導航:首頁 > 編程語言 > python實現數據結構

python實現數據結構

發布時間:2023-01-16 02:35:44

1. python數據結構-隊列與廣度優先搜索(Queue)

隊列(Queue) :簡稱為隊,一種線性表數據結構,是一種只允許在表的一端進行插入操作,而在表的另一端進行刪除操作的線性表。
我們把隊列中允許插入的一端稱為 「隊尾(rear)」 ;把允許刪除的另一端稱為 「隊頭(front)」 。當表中沒有任何數據元素時,稱之為 「空隊」

廣度優先搜索演算法(Breadth First Search) :簡稱為 BFS,又譯作寬度優先搜索 / 橫向優先搜索。是一種用於遍歷或搜索樹或圖的演算法。該演算法從根節點開始,沿著樹的寬度遍歷樹或圖的節點。如果所有節點均被訪問,則演算法中止。

廣度優先遍歷 類似於樹的層次遍歷過程 。呈現出一層一層向外擴張的特點。先看到的節點先訪問,後看到的節點後訪問。遍歷到的節點順序符合「先進先出」的特點,所以廣度優先搜索可以通過「隊列」來實現。

力扣933

游戲時,隊首始終是持有土豆的人
模擬游戲開始,隊首的人出隊,之後再到隊尾(類似於循環隊列)
傳遞了num次之後,將隊首的人移除
如此反復,直到隊列中剩餘一人

多人共用一台列印機,採取「先到先服務」的隊列策略來執行列印任務
需要解決的問題:1 列印系統的容量是多少?2 在能夠接受的等待時間內,系統可容納多少用戶以多高的頻率提交列印任務?

輸入:abba
輸出:False
思路:1 先將需要判定的詞從隊尾加入 deque; 2從兩端同時移除字元並判斷是否相同,直到deque中剩餘0個(偶數)或1個字元(奇數)

內容參考: https://algo.itcharge.cn/04.%E9%98%9F%E5%88%97/01.%E9%98%9F%E5%88%97%E5%9F%BA%E7%A1%80%E7%9F%A5%E8%AF%86/01.%E9%98%9F%E5%88%97%E5%9F%BA%E7%A1%80%E7%9F%A5%E8%AF%86/

2. Python數據結構與演算法-利用列表實現棧

概念:

棧:

名稱的由來:這個名字來源於自動售貨機中用彈簧頂住的一堆盤子的隱喻。

概念:這里提到的棧是一種抽象的數據結構

,而非空間內存分配處涉及的空間存儲的概念。但是大同小異,原理還是來自於對棧空間的理解。這里的棧是有一系列對象組成的一個集合,這些對象的插入和刪除操作遵循後進先出(LIFO)原則。用戶可以在任意時刻向棧中插入一個對象,但只能取得或者刪除最後一個插入的對象(即所謂的棧頂)。

目的:通過列表實現棧

有些同學可能認為,是不是還有其他操作沒有完成,為什麼不能在中間插入或者其他操作,因為棧不具備這些功能,所以實現的都是棧的常規功能。

利用棧實現數據的逆置

由於LIFO協議的限制,棧可以用作一種通用的工具,用於實現一個數據序列的逆置,這一思想可以用於很多方面,例如以降序

的方式顯示一個數據集,我們可以通過先逐行讀取數據,然後壓如一個棧中,在按照從棧中彈出的順序來寫入。這個方法的實現過程如下:

3. Python數據結構與演算法-哈希map的實現及原理

1-collections.MutableMapping

1.1 概念:這是什麼?

大家可能想知道這一串英文是什麼意思?其實只需要了解在collections庫當中有一個非常重要的抽象基類MutableMappin

g,專門用於實現map的一個非常有價值的工具。後邊我們會用到它。

2-我們的map基類


2.1 實現這個類

這個基類其實也就是確定了鍵值對的屬性,並且存儲了基本的比較方法。它的對象就是一個鍵值對咯。這個很好理解。有點類似object的感覺。

3-通過map基類實現的無序映射

給大家看一個上邊的例子,這個例子來源於網路,自己改了改,能用,更加詳細而已,湊合看.

4-Python哈希表的實現的基類

4.1 咱有話直說:上才(代)藝(碼)

如果還不知道哈希表概念的同xio,請參考 python進階之數據結構與演算法–中級-哈希表(小白piao分享) 。廢話不多說,咱們擼代碼:

OK了,基本的哈希表就實現了,其實仔細想想很容易,但是自己要能實現還是要理解哈希表的本質哦,外加一定量的練習才可以熟練掌握,練習的目的就是為了熟練而已。

5-分離鏈表實現的具體哈希map類

說明:這玩意只是一種降低沖突的手段,上一節提過,降低沖突最好的地方是發生在元組進入桶的時候,所以想必大家猜到了,接下來的分離鏈表也就是為了self._bucket_xxxxxxx系列方法做准備。這里之所以在上邊使用@abstractmethod就是為了繼承實現,目的可以實現多種將沖突的哈希表。分離鏈表的概念上一節也有的。
「見碼入面」(借鑒:見字如面這個電視節目,有興趣可以看看,還不錯的):

6-用線性探測處理沖突的哈希map類

這種方式的好處不需要再去藉助其他額外的賦值結構來表示桶。結構更加簡單。不會再像上一種方法還要讓桶是一個UnsortedTableMap的對象。
代碼如下:

4. PYTHON的數據結構和演算法介紹

當你聽到數據結構時,你會想到什麼?

數據結構是根據類型組織和分組數據的容器。它們基於可變性和順序而不同。可變性是指創建後改變對象的能力。我們有兩種類型的數據結構,內置數據結構和用戶定義的數據結構。

什麼是數據演算法-是由計算機執行的一系列步驟,接受輸入並將其轉換為目標輸出。

列表是用方括弧定義的,包含用逗號分隔的數據。該列表是可變的和有序的。它可以包含不同數據類型的混合。

months=['january','february','march','april','may','june','july','august','september','october','november','december']
print(months[0])#print the element with index 0
print(months[0:7])#all the elements from index 0 to 6
months[0]='birthday #exchange the value in index 0 with the word birthday

print(months)

元組是另一種容器。它是不可變有序元素序列的數據類型。不可變的,因為你不能從元組中添加和刪除元素,或者就地排序。

length, width, height =9,3,1 #We can assign multiple variables in one shot

print("The dimensions are {} * {} * {}".format(length, width, height))

一組

集合是唯一元素的可變且無序的集合。它可以讓我們快速地從列表中刪除重復項。

numbers=[1,2,3,4,6,3,3]

unique_nums = set(numbers)
print(unique_nums)

models ={'declan','gift','jabali','viola','kinya','nick',betty' }

print('davis' in models)#check if there is turner in the set models
models.add('davis')
print(model.pop())remove the last item#
字典

字典是可變和無序的數據結構。它允許存儲一對項目(即鍵和值)

下面的例子顯示了將容器包含到其他容器中來創建復合數據結構的可能性。

* 用戶定義的數據結構*

使用數組的堆棧堆棧是一種線性數據結構,其中元素按順序排列。它遵循L.I.F.O的機制,意思是後進先出。因此,最後插入的元素將作為第一個元素被刪除。這些操作是:

溢出情況——當我們試圖在一個已經有最大元素的堆棧中再放一個元素時,就會出現這種情況。

下溢情況——當我們試圖從一個空堆棧中刪除一個元素時,就會出現這種情況。

隊列是一種線性數據結構,其中的元素按順序排列。它遵循先進先出的F.I.F.O機制。

描述隊列特徵的方面

兩端:

前端-指向起始元素。

指向最後一個元素。

有兩種操作:

樹用於定義層次結構。它從根節點開始,再往下,最後的節點稱為子節點。

鏈表

它是具有一系列連接節點的線性數據。每個節點存儲數據並顯示到下一個節點的路由。它們用來實現撤銷功能和動態內存分配。

圖表

這是一種數據結構,它收集了具有連接到其他節點的數據的節點。

它包括:

演算法

在演算法方面,我不會講得太深,只是陳述方法和類型:

原文:https://www.tuicool.com/articles/hit/VRRvYr3

5. 一文搞懂python數據類型和結構

每次python從入門到精通都是從頭開始看,做這個學習筆記主要是為了讓自己可以省去學習數據類型和結構那幾章的時間,所以「偷懶」可以促進生產力發展......

分別是: 整數型、浮點型、復數、常量、布爾型、字元串 。其中復數基本不會使用到,可以不用太關注

分別是 列表、字典、集合和元組 ,其中最常見並且工作中經常使用到的就是列表和欄位,其他兩個不常見。

02、字典
列表之外,字典可能是python中用的也比較多的數據結構了,由於字典的底層應用哈希映射,所以要求字典的所有key必須是不可變元素(可哈希對象),增刪改查操作一般都能實現O(1)復雜度,是低復雜度的必備數據結構。

03、集合
集合(set)是一個無序的不重復元素序列。
可以使用大括弧 { } 或者 set() 函數創建集合,注意:創建一個空集合必須用 set() 而不是 { },因為 { } 是用來創建一個空字典。

集合操作可能最常見於用於對列表去重,它的最大特性是各元素僅保留1次,底層也是應用了哈希函數,所以在集合中查找元素一般也可實現O(1)復雜度,同時集合的嵌套元素也要求是不可變類型(可哈希對象)
add:在集合中增加一個元素,如果元素已存在,則無實際操作

pop:不接受任何參數,堪稱是最神秘的操作,不同於列表的從尾端刪除、字典的指定鍵刪除,集合的pop操作看似是"隨機"刪除。但實際上是按照加入集合的先後順序,刪除"最早"加入的元素

除了與列表和字典中類似的增刪改操作外,集合還支持數學概念下的集合操作,如交集、並集、差集等。

04、元組
如果說列表、字典和集合都有其各自擅長應用場景的話,那麼元組可能是最沒有存在感的數據結構:它介面有限、功能單一,而且是不可變類型。一般而言,用元組解決的問題都可以用列表實現。但使用用元組時,更多在於暗示該序列為不可變類型。當然,當元組內嵌套子列表時實際上是可以對嵌套的子列表進行更改操作的。

https://github.com/zqkyy/py_basic_structure

有問題可以私信我,歡迎交流!

6. 利用Python進行數據分析筆記:3.1數據結構

元組是一種固定長度、不可變的Python對象序列。創建元組最簡單的辦法是用逗號分隔序列值:

tuple 函數將任意序列或迭代器轉換為元組:

中括弧 [] 可以獲取元組的元素, Python中序列索引從0開始

元組一旦創建,各個位置上的對象是無法被修改的,如果元組的一個對象是可變的,例如列表,你可以在它內部進行修改:

可以使用 + 號連接元組來生成更長的元組:

元組乘以整數,則會和列表一樣,生成含有多份拷貝的元組:

將元組型的表達式賦值給變數,Python會對等號右邊的值進行拆包:

拆包的一個常用場景就是遍歷元組或列表組成的序列:

*rest 用於在函數調用時獲取任意長度的位置參數列表:

count 用於計量某個數值在元組中出現的次數:

列表的長度可變,內容可以修改。可以使用 [] 或者 list 類型函數來定義列表:

append 方法將元素添加到列表尾部:

insert 方法可以將元素插入到指定列表位置:
插入位置范圍在0到列表長度之間

pop 是 insert 的反操作,將特定位置的元素移除並返回:

remove 方法會定位第一個符合要求的值並移除它:

in 關鍵字可以檢查一個值是否在列表中;
not in 表示不在:

+ 號可以連接兩個列表:

extend 方法可以向該列表添加多個元素:

使用 extend 將元素添加到已經存在的列表是更好的方式,比 + 快。

sort 方法可以對列表進行排序:

key 可以傳遞一個用於生成排序值的函數,例如通過字元串的長度進行排序:

bisect.bisect 找到元素應當被插入的位置,返回位置信息
bisect.insort 將元素插入到已排序列表的相應位置保持序列排序

bisect 模塊的函數並不會檢查列表是否已經排序,因此對未排序列表使用bisect不會報錯,但是可能導致不正確結果

切片符號可以對大多數序列類型選取子集,基本形式是 [start:stop]
起始位置start索引包含,結束位置stop索引不包含

切片還可以將序列賦值給變數:

start和stop可以省略,默認傳入起始位置或結束位置,負索引可以從序列尾部進行索引:

步進值 step 可以在第二個冒號後面使用, 意思是每隔多少個數取一個值:

對列表或元組進行翻轉時,一種很聰明的用法時向步進值傳值-1:

dict(字典)可能是Python內建數據結構中最重要的,它更為常用的名字是 哈希表 或者 關聯數組
字典是鍵值對集合,其中鍵和值都是Python對象。
{} 是創建字典的一種方式,字典中用逗號將鍵值對分隔:

你可以訪問、插入或設置字典中的元素,:

in 檢查字典是否含有一個鍵:

del 或 pop 方法刪除值, pop 方法會在刪除的同時返回被刪的值,並刪除鍵:

update 方法將兩個字典合並:
update方法改變了字典元素位置,對於字典中已經存在的鍵,如果傳給update方法的數據也含有相同的鍵,則它的值將會被覆蓋。

字典的值可以是任何Python對象,但鍵必須是不可變的對象,比如標量類型(整數、浮點數、字元串)或元組(且元組內對象也必須是不可變對象)。
通過 hash 函數可以檢查一個對象是否可以哈希化(即是否可以用作字典的鍵):

集合是一種無序且元素唯一的容器。

set 函數或者是用字面值集與大括弧,創建集合:

union 方法或 | 二元操作符獲得兩個集合的聯合即兩個集合中不同元素的並集:

intersection 方法或 & 操作符獲得交集即兩個集合中同時包含的元素:

常用的集合方法列表:

和字典類似,集合的元素必須是不可變的。如果想要包含列表型的元素,必須先轉換為元組:

7. 如何用python實現各種數據結構

Hi,大家好

我將分享如何用python實現各種數據結構~

快速排序

選擇排序

插入排序

歸並排序

堆排序heapq模塊

隊列

二分查找

以上,我的分享就到這里了。

8. python中的數據結構分析

1.Python數據結構篇

數據結構篇主要是閱讀[Problem Solving with Python](Welcome to Problem Solving with Algorithms and Data Structures) [該網址鏈接可能會比較慢]時寫下的閱讀記錄,當然,也結合了部分[演算法導論](Introction to Algorithms)
中的內容,此外還有不少wikipedia上的內容,所以內容比較多,可能有點雜亂。這部分主要是介紹了如何使用Python實現常用的一些數據結構,例
如堆棧、隊列、二叉樹等等,也有Python內置的數據結構性能的分析,同時還包括了搜索和排序(在演算法設計篇中會有更加詳細的介紹)的簡單總結。每篇文
章都有實現代碼,內容比較多,簡單演算法一般是大致介紹下思想及演算法流程,復雜的演算法會給出各種圖示和代碼實現詳細介紹。

**這一部分是下
面演算法設計篇的前篇,如果數據結構還不錯的可以直接看演算法設計篇,遇到問題可以回來看數據結構篇中的某個具體內容充電一下,我個人認為直接讀演算法設計篇比
較好,因為大家時間也都比較寶貴,如果你會來讀這些文章說明你肯定有一定基礎了,後面的演算法設計篇中更多的是思想,這里更多的是代碼而已,嘿嘿。**

(1)[搜索](Python Data Structures)

簡述順序查找和二分查找,詳述Hash查找(hash函數的設計以及如何避免沖突)

(2)[排序](Python Data Structures)

簡述各種排序演算法的思想以及它的圖示和實現

(3)[數據結構](Python Data Structures)

簡述Python內置數據結構的性能分析和實現常用的數據結構:棧、隊列和二叉堆

(4)[樹總結](Python Data Structures)

簡述二叉樹,詳述二叉搜索樹和AVL樹的思想和實現

2.Python演算法設計篇

演算法設計篇主要是閱讀[Python Algorithms: Mastering Basic Algorithms in the Python Language](Python Algorithms: Mastering Basic Algorithms in the Python Language)[**點擊鏈接可進入Springer免費下載原書電子版**]之後寫下的讀書總結,原書大部分內容結合了經典書籍[演算法導論](Introction to Algorithms),
內容更加細致深入,主要是介紹了各種常用的演算法設計思想,以及如何使用Python高效巧妙地實現這些演算法,這里有別於前面的數據結構篇,部分演算法例如排
序就不會詳細介紹它的實現細節,而是側重於它內在的演算法思想。這部分使用了一些與數據結構有關的第三方模塊,因為這篇的重點是演算法的思想以及實現,所以並
沒有去重新實現每個數據結構,但是在介紹演算法的同時會分析Python內置數據結構以及第三方數據結構模塊的優缺點,也就意味著該篇比前面都要難不少,但
是我想我的介紹應該還算簡單明了,因為我用的都是比較朴實的語言,並沒有像演算法導論一樣列出一堆性質和定理,主要是對著某個問題一步步思考然後演算法就出來
了,嘿嘿,除此之外,裡面還有很多關於python開發的內容,精彩真的不容錯過!

這里每篇文章都有實現代碼,但是代碼我一般都不會分
析,更多地是分析演算法思想,所以內容都比較多,即便如此也沒有包括原書對應章節的所有內容,因為內容實在太豐富了,所以我只是選擇經典的演算法實例來介紹算
法核心思想,除此之外,還有不少內容是原書沒有的,部分是來自演算法導論,部分是來自我自己的感悟,嘻嘻。該篇對於大神們來說是小菜,請一笑而過,對於菜鳥
們來說可能有點難啃,所以最適合的是和我水平差不多的,對各個演算法都有所了解但是理解還不算深刻的半桶水的程序猿,嘿嘿。

本篇的順序按照原書[Python Algorithms: Mastering Basic Algorithms in the Python Language](Python Algorithms: Mastering Basic Algorithms in the Python Language)的章節來安排的(章節標題部分相同部分不同喲),為了節省時間以及保持原著的原滋原味,部分內容(一般是比較難以翻譯和理解的內容)直接摘自原著英文內容。

**1.
你也許覺得很多內容你都知道嘛,沒有看的必要,其實如果是我的話我也會這么想,但是如果只是歸納一個演算法有哪些步驟,那這個總結也就沒有意義了,我覺得這
個總結的亮點在於想辦法說清楚一個演算法是怎麼想出來的,有哪些需要注意的,如何進行優化的等等,採用問答式的方式讓讀者和我一起來想出某個問題的解,每篇
文章之後都還有一兩道小題練手喲**

**2.你也許還會說演算法導論不是既權威又全面么,基本上每個演算法都還有詳細的證明呢,讀演算法導論豈
不更好些,當然,你如果想讀演算法導論的話我不攔著你,讀完了感覺自己整個人都不好了別怪小弟沒有提醒你喲,嘻嘻嘻,左一個性質右一個定理實在不適合演算法科
普的啦,沒有多少人能夠堅持讀完的。但是碼農與蛇的故事內容不多喲,呵呵呵**

**3.如果你細讀本系列的話我保證你會有不少收獲的,需要看演算法導論哪個部分的地方我會給出提示的,嘿嘿。溫馨提示,前面三節內容都是介紹基礎知識,所以精彩內容從第4節開始喲,么么噠 O(∩_∩)O~**

(1)[Python Algorithms - C1 Introction](Python Algorithms)

本節主要是對原書中的內容做些簡單介紹,說明演算法的重要性以及各章節的內容概要。

(2)[Python Algorithms - C2 The basics](Python Algorithms)

**本節主要介紹了三個內容:演算法漸近運行時間的表示方法、六條演算法性能評估的經驗以及Python中樹和圖的實現方式。**

(3)[Python Algorithms - C3 Counting 101](Python Algorithms)

原書主要介紹了一些基礎數學,例如排列組合以及遞歸循環等,但是本節只重點介紹計算演算法的運行時間的三種方法

(4)[Python Algorithms - C4 Inction and Recursion and Rection](Python Algorithms)

**本節主要介紹演算法設計的三個核心知識:Inction(推導)、Recursion(遞歸)和Rection(規約),這是原書的重點和難點部分**

(5)[Python Algorithms - C5 Traversal](Python Algorithms)

**本節主要介紹圖的遍歷演算法BFS和DFS,以及對拓撲排序的另一種解法和尋找圖的(強)連通分量的演算法**

(6)[Python Algorithms - C6 Divide and Combine and Conquer](Python Algorithms)

**本節主要介紹分治法策略,提到了樹形問題的平衡性以及基於分治策略的排序演算法**

(7)[Python Algorithms - C7 Greedy](Python Algorithms)

**本節主要通過幾個例子來介紹貪心策略,主要包括背包問題、哈夫曼編碼和最小生成樹等等**

(8)[Python Algorithms - C8 Dynamic Programming](Python Algorithms)

**本節主要結合一些經典的動規問題介紹動態規劃的備忘錄法和迭代法這兩種實現方式,並對這兩種方式進行對比**

(9)[Python Algorithms - C9 Graphs](Python Algorithms)

**本節主要介紹圖演算法中的各種最短路徑演算法,從不同的角度揭示它們的內核以及它們的異同**

9. Python高級數據結構——堆

在一個 最小堆 (min heap) 中,如果 P 是 C 的一個父級節點,那麼 P 的 key(或 value) 應小於或等於 C 的對應值。 正因為此,堆頂元素一定是最小的,我們會利用這個特點求最小值或者第 k 小的值。

在一個 最大堆 (max heap) 中,P 的 key(或 value) 大於或等於 C 的對應值。

以python為例,說明堆的幾個常見操作,這里需要用到一個內置的包:heapq

python中使用堆是通過傳入一個數組,然後調用一個函數,在原地讓傳入的數據具備堆的特性

需要注意的是,heapify默認構造的是小頂堆(min heap),如果要構造大頂堆,思路是把所有的數值倒轉,既* -1,例如:

使用heapq提供的函數: heappop 來實現

具體使用方式參考 初始化Heapify

使用heapq提供的函數: heappush 來實現

同時heapq還提供另外一個函數: heappushpop ,能夠在一個函數實現push&pop兩個操作;順序是:先push再pop

根據官方文檔的描述,這個函數會比先在外圍先調用heappush,再調用heappop,效率更高

先pop數據再push數據,和heappushpop的順序是反著的; 同樣的,這樣調用的性能也會比先調用heappop再調用heappush更好

如果pop的時候隊列是空的,會拋出一個異常

可以通過 heapq.merge 將多個 已排序 的輸入合並為一個已排序的輸出,這個本質上不是堆;其實就是用兩個指針迭代

對於這個問題,有一個演算法題可以實現相同的功能

從 iterable 所定義的數據集中返回前 n 個最大/小元素組成的列表。

函數為: heapq.nlargest() | heapq.nsmallest()

heapq - Heap queue algorithm - Python 3.10.4 documentation

10. python基礎數據結構:序列、映射、集合

參考資料:http://www.cnblogs.com/jeffwongishandsome/archive/2012/08/05/2623660.html

Python中常見的數據結構可以統稱為容器(container)。序列(如列表和元組)、映射(如字典)以及集合(set)是三類主要的容器。

一、序列(列表、元組和字元串)

序列中的每個元素都有自己的編號。Python中有6種內建的序列。其中列表和元組是最常見的類型。其他包括字元串、Unicode字元串、buffer對象和xrange對象。下面重點介紹下列表、元組和字元串。

1、列表

列表是可變的,這是它區別於字元串和元組的最重要的特點,一句話概括即:列表可以修改,而字元串和元組不能。

(1)、創建

通過下面的方式即可創建一個列表:

輸出:

['hello', 'world']

[1, 2, 3]

可以看到,這中創建方式非常類似於javascript中的數組。

(2)、list函數

通過list函數(其實list是一種類型而不是函數)對字元串創建列表非常有效:

輸出:

['h', 'e', 'l', 'l', 'o']

2、元組

元組與列表一樣,也是一種序列,唯一不同的是元組不能被修改(字元串其實也有這種特點)。

(1) 、創建

輸出:

(1, 2, 3) ('jeffreyzhao', 'cnblogs') (1, 2, 3, 4) () (1,)

從上面我們可以分析得出:

a、逗號分隔一些值,元組自動創建完成;

b、元組大部分時候是通過圓括弧括起來的;

c、空元組可以用沒有包含內容的圓括弧來表示;

d、只含一個值的元組,必須加個逗號(,);

(2)、tuple函數

tuple函數和序列的list函數幾乎一樣:以一個序列(注意是序列)作為參數並把它轉換為元組。如果參數就算元組,那麼該參數就會原樣返回:

輸出:

(1, 2, 3)

('j', 'e', 'f', 'f')

(1, 2, 3)

Traceback (most recent call last):

File "F:\Python\test.py", line 7, in

t4=tuple(123)

TypeError: 'int' object is not iterable

3、字元串

(1)創建

輸出:

Hello world

H

H

e

l

l

o

w

o

r

l

d

(2)、格式化

format():

print(『{0} was {1} years old when he wrote this book』. format(name,age) )

print(『{} was {} years old when he wrote this book』. format(name,age) )

print(『{name} was {age} years old when he wrote this book』. format(name=』Lily』,age=』22』) )

#對於浮點數「0.333」保留小數點後三位

print(『{0 : .3f}』.format(1.0/3) )

結果:0.333

#使用下劃線填充文本,並保持文字處於中間位置

#使用^定義『_____hello_____』字元串長度為11

print(『{0 : ^_11}』.format(『hello』) )

結果:_____hello_____

% :

格式化操作符的右操作數可以是任何東西,如果是元組或者映射類型(如字典),那麼字元串格式化將會有所不同。

輸出:

Hello,world

Hello,World

注意:如果需要轉換的元組作為轉換表達式的一部分存在,那麼必須將它用圓括弧括起來:

輸出:

Traceback (most recent call last):

File "F:\Python\test.py", line 2, in

str1='%s,%s' % 'Hello','world'

TypeError: not enough arguments for format string

如果需要輸出%這個特殊字元,毫無疑問,我們會想到轉義,但是Python中正確的處理方式如下:

輸出:100%

對數字進行格式化處理,通常需要控制輸出的寬度和精度:

輸出:

3.14

3.141593

3.14

字元串格式化還包含很多其他豐富的轉換類型,可參考官方文檔。

4、通用序列操作(方法)

從列表、元組以及字元串可以「抽象」出序列的一些公共通用方法(不是你想像中的CRUD),這些操作包括:索引(indexing)、分片(sliceing)、加(adding)、乘(multiplying)以及檢查某個元素是否屬於序列的成員。除此之外,還有計算序列長度、最大最小元素等內置函數。

(1)索引

輸出

H

2

345

索引從0(從左向右)開始,所有序列可通過這種方式進行索引。神奇的是,索引可以從最後一個位置(從右向左)開始,編號是-1:

輸出:

o

3

123

(2)分片

分片操作用來訪問一定范圍內的元素。分片通過冒號相隔的兩個索引來實現:

輸出:

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

[1, 2, 3, 4]

[6, 7, 8, 9]

[1, 2, 3, 4, 5, 6, 7, 8, 9]

[7, 8]

[7, 8, 9]

不同的步長,有不同的輸出:

輸出:

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

[0, 2, 4, 6, 8]

[0, 3, 6, 9]

[]

(3)序列相加

輸出:

Hello world

[1, 2, 3, 2, 3, 4]

Traceback (most recent call last):

File "F:\Python\test.py", line 7, in

print str1+num1

TypeError: cannot concatenate 'str' and 'list' objects

(4)乘法

輸出:

[None, None, None, None, None, None, None, None, None, None]

HelloHello

[1, 2, 1, 2]

Traceback (most recent call last):

File "F:\Python\test.py", line 5, in

print str1*num1

TypeError: can't multiply sequence by non-int of type 'list'

(5)成員資格

in運算符會用來檢查一個對象是否為某個序列(或者其他類型)的成員(即元素):

輸出:

False

True

True

(6)長度、最大最小值

通過內建函數len、max和min可以返回序列中所包含元素的數量、最大和最小元素。

輸出:

5

o

H

5

123

1

二、映射(字典)

映射中的每個元素都有一個名字,如你所知,這個名字專業的名稱叫鍵。字典(也叫散列表)是Python中唯一內建的映射類型。

1、鍵類型

字典的鍵可以是數字、字元串或者是元組,鍵必須唯一。在Python中,數字、字元串和元組都被設計成不可變類型,而常見的列表以及集合(set)都是可變的,所以列表和集合不能作為字典的鍵。鍵可以為任何不可變類型,這正是Python中的字典最強大的地方。

輸出:

{1: 1}

Traceback (most recent call last):

File "F:\Python\test.py", line 6, in

d[list1]="Hello world."

TypeError: unhashable type: 'list'

2、自動添加

即使鍵在字典中並不存在,也可以為它分配一個值,這樣字典就會建立新的項。

3、成員資格

表達式item in d(d為字典)查找的是鍵(containskey),而不是值(containsvalue)。

三、集合

集合(Set)在Python 2.3引入,通常使用較新版Python可直接創建,如下所示:

strs=set(['jeff','wong','cnblogs'])

nums=set(range(10))

看上去,集合就是由序列(或者其他可迭代的對象)構建的。集合的幾個重要特點和方法如下:

1、副本是被忽略的

集合主要用於檢查成員資格,因此副本是被忽略的,如下示例所示,輸出的集合內容是一樣的。

輸出如下:

set([0, 1, 2, 3, 4, 5])

set([0, 1, 2, 3, 4, 5])

2、集合元素的順序是隨意的

這一點和字典非常像,可以簡單理解集合為沒有value的字典。

輸出如下:

set(['wong', 'cnblogs', 'jeff'])

3、集合常用方法

a、並集union

輸出:

set([1, 2, 3])

set([2, 3, 4])

set([1, 2, 3, 4])

union操作返回兩個集合的並集,不改變原有集合。使用按位與(OR)運算符「|」可以得到一樣的結果:

輸出和上面union操作一模一樣的結果。

其他常見操作包括&(交集),<=,>=,-,()等等,這里不再列舉。

輸出如下:

set([1, 2, 3])

set([2, 3, 4])

set([2, 3])

True

set([1, 2, 3])

False

b、add和remove

和序列添加和移除的方法非常類似,可參考官方文檔:

輸出:

set([1])

set([1, 2])

set([1])

set([1])

False

Traceback (most recent call last):

File "F:\Python\test.py", line 9, in

set1.remove(29) #移除不存在的項

KeyError: 29

4、frozenset

集合是可變的,所以不能用做字典的鍵。集合本身只能包含不可變值,所以也就不能包含其他集合:

輸出如下:

Traceback (most recent call last):

File "F:\Python\test.py", line 3, in

set1.add(set2)

TypeError: unhashable type: 'set'

可以使用frozenset類型用於代表不可變(可散列)的集合:

輸出:

set([1, frozenset([2])])

閱讀全文

與python實現數據結構相關的資料

熱點內容
軟考初級程序員大題分值 瀏覽:471
js壓縮視頻文件 瀏覽:578
linux如何通過命令創建文件 瀏覽:989
應用加密app還能訪問應用嘛 瀏覽:432
安卓怎麼用支付寶交違章罰款 瀏覽:665
php面向對象的程序設計 瀏覽:504
數據挖掘演算法書籍推薦 瀏覽:894
投訴聯通用什麼app 瀏覽:150
web伺服器變更ip地址 瀏覽:954
java正則表達式驗證郵箱 瀏覽:360
成熟商務男裝下載什麼軟體app 瀏覽:609
加密2h代表長度是多少厘米 瀏覽:23
拍賣程序員 瀏覽:101
電腦的圖片放在哪個文件夾 瀏覽:274
unsignedintjava 瀏覽:216
編譯器下載地址 瀏覽:42
什麼是面對對象編程 瀏覽:708
b站伺服器什麼時候恢復 瀏覽:721
6p相當於安卓機什麼水準 瀏覽:499
能否給隱藏相冊加密 瀏覽:598