classApriori(object):
def__init__(self,filename,min_support,item_start,item_end):
self.filename=filename
self.min_support=min_support#最小支持度
self.min_confidence=50
self.line_num=0#item的行數
self.item_start=item_start#取哪行的item
self.item_end=item_end
self.location=[[i]foriinrange(self.item_end-self.item_start+1)]
self.support=self.sut(self.location)
self.num=list(sorted(set([jforiinself.locationforjini])))#記錄item
self.pre_support=[]#保存前一個support,location,num
self.pre_location=[]
self.pre_num=[]
self.item_name=[]#項目名
self.find_item_name()
self.loop()
self.confidence_sup()
defdeal_line(self,line):
"提取出需要的項"
return[i.strip()foriinline.split('')ifi][self.item_start-1:self.item_end]
deffind_item_name(self):
"根據第一行抽取item_name"
withopen(self.filename,'r')asF:
forindex,lineinenumerate(F.readlines()):
ifindex==0:
self.item_name=self.deal_line(line)
break
defsut(self,location):
"""
輸入[[1,2,3],[2,3,4],[1,3,5]...]
輸出每個位置集的support[123,435,234...]
"""
withopen(self.filename,'r')asF:
support=[0]*len(location)
forindex,lineinenumerate(F.readlines()):
ifindex==0:continue
#提取每信息
item_line=self.deal_line(line)
forindex_num,iinenumerate(location):
flag=0
forjini:
ifitem_line[j]!='T':
flag=1
break
ifnotflag:
support[index_num]+=1
self.line_num=index#一共多少行,出去第一行的item_name
returnsupport
defselect(self,c):
"返回位置"
stack=[]
foriinself.location:
forjinself.num:
ifjini:
iflen(i)==c:
stack.append(i)
else:
stack.append([j]+i)
#多重列表去重
importitertools
s=sorted([sorted(i)foriinstack])
location=list(sfors,_initertools.groupby(s))
returnlocation
defdel_location(self,support,location):
"清除不滿足條件的候選集"
#小於最小支持度的剔除
forindex,iinenumerate(support):
ifi<self.line_num*self.min_support/100:
support[index]=0
#apriori第二條規則,剔除
forindex,jinenumerate(location):
sub_location=[j[:index_loc]+j[index_loc+1:]forindex_locinrange(len(j))]
flag=0
forkinsub_location:
ifknotinself.location:
flag=1
break
ifflag:
support[index]=0
#刪除沒用的位置
location=[ifori,jinzip(location,support)ifj!=0]
support=[iforiinsupportifi!=0]
returnsupport,location
defloop(self):
"s級頻繁項級的迭代"
s=2
whileTrue:
print'-'*80
print'The',s-1,'loop'
print'location',self.location
print'support',self.support
print'num',self.num
print'-'*80
#生成下一級候選集
location=self.select(s)
support=self.sut(location)
support,location=self.del_location(support,location)
num=list(sorted(set([jforiinlocationforjini])))
s+=1
iflocationandsupportandnum:
self.pre_num=self.num
self.pre_location=self.location
self.pre_support=self.support
self.num=num
self.location=location
self.support=support
else:
break
defconfidence_sup(self):
"計算confidence"
ifsum(self.pre_support)==0:
print'min_supporterror'#第一次迭代即失敗
else:
forindex_location,each_locationinenumerate(self.location):
del_num=[each_location[:index]+each_location[index+1:]forindexinrange(len(each_location))]#生成上一級頻繁項級
del_num=[iforiindel_numifiinself.pre_location]#刪除不存在上一級頻繁項級子集
del_support=[self.pre_support[self.pre_location.index(i)]foriindel_numifiinself.pre_location]#從上一級支持度查找
#printdel_num
#printself.support[index_location]
#printdel_support
forindex,iinenumerate(del_num):#計算每個關聯規則支持度和自信度
index_support=0
iflen(self.support)!=1:
index_support=index
support=float(self.support[index_location])/self.line_num*100#支持度
s=[jforindex_item,jinenumerate(self.item_name)ifindex_itemini]
ifdel_support[index]:
confidence=float(self.support[index_location])/del_support[index]*100
ifconfidence>self.min_confidence:
print','.join(s),'->>',self.item_name[each_location[index]],'min_support:',str(support)+'%','min_confidence:',str(confidence)+'%'
defmain():
c=Apriori('basket.txt',14,3,13)
d=Apriori('simple.txt',50,2,6)
if__name__=='__main__':
main()
Apriori(filename, min_support, item_start, item_end)
參數說明
filename:(路徑)文件名
min_support:最小支持度
item_start:item起始位置
item_end:item結束位置
importapriori
c=apriori.Apriori('basket.txt',11,3,13)
輸出:
⑵ python 關聯規則分前項後項嗎
學了兩天python,想實踐下,正好最近在學習數據挖掘,先用python實現下
註:由於後面加了注釋,由於編碼問題,可能即使是注釋,有的環境也不支持漢字的編碼,運行報錯的話可以將漢字刪除後再運行
環境 ubuntu 13.4 python 2
[python]view plain
importitertools
import
'''''
定義全局變數k,即支持度計數k,此k也可以在運行程序之前輸入,簡單改動即可
'''
k=2
'''''
存儲頻繁項集的列表
'''
frequenceItem=[]
'''''
從txt文件dataset.txt里獲取事務集
'''
defgetDataSet(args):
f=open(args,'r')
source=f.readlines()
f.close()
dataset=[]
forlineinsource:
temp1=line.strip(' ')
temp2=temp1.split(',')
dataset.append(temp2)
returndataset
'''''
初步掃描事務集,從事務集里獲取候選1項集
方法的基本思路是:
定義一個集合tmp,將事務集的第一項作為tmp的初始集合
然後掃描事務集,將不在tmp里的數據項加入tmp中
'''
deffind_item(dataset):
length=len(dataset)
foriinrange(0,length):
ifi==0:
tmp=set(dataset[i])
tmp.update(set(dataset[i]))
candidate=list(tmp)
candidate.sort()
returncandidate
'''''
從候選項集里找出頻繁項集,其中num代表頻繁num+1項集
如num為0的為從候選1項集里找出頻繁1項集
方法基本思路:
1、定義一個支持度列表count
2、對於每一個候選項,依次掃描事務集,如果該項出現在事務集中就將該項對應的count+1、定義一個支持度列表count+1
3、將每一項的count和k(支持度計數)進行比較,將count小於k的項剔除
'''
deffind_frequent(candidate,dataset,num):
frequence=[]
length=len(candidate)
count=[]
foriinrange(0,length):
count.append(0)
count[i]=0
ifnum==0:
'''''
其實不管num為0還是別的值演算法應該是一樣的,但是由於程序實現上的問題
num為0的時候選項集是一維列表,其它的時候,候選項集是二維列表,
畢竟只是自己寫著玩的,python還不熟,牽一發而動全身,懶得改了
'''
child=set([candidate[i]])
else:
child=set(candidate[i])
forjindataset:
parent=set(j)
ifchild.issubset(parent):
count[i]=count[i]+1
forminrange(0,length):
ifcount[m]>=k:
frequence.append(candidate[m])
returnfrequence
'''''
先驗定理,剪枝掉不必要的候選n項集
方法思路:
1、依次取出候選項集里的項
2、取出n項集里的n-1項子集
3、如果所有的n-1項集不都都是頻繁n-1項集的子集,則刪除該候選項集
'''
defpre_test(candidate,num,frequence):
r_candidate=.deep(candidate)
foreachincandidate:
foreach2initertools.combinations(each,num):
tmp=(list(each2))
tag=0
forjinfrequence:
ifnum==1:
if(tmp[0]==j):
tag=1
break
else:
iftmp==j:
tag=1
break
iftag==0:
r_candidate.remove(each)
break
returnr_candidate
'''''
通過頻繁n-1項集產生候選n項集,並通過先驗定理對候選n項集進行剪枝
方法思路:
1、如果是頻繁1項集,則通過笛卡爾積產生頻繁2項集
2、如果不是頻繁一項集,採用F(k-1)*F(k-1)方法通過頻繁n-1項集產生候選n項集
註:F(k-1)*F(k-1)方法在我的另一篇關聯演算法博客上做了理論上的簡單介紹,或者也可以直接參看《數據挖掘導論》
'''
defget_candidata(frequence,num):
length=len(frequence)
candidate=[]
ifnum==1:
foreachinitertools.combinations(frequence,2):
tmp=list(each)
tmp3=[]
tmp3.append(tmp[0])
tmp3.append(tmp[1])
candidate.append(tmp3)
else:
foriinrange(0,length-1):
tmp1=.deep(frequence[i])
tmp1.pop(num-1)
forjinrange(i+1,length):
tmp2=.deep(frequence[j])
tmp2.pop(num-1)
iftmp1==tmp2:
tmp3=.deep(frequence[i])
tmp3.append(frequence[j][num-1])
candidate.append(tmp3)
candidate2=pre_test(candidate,num,frequence)
returncandidate2
'''''
main程序
'''
if__name__=='__main__':
dataset=getDataSet('dataset.txt')
Item=find_item(dataset)
num=0
frequenceItem=[]
'''''
通過事務集找到頻繁項集,直至頻繁n項集為空,則退出循環
'''
while1:
ifnum==0:
candidate=Item
else:
candidate=get_candidata(frequenceItem[num-1],num)
frequenceItem.append(find_frequent(candidate,dataset,num))
iffrequenceItem[num]==[]:
frequenceItem.pop(num)
break
num=num+1
'''''
列印出頻繁項集
'''
foreachinfrequenceItem:
printeach
目錄位置:
⑶ Python購物籃數據(關聯分析)
pip install mlxtend
由於已經是csv格式,所以直接輸入:
每一行: 一個購物籃
每一列: 購物籃中的商品
先看看pd讀的對不對:
然後按行列印:
再將這些存在一個數組中:
1、什麼是獨熱碼
獨熱碼,在英文文獻中稱做 one-hot code, 直觀來說就是有多少個狀態就有多少比特,而且只有一個比特為1,其他全為0的一種碼制,更加詳細參加 one_hot code(維基網路) 。在機器學習中對於離散型的分類型的數據,需要對其進行數字化比如說性別這一屬性,只能有男性或者女性或者其他這三種值,如何對這三個值進行數字化表達?一種簡單的方式就是男性為0,女性為1,其他為2,這樣做有什麼問題?
使用上面簡單的序列對分類值進行表示後,進行模型訓練時可能會產生一個問題就是特徵的因為數字值得不同影響模型的訓練效果,在模型訓練的過程中不同的值使得同一特徵在樣本中的權重可能發生變化,假如直接編碼成1000,是不是比編碼成1對模型的的影響更大。為了解決上述的問題,使訓練過程中不受到因為分類值表示的問題對模型產生的負面影響,引入獨熱碼對分類型的特徵進行獨熱碼編碼。
可以這樣理解,對於每一個特徵,如果它有m個可能值,那麼經過獨熱編碼後,就變成了m個二元特徵(如成績這個特徵有好,中,差變成one-hot就是100, 010, 001)。並且,這些 特徵互斥 ,每次只有一個激活。因此,數據會變成稀疏的。
這樣做的好處主要有:
(1)解決了分類器不好處理 屬性數據 的問題
(2)在一定程度上也起到了 擴充特徵 的作用
M
以下為我摘取的別人的,貼上原文鏈接https://blog.csdn.net/hellozhxy/article/details/80600845
著名的啤酒與尿布, 這是典型的購物籃問題, 在數據挖掘界叫做頻繁項集(Frequent Itemsets).
note: 數據類型寫法按照Python的格式.
一. 目標與定義
1. 問題背景
超市中購物清單中總是有一些項目是被消費者一同購買的. 如果我們能夠發現這些 關聯規則 (association rules), 並合理地加以利用, 我們就能取得一定成果. 比如我們發現熱狗和芥末存在這種關系, 我們對熱狗降價促銷, 而對芥末適當提價, 結果能顯著提高超市的銷售額.
2. 目標
找到頻繁地 共同 出現在消費者結賬小票中項目(比如啤酒和尿布), 來一同促銷, 相互拉動, 提高銷售額.
3. 定義
支持度support: 其實就是概率論中的頻次frequency
支持度閾值support threshhold: 記為s, 指分辨頻繁項集的臨界值.
頻繁項集: 如果I是一個項集(Itemset), 且I的出現頻次(i.e.支持度)大於等於s, 那麼我們說I是頻繁項集.
一元項, 二元項, 三元項: 包含有一種商品, 兩種, 三種商品的項集.
4. 關聯規則
關聯規則: 形式為I->j, 含義是如果I種所有項都出現在某個購物籃的話, 那麼j很有可能也出現在這個購物籃中. 我們可以給出相應的confidence值(可信度, 即概率論中的置信度).
其中, 這個關聯規則的可信度計算為Confidence = I∪{j} / I, 本身是非常符合直覺和常識的. 比如我們說關聯規則{dog, cat} -> and 的可信度為0.6, 因為{dog, cat}出現在了1, 2, 3, 6, 7五個購物籃中, 而and出現在了1,2,7中, 因此我們可以算出Confidence = freq[{dog, cat, and}] / freq[{dog, cat}] = 3/5 = 0.6
注意到, 分子部分的頻次總是比分母低, 這是因為{dog, cat} 出現的次數總是大於等於{dog, cat, and}的出現次數.
二. 購物籃與A-Priori演算法
1. 購物籃數據表示
我們將有一個文本文件輸入, 比如allBills.txt, 或者allBills.csv. 裡面每行是一個購物籃.
文件的頭兩行可能是這樣(df.show(2)):
{23, 456, 1001}
{3, 18, 92, 145}
我們假定這是一家大型連鎖超市, 比如沃爾瑪, 因此這個文本文件是非常大的, 比如20GB. 因此我們無法一次將該文件讀入內存. 因此, 演算法的主要時間開銷都是磁碟IO.
我們同時還假定, 所有購物籃的平均規模是較小的, 因此在內存中產生所有大小項集的時間開銷會比讀入購物籃的時間少很多.
我們可以計算, 對於有n個項目組成的購物籃而言, 大小為k的所有子集的生成時間約為(n, k) = n! / ((n-k)!k!) = O(n^k/ k!), 其中我們只關注較小的頻繁項集, 因此我們約定k=2或者k=3. 因此所有子集生成時間T = O(n^3).
Again, 我們認為 在內存中產生所有大小項集的時間開銷會比讀入購物籃的時間少很多.
2. Itemset計數過程中的內存使用
我們必須要把整個k,v字典放在內存中, 否則來一個Itemset就去硬碟讀取一次字典將十分十分地慢.
此處, 字典是k=(18, 145), v=15這種形式. 此處, 應當注意到, 如果有{bread, milk, orange}這樣的String類型輸入, 應當預先用一個字典映射成對應的整數值編碼, 比如1920, 4453, 9101這樣.
那麼, 我們最多能用字典存儲多少種商品?
先看下我們存儲多少個count值.
我們假定項的總數目是n, 即超市有n種商品, 每個商品都有一個數字編號, 那麼我們需要(n, 2) = n^2/2 的大小來存儲所有的二元組合的count, 假設int是佔4個byte, 那麼需要(2·n^2)Byte內存. 已知2GB內存 = 2^31 Byte, 即2^31/2 = 2^30 >= n^2 --> n <= 2^15. 也就是說n<33 000, 因此我們說商品種類的最多是33k種.
但是, 這種計算方法存在一個問題, 並不是有10種商品, 那麼這10種商品的任意二元組合都會出現的. 對於那些沒出現的組合, 我們在字典中完全可以不存儲, 從而節省空間.
同時, 別忘了我們同樣也得存儲key = (i, j), 這是至少額外的兩個整數.
那麼我們到底具體怎麼存儲這些計數值?
可以採用三元組的方式來構造字典. 我們採用[i, j, count]形式來存儲, 其中i代表商品種類1, j代表商品種類2, 前兩個值代表key, 後面的value就是count, 是這個二元組合下的計數.
現在, 讓我們注意到我們(1)假定購物籃平均大小較小, 並(2)利用三元組(2個key的)字典和(3)不存儲沒出現組合優勢. 假設有100k = 10^5種商品, 有10million=10^7個購物籃, 每個購物籃有10個項, 那麼這種字典空間開銷是(10, 2) · 10^7 = 45 x 10^7 x 3= 4.5x10^8x3 = 1.35x10^9 個整數. 這算出來約為4x10^8 Byte = 400MB, 處於正常計算機內存范圍內.
3. 項集的單調性
如果項集I是頻繁的, 那麼它的所有子集也都是頻繁的. 這個道理很符合常識, 因為{dog, cat} 出現的次數總是大於等於{dog, cat, and}的出現次數.
這個規律的推論, 就是嚴格地, 我們頻繁一元組的個數> 頻繁二元組的個數 > 頻繁三元組的個數.
4. A-Priori演算法
我們通過Itemset計數中內存使用的部門, 已經明確了我們總是有足夠的內存用於所有存在的二元項集(比如{cat, dog})的計數. 這里, 我們的字典不存放不存在於購物籃中的任何二元項集合, 而且頻繁二元組的數目將會大於三元頻繁三元組> ...
我們可以通過單邊掃描購物籃文件, 對於每個購物籃, 我們使用一個雙重循環就可以生成所有的項對(即二元組). 每當我們生成一個項對, 就給其對應的字典中的value +1(也稱為計數器). 最後, 我們會檢查所有項對的計數結果,並且找出那些>=閾值s的項對, 他們就是頻繁項對.
1) A-Priori演算法的第一遍掃描
在第一遍掃描中, 我們將建立兩個表. 第一張表將項的名稱轉換為1到n之間的整數, 從而把String類型這樣的key轉為空間大小更小的int類型. 第二張表將記錄從1~n每個項在所有購物籃中出現的次數. 形式上類似
table 0(name table): {'dolphin': 7019, 'cat': 7020} //dict形式, 其實也可以做成list形式 [['dolphin', 7019], ['cat', 7020]]
table 1(single-item counter table): {7019: 15, 7020: 18} //dict形式, 其實也可以做成數組形式A[7019] = 2, A[7020] = 18
2) 第一遍掃描完的處理
第一遍掃描完後, 我們會按照自己設定的閾值s, 對整個table 1再進行一次mapping, 因為我們只關注最後counter值大於等於閾值的項目, 而且不關心其counter值具體多少. 因此, mapping策略是:
對凡是counter<s的, 一律把counter設成0; 對於counter>=s的, 按照次序, 把其設置成1~m的值(總共有m個滿足要求的項)
3) 第二遍掃描
第二遍掃描所做的事有三:
(1) 對每個購物籃, 在table 1中檢查其所有的商品項目, 把所有為頻繁項的留下來建立一個list.
(2) 通過一個雙重循環生成該list中的所有項對.
(3) 再走一次循環, 在新的數據結構table 2(dict或者list)中相應的位置+1. 此時的效果是dicta = {48: {13: 5}, 49: {71, 16}} 或者 lista [ [48, 13, 5],[49, 71, 16], ... ]
注意此時內存塊上存儲的結構: table1(name table), table2(single-item counter table), table3(double-item counter table)
5. 推廣: 任意大小頻繁項集上的A-Priori演算法
我們對上面這個演算法進行推廣.
從任意集合大小k到下一個大小k+1的轉移模式可以這么說:
(1) 對每個購物籃, 在table 1中檢查其所有的商品項目, 把所有為頻繁項的留下來建立一個list.
(2) 我們通過一個k+1重循環來生成該list中的所有(k+1)元組
(3) 對每個k+1元組, 我們生成其的(k+1 choose k)個k元組, 並檢查這些k元組是否都在之前的table k中. (注意到k=1的時候, 這步與(1)是重復的, 可以省略)
(4)再走一次循環, 在新的數據結構table k+1(dict或者list)中相應的位置+1. 此時的效果是k=2, k+1=3, 生成dicta = {48: {13: {19: 4}}, 49: {71: {51: 10}}, ... } 或者 生成lista [ [48, 13, 19, 4],[49, 71, 51, 10], ... ]
注意, 在進入下一次掃描前, 我們還需要額外把counter中值小於s的元組的計數值都記為0.
模式總體是:C1 過濾後 L1 計數後 C2 置零後 C2' 過濾後 L2 計數後 C3 置零後 C3' ......
END.
生成的商品種類為set形式:轉成list形式
第一張表:把項名稱轉換為1~n的整數:
至於數數,大神說,你就用collections.Counter就好:哈?
哈哈,可愛的wyy,開始分析吧~嚕嚕嚕啦啦啦~嚕啦嚕啦嚕~
生成全零矩陣:
換成zeros:
統計每一列的和,即每種商品的購買總數:
每一行列:
第一行:
建立一個新的只含有頻繁一項集的購物籃矩陣:
頻繁二項集:
⑷ Python主要內容學的是什麼
這是Python全棧開發+人工智慧課程大綱:
階段一:Python開發基礎
Python全棧開發與人工智慧之Python開發基礎知識學習內容包括:Python基礎語法、數據類型、字元編碼、文件操作、函數、裝飾器、迭代器、內置方法、常用模塊等。
階段二:Python高級編程和資料庫開發
Python全棧開發與人工智慧之Python高級編程和資料庫開發知識學習內容包括:面向對象開發、Socket網路編程、線程、進程、隊列、IO多路模型、Mysql資料庫開發等。
階段三:前端開發
Python全棧開發與人工智慧之前端開發知識學習內容包括:Html、CSS、JavaScript開發、Jquery&bootstrap開發、前端框架VUE開發等。
階段四:WEB框架開發
Python全棧開發與人工智慧之WEB框架開發學習內容包括:Django框架基礎、Django框架進階、BBS+Blog實戰項目開發、緩存和隊列中間件、Flask框架學習、Tornado框架學習、Restful API等。
階段五:爬蟲開發
Python全棧開發與人工智慧之爬蟲開發學習內容包括:爬蟲開發實戰。
階段六:全棧項目實戰
Python全棧開發與人工智慧之全棧項目實戰學習內容包括:企業應用工具學習、CRM客戶關系管理系統開發、路飛學城在線教育平台開發等。
階段七:數據分析
Python全棧開發與人工智慧之數據分析學習內容包括:金融量化分析。
階段八:人工智慧
Python全棧開發與人工智慧之人工智慧學習內容包括:機器學習、數據分析 、圖像識別、自然語言翻譯等。
階段九:自動化運維&開發
Python全棧開發與人工智慧之自動化運維&開發學習內容包括:CMDB資產管理系統開發、IT審計+主機管理系統開發、分布式主機監控系統開發等。
階段十:高並發語言GO開發
Python全棧開發與人工智慧之高並發語言GO開發學習內容包括:GO語言基礎、數據類型與文件IO操作、函數和面向對象、並發編程等。
⑸ Python培訓需要學習哪些內容
Python培訓課程大同小異,整理如下:
Python語言基礎:主要學習Python基礎知識,如Python3、數據類型、字元串、函數、類、文件操作等。
Python語言高級:主要學習Python庫、正則表達式、進程線程、爬蟲、遍歷以及MySQL資料庫。
Pythonweb開發:主要學習HTML、CSS、JavaScript、jQuery等前端知識,掌握python三大後端框架(Django、 Flask以及Tornado)。
Linux基礎:主要學習Linux相關的各種命令,如文件處理命令、壓縮解壓命令、許可權管理以及Linux Shell開發等。
Linux運維自動化開發:主要學習Python開發Linux運維、Linux運維報警工具開發、Linux運維報警安全審計開發、Linux業務質量報表工具開發、Kali安全檢測工具檢測以及Kali 密碼破解實戰。
Python爬蟲:主要學習python爬蟲技術,掌握多線程爬蟲技術,分布式爬蟲技術。
Python數據分析和大數據:主要學習numpy數據處理、pandas數據分析、matplotlib數據可視化、scipy數據統計分析以及python 金融數據分析;Hadoop HDFS、python Hadoop MapRece、python Spark core、python Spark SQL以及python Spark MLlib。
Python機器學習:主要學習KNN演算法、線性回歸、邏輯斯蒂回歸演算法、決策樹演算法、樸素貝葉斯演算法、支持向量機以及聚類k-means演算法。
⑹ 什麼是數據挖掘中的關聯分析
FineBI數據挖掘的結果將以欄位和記錄的形式添加到多維資料庫中,並可以在新建分析時從一個專門的數據挖掘業務包中被使用,使用的方式與拖拽任何普通的欄位沒有任何區別。
配合FineBI新建分析中的各種控制項和圖表,使用OLAP的分析人員可以輕松的查看他們想要的特定的某個與結果,或是各種各樣結果的匯總。
⑺ python中有哪些簡單的演算法
Python中的基礎演算法有以下幾種:
基礎加減乘除演算法:
加法>>> 2 + 2;
減法>>> 2 - 2;
乘法>>> 2 * 2;
除法>>> 2 / 2。
整除運算:
第一種>>> 2 / 3 整型與整型相除,獲取整數,條件是除數被除數都是整數;
第二種>>> 2 // 3 雙斜杠整除演算法,只獲取小數點前的部分整數值。
冥運算:
例子1:>>> 2 ** 3;
例子2; >>> -2 ** 3;
例子3: >>> (-2) ** 3
⑻ python中有哪些簡單的演算法
演算法都是第三方庫才有的
如果要自帶的,只有排序了,是timsort
⑼ python中有哪些簡單的演算法
你好:
跟你詳細說一下python的常用8大演算法:
1、插入排序
插入排序的基本操作就是將一個數據插入到已經排好序的有序數據中,從而得到一個新的、個數加一的有序數據,演算法適用於少量數據的排序,時間復雜度為O(n^2)。是穩定的排序方法。插入演算法把要排序的數組分成兩部分:第一部分包含了這個數組的所有元素,但將最後一個元素除外(讓數組多一個空間才有插入的位置),而第二部分就只包含這一個元素(即待插入元素)。在第一部分排序完成後,再將這個最後元素插入到已排好序的第一部分中。
2、希爾排序
希爾排序(Shell Sort)是插入排序的一種。也稱縮小增量排序,是直接插入排序演算法的一種更高效的改進版本。希爾排序是非穩定排序演算法。該方法因DL.Shell於1959年提出而得名。 希爾排序是把記錄按下標的一定增量分組,對每組使用直接插入排序演算法排序;隨著增量逐漸減少,每組包含的關鍵詞越來越多,當增量減至1時,整個文件恰被分成一組,演算法便終止。
3、冒泡排序
它重復地走訪過要排序的數列,一次比較兩個元素,如果他們的順序錯誤就把他們交換過來。走訪數列的工作是重復地進行直到沒有再需要交換,也就是說該數列已經排序完成。
4、快速排序
通過一趟排序將要排序的數據分割成獨立的兩部分,其中一部分的所有數據都比另外一部分的所有數據都要小,然後再按此方法對這兩部分數據分別進行快速排序,整個排序過程可以遞歸進行,以此達到整個數據變成有序序列。
5、直接選擇排序
基本思想:第1趟,在待排序記錄r1 ~ r[n]中選出最小的記錄,將它與r1交換;第2趟,在待排序記錄r2 ~ r[n]中選出最小的記錄,將它與r2交換;以此類推,第i趟在待排序記錄r[i] ~ r[n]中選出最小的記錄,將它與r[i]交換,使有序序列不斷增長直到全部排序完畢。
6、堆排序
堆排序(Heapsort)是指利用堆積樹(堆)這種數據結構所設計的一種排序演算法,它是選擇排序的一種。可以利用數組的特點快速定位指定索引的元素。堆分為大根堆和小根堆,是完全二叉樹。大根堆的要求是每個節點的值都不大於其父節點的值,即A[PARENT[i]] >= A[i]。在數組的非降序排序中,需要使用的就是大根堆,因為根據大根堆的要求可知,最大的值一定在堆頂。
7、歸並排序
歸並排序是建立在歸並操作上的一種有效的排序演算法,該演算法是採用分治法(Divide and Conquer)的一個非常典型的應用。將已有序的子序列合並,得到完全有序的序列;即先使每個子序列有序,再使子序列段間有序。若將兩個有序表合並成一個有序表,稱為二路歸並。
歸並過程為:比較a[i]和a[j]的大小,若a[i]≤a[j],則將第一個有序表中的元素a[i]復制到r[k]中,並令i和k分別加上1;否則將第二個有序表中的元素a[j]復制到r[k]中,並令j和k分別加上1,如此循環下去,直到其中一個有序表取完,然後再將另一個有序表中剩餘的元素復制到r中從下標k到下標t的單元。歸並排序的演算法我們通常用遞歸實現,先把待排序區間[s,t]以中點二分,接著把左邊子區間排序,再把右邊子區間排序,最後把左區間和右區間用一次歸並操作合並成有序的區間[s,t]。
8、基數排序
基數排序(radix sort)屬於「分配式排序」(distribution sort),又稱「桶子法」(bucket sort)或bin sort,顧名思義,它是透過鍵值的部分資訊,將要排序的元素分配至某些「桶」中,藉以達到排序的作用,基數排序法是屬於穩定性的排序,其時間復雜度為O (nlog(r)m),其中r為所採取的基數,而m為堆數,在某些時候,基數排序法的效率高於其它的穩定性排序法。
⑽ 以就業為目的自學python,要學習哪些內容
優就業的Python課程一共設置了5大階段,主要學習內容如下
第一階段:Python核心編程——Python語言基本介紹、面向對象編程、Linux操作系統、文件系統與用戶管理、進程管理與服務配置、Shell編程與bash,源文件編譯、版本控制、MySQL使用、MySQL進階等。
第二階段:全棧開發——HTML、CSS、JavaScript、jQuery、 BootStrap、Vue、Web開發基礎、資料庫操作、FLask配置、Django認識、Models、Templates、Views、Tornado框架進階、ElasticSearch等。
第三階段:網路爬蟲——爬蟲與數據、Scrapy框架、Scrapy框架與信息實時抓取、定時爬取與郵件監控、NoSQL資料庫、Scrapy-Redis框架、百萬量數據採集等。
第四階段:人工智慧——數據分析、pyechart模塊動態可視化、詞雲、分類演算法、聚類演算法、回歸類演算法、關聯演算法、卷積神經網路、TensorFlow+PaddlePaddle、圖像識別等。
第五階段:就業指導——最後就業指導分為面試就業指導、專業技術指導兩方面。
因為優就業Python課程內容會不定期更新,課程時長也會對應有所調整,就目前來看Python的學習時間是在5個月左右。Python課程設置時長是和學習內容緊密相關的,相對而言,課程內容涉及越廣、內容越多,學習時間也會長。