

本文實例講述了Python基於最小二乘法實現曲線擬合。分享給大家供大家參考,具體如下:

這里不手動實現最小二乘,調用scipy庫中實現好的相關優化函數。

考慮如下的含有4個參數的函數式:

希望本文所述對大家Python程序設計有所幫助。

7. python中用polyfit擬合出的函數怎麼能直接調用

首先分兩種情況:
1.交互窗口處執行:這個時候由於python的強制縮進,因此想要結束函數的定義只需要按兩下enter即可。
2.在.py文件中編寫,結束函數只需要不再縮進即可
調用函數方法相同,把函數名及參數寫上就可以了,如果有返回值可以
r=functionA(var1)

附:測試代碼(python3運行通過)
# -*- coding:utf-8 -*-
#author:zfxcx
def pt():
print("hello")
pt()

8. 【轉】指數、冪函數擬合

轉自: python指數、冪數擬合curve_fit

1、一次二次多項式擬合

一次二次比較簡單,直接使用numpy中的函數即可,polyfit(x, y, degree)。

2、指數冪數擬合curve_fit

使用scipy.optimize 中的curve_fit,冪數擬合例子如下:

下面是指數擬合例子:

9. python_numpy最小二乘法的曲線擬合

在了解了最小二乘法的基本原理之後 python_numpy實用的最小二乘法理解 ,就可以用最小二乘法做曲線擬合了

從結果中可以看出,直線擬合並不能對擬合數據達到很好的效果,下面我們介紹一下曲線擬合。

b=[y1]
[y2]
......
[y100]

解得擬合函數的系數[a,b,c.....d]
CODE:

根據結果可以看到擬合的效果不錯。
我們可以通過改變

來調整擬合效果。
如果此處我們把擬合函數改為最高次為x^20的多項式

所得結果如下:

矯正 過擬合 現象
在保持擬合函數改為最高次為x^20的多項式的條件下,增大樣本數:

通過結果可以看出,過擬合現象得到了改善。

10. python擬合指數函數初始值如何設定

求擬合函數,首先要有因變數和自變數的一組測試或實驗數據,根據已知的曲線y=f(x),擬合出Ex和En系數。當用擬合出的函數與實驗數據吻合程度愈高,說明擬合得到的Ex和En系數是合理的。吻合程度用相關系數來衡量,即R^2。首先,我們需要打開Python的shell工具,在shell當中新建一個對象member,對member進行賦值。 2、這里我們所創建的列表當中的元素均屬於字元串類型,同時我們也可以在列表當中創建數字以及混合類型的元素。 3、先來使用append函數對已經創建的列表添加元素,具體如下圖所示,會自動在列表的最後的位置添加一個元素。 4、再來使用extend對來添加列表元素,如果是添加多個元素,需要使用列表的形式。 5、使用insert函數添加列表元素,insert中有兩個參數,第一個參數即為插入的位置,第二個參數即為插入的元素。origin擬合中參數值是程序擬合的結果,自定義函數可以設置參數的初值,也可以不設定參數的初值。
一般而言,擬合結果不會因為初值的不同而有太大的偏差,如果偏差很大,說明數據和函數不太匹配,需要對函數進行改正。X0的迭代初始值選擇與求解方程,有著密切的關系。不同的初始值得出的系數是完全不一樣的。這要通過多次選擇和比較,才能得到較為合理的初值。一般的方法,可以通過隨機數並根據方程的特性來初選。

閱讀全文

與python擬合二次函數相關的資料

熱點內容
dvd光碟存儲漢子演算法 瀏覽:755
蘋果郵件無法連接伺服器地址 瀏覽:958
phpffmpeg轉碼 瀏覽:669
長沙好玩的解壓項目 瀏覽:140
專屬學情分析報告是什麼app 瀏覽:562
php工程部署 瀏覽:831
android全屏透明 瀏覽:730
阿里雲伺服器已開通怎麼辦 瀏覽:801
光遇為什麼登錄時伺服器已滿 瀏覽:300
PDF分析 瀏覽:482
h3c光纖全工半全工設置命令 瀏覽:139
公司法pdf下載 瀏覽:379
linuxmarkdown 瀏覽:349
華為手機怎麼多選文件夾 瀏覽:681
如何取消命令方塊指令 瀏覽:347
風翼app為什麼進不去了 瀏覽:776
im4java壓縮圖片 瀏覽:360
數據查詢網站源碼 瀏覽:148
伊克塞爾文檔怎麼進行加密 瀏覽:888
app轉賬是什麼 瀏覽:161