Ⅰ 學習python必備的基礎知識
python作為當下最熱門的計算機編程語言之一,是許多互聯網大廠(如阿里騰訊等)在招聘時會作出要求的能力之一。學好python對於將來大數據方向、雲計算方向等物聯網時代新興崗位的學習很有幫助。
想要學習Python,需要掌握的內容還是比較多的,對於自學的同學來說會有一些難度,不推薦自學能力差的人。我們將學習的過程劃分為4個階段,每個階段學習對應的內容,具體的學習順序如下:
Python學習順序:
①Python軟體開發基礎
掌握計算機的構成和工作原理
會使用Linux常用工具
熟練使用Docker的基本命令
建立Python開發環境,並使用print輸出
使用Python完成字元串的各種操作
使用Python re模塊進行程序設計
使用Python創建文件、訪問、刪除文件
掌握import 語句、From…import 語句、From…import* 語句、方法的引用、Python中的包
②Python軟體開發進階
能夠使用Python面向對象方法開發軟體
能夠自己建立資料庫,表,並進行基本資料庫操作
掌握非關系資料庫MongoDB的使用,掌握Redis開發
能夠獨立完成TCP/UDP服務端客戶端軟體開發,能夠實現ftp、http伺服器,開發郵件軟體
能開發多進程、多線程軟體
③Python全棧式WEB工程師
能夠獨立完成後端軟體開發,深入理解Python開發後端的精髓
能夠獨立完成前端軟體開發,並和後端結合,熟練掌握使用Python進行全站Web開發的技巧
④Python多領域開發
能夠使用Python熟練編寫爬蟲軟體
能夠熟練使用Python庫進行數據分析
招聘網站Python招聘職位數據爬取分析
掌握使用Python開源人工智慧框架進行人工智慧軟體開發、語音識別、人臉識別
掌握基本設計模式、常用演算法
掌握軟體工程、項目管理、項目文檔、軟體測試調優的基本方法
想要系統學習,你可以考察對比一下開設有IT專業的熱門學校,好的學校擁有根據當下企業需求自主研發課程的能,南京北大青鳥、中博軟體學院、南京課工場等都是不錯的選擇,建議實地考察對比一下。
祝你學有所成,望採納。
Ⅱ python主要可以做什麼
python主要可以做Web 和 Internet開發、科學計算和統計、桌面界面開發、軟體開發、後端開發等領域的工作。
Python是一種解釋型腳本語言。Python可以應用於眾多領域,如:數據分析、組件集成、網路服務、圖像處理、數值計算和科學計算等眾多領域。互聯網公司廣泛使用Python來做的事一般有:自動化運維、自動化測試、大數據分析、爬蟲、Web 等。
(2)python爬取騰訊文檔擴展閱讀
python的主要優點:
簡單易學:Python是一種代表簡單主義思想的語言。閱讀一個良好的Python程序就感覺像是在讀英語一樣。它使你能夠專注於解決問題而不是去搞明白語言本身。因有極其簡單的說明文檔,Python極其容易上手。
運行速度快:Python 的底層是用 C 語言寫的,很多標准庫和第三方庫也都是用 C 寫的,運行速度非常快。
免費、開源資源:Python是FLOSS(自由/開放源碼軟體)之一。使用者可以自由地發布這個軟體的拷貝、閱讀它的源代碼、對它做改動、把它的一部分用於新的自由軟體中。FLOSS是基於一個團體分享知識的概念。
可擴展性:如果需要一段關鍵代碼運行得更快或者希望某些演算法不公開,可以部分程序用C或C++編寫,然後在Python程序中使用它們。
Ⅲ 新手學python,想用個簡單點的項目來學習python
如果你有一定的計算機編程知識基礎,那麼很容易學;再如果你對編程十分感興趣,那麼很容易學的。
1,找到合適的入門書籍,大致讀一次,循環啊判斷啊,常用類啊,搞懂(太難的跳過)
2,做些簡單習題,字元串比較,讀取日期之類 Python Cookbook不錯(太難太無趣的,再次跳過,保持興趣是最重要的,不會的以後可以再學)
3,加入Python討論群,態度友好笑眯眯(很重要,這樣高手才會耐心糾正你錯誤常識)。很多小問題,糾結許久,對方一句話點播思路,真的節約你很多時間。耐心指教我的好人,超級超級多謝。
4,解決自己電腦問題。比如下載美劇,零散下載了2,4,5,8集,而美劇共12集,怎樣找出漏下的那幾集?然後問題分解,1讀取全部下載文件名,2提取集的數字,3數字排序和(1--12)對比,找出漏下的。
對於python初學者來說,能找到一個好老師學習格外重要,這能決定你是不是可以做出好的項目,在python開發的路上越走越輕松,如果現在的你缺乏學習經驗,找不到老師指導你學習,看一下下面的代碼
5,時刻記住目的,不是為了當程序員,是為了解決問題。比如,想偷懶抓網頁內容,用urllib不行,用request也不行,才發現抓取內容涉及那麼多方面(cookie,header,SSL,url,javascript等等),當然可以聽人家勸,回去好好讀書,從頭讀。 或者,不求效率,只求解決,用ie打開網頁再另存為行不行?ie已經渲染過全部結果了。 問題變成:1--打開指定的10個網頁(一行代碼就行)。更復雜的想保存呢?利用已經存在的包,比如PAM30(我的是Python3),直接打開ie,用函數outHTML另存為文本,再用搜索函數(str搜索也行,re正則也行)找到數據。簡單吧?而且代碼超級短。
6,保持興趣,用最簡單的方式解決問題,什麼底層驅動,各種交換,留給大牛去寫吧。我們利用已經有的包完成。
7,耐心讀文檔,並且練習快速讀文檔。拿到新包,找到自己所需要的函數,是需要快速讀一次的。這個不難,讀函數名,大概能猜到是幹嘛的,然後看看返回值,能判斷是不是自己需要的。
8,寫幫助文件和學習筆記,並發布共享。教別人的時候,其實你已經自己再次思考一次了。 我覺得學程序就像學英文,把高頻率的詞(循環,判斷,常用包,常用函數)搞懂,就能拼裝成自己想要的軟體。 一定要保持興趣,太復雜的跳過,就像小學數學,小學英語,都是由簡入深。 網路很平面,無數國際大牛著作好書,關於Python,演算法,電腦,網路,或者程序員思路,或者商業思維(浪潮之巔是本好書)等等,還有國際名校的網路公開課(中英文字幕翻譯完畢,觀看不是難事),講計算機,網路,安全,或者安卓系統,什麼都有,只要能持續保持興趣,一點點學習下去,不是難事。 所有天才程序員,都曾是兒童,回到兒童思維來理解和學習。覺得什麼有趣,先學,不懂的,先放著,遇到問題再來學,效果更好。 唯一建議是,不要太貪心,耐心學好一門優雅的語言,再學其它。雖然Javascript做特效很炫,或提某問題時,有大牛建議,用Ruby來寫更好之類,不要改方向。就像老笑話:「要學習遞歸,必須首先理解遞歸。」然後死循環一直下去。堅持學好一門語言,再研究其他。 即使一門語言,跟網路,資料庫等等相關的部分,若都能學好,再學其他語言,是很快的事情。 另外就是,用學英文的耐心來學計算機,英文遇到不懂的詞,抄下,查詢。 python里,看到Http,查查定義,看到outHtml,查查定義,跟初學英語時候一樣,不要直接猜意思,因為精確描述性定義,跟含糊自然語有區別的。而新人瞎猜,很容易錯誤理解,wiki,google很有用。
Ⅳ 如何學習python爬蟲
爬蟲是入門Python最好的方式,沒有之一。 Python有很多應用的方向,比如後台開發、web開發、科學計算等等,但爬蟲對於初學者而
言更友好,原理簡單,幾行代碼就能實現基本的爬蟲,學習的過程更加平滑,你能體會更大的成就感。
掌握基本的爬蟲後,你再去學習Python數據分析、web開發甚至機器學習,都會更得心應手。因為這個過程中,Python基本語法、庫的
使用,以及如何查找文檔你都非常熟悉了。
對於小白來說,爬蟲可能是一件非常復雜、技術門檻很高的事情。比如有的人則認為先要掌握網頁的知識,遂 開始 HTMLCSS,結果入了前端的坑 ,瘁……
但掌握正確的方法,在短時間內做到能夠爬取主流網站的數據,其實非常容易實現,但建議你從 一開始就要有一個具體的目標。
在目標的驅動下,你的學習才會更加精準和高效。 那些所有你認為必須的前置知識,都是可以在完成目標的過程中學到的。 這里給你一
條平滑的、零基礎快速入門的學習路徑。
python學習網,免費的python學習網站,歡迎在線學習!
學習 Python 包並實現基本的爬蟲過程
大部分爬蟲都是按 「發送請求——獲得頁面——解析頁面——抽取並儲存內容」 這樣的流程來進行,這其實也是模擬了我們使用瀏覽器
獲取網頁信息的過程。
Python中爬蟲相關的包很多:urllib、requests、bs4、scrapy、pyspider 等, 建議從requests+Xpath 開始 ,requests 負責連接網
站,返回網頁,Xpath 用於解析網頁,便於抽取數據。
如果你用過 BeautifulSoup,會發現 Xpath 要省事不少,一層一層檢查元素代碼的工作,全都省略了。這樣下來基本套路都差不多, 一
般的靜態網站根本不在話下,豆瓣、糗事網路、騰訊新聞等基本上都可以上手了 。
掌握各種技巧,應對特殊網站的反爬措施
當然,爬蟲過程中也會經歷一些絕望啊,比如被網站封IP、比如各種奇怪的驗證碼、userAgent訪問限制、各種動態載入等等。
遇到這些反爬蟲的手段,當然還需要一些高級的技巧來應對,常規的比如 訪問頻率控制、使用代理IP池、抓包、驗證碼的OCR處理等等 。
往往網站在高效開發和反爬蟲之間會偏向前者,這也為爬蟲提供了空間,掌握這些應對反爬蟲的技巧,絕大部分的網站已經難不到你了。
學習 scrapy,搭建工程化的爬蟲
掌握前面的技術一般量級的數據和代碼基本沒有問題了,但是在遇到非常復雜的情況,可能仍然會力不從心,這個時候,強大的 scrapy
框架就非常有用了。
scrapy 是一個功能非常強大的爬蟲框架,它不僅能便捷地構建request,還有強大的 selector 能夠方便地解析 response,然而它最讓人
驚喜的還是它超高的性能,讓你可以將爬蟲工程化、模塊化。
學會 scrapy,你可以自己去搭建一些爬蟲框架,你就基本具備爬蟲工程師的思維了。
學習資料庫基礎,應對大規模數據存儲
爬回來的數據量小的時候,你可以用文檔的形式來存儲,一旦數據量大了,這就有點行不通了。所以掌握一種資料庫是必須的,學習目前
比較主流的 MongoDB 就OK。
MongoDB 可以方便你去存儲一些非結構化的數據 ,比如各種評論的文本,圖片的鏈接等等。你也可以利用PyMongo,更方便地在
Python中操作MongoDB。
因為這里要用到的資料庫知識其實非常簡單,主要是 數據如何入庫、如何進行提取 ,在需要的時候再學習就行。
分布式爬蟲,實現大規模並發採集
爬取基本數據已經不是問題了,你的瓶頸會集中到爬取海量數據的效率。這個時候,相信你會很自然地接觸到一個很厲害的名字: 分布
式爬蟲 。
分布式這個東西,聽起來很恐怖, 但其實就是利用多線程的原理讓多個爬蟲同時工作 ,需要你掌握 Scrapy + MongoDB + Redis 這三種工具 。
Scrapy 前面我們說過了,用於做基本的頁面爬取,MongoDB 用於存儲爬取的數據,Redis 則用來存儲要爬取的網頁隊列,也就是任務
隊列。
所以有些東西看起來很嚇人,但其實分解開來,也不過如此。當你能夠寫分布式的爬蟲的時候,那麼你可以去嘗試打造一些基本的爬蟲架
構了,實現一些更加自動化的數據獲取。
你看,這一條學習路徑下來,你已然可以成為老司機了,非常的順暢。所以在一開始的時候,盡量不要系統地去啃一些東西,找一個實際
的項目(開始可以從豆瓣、小豬這種簡單的入手),直接開始就好 。
Ⅳ 學習python具體能做什麼工作呢
Python的就業方向有很多,但是只有選擇適合自己的才能支撐自己走得更遠。
1、常規軟體開發
Python支持函數式編程和OOP面向對象編程,能夠承擔任何種類軟體的開發工作,因此常規的軟體開發、腳本編寫、網路編程等都屬於標配能力。
2、爬蟲
顧名思義,就是用Python收集和爬取互聯網的信息,也是很多小夥伴們學習Python的第一驅動力,總覺得Python就是天然為爬蟲而生,簡單快速,可能靠人力一周才能完成的工作,你泡著咖啡、跑10分鍾爬蟲即可,真的非常有成就感。無論營銷、運營還是產品經理,高效獲取有效數據已成為職場必備技能。
3、Python數據分析
如今公司的產品都建立在對用戶的分析之上,也就是所有的商業公司都需要這樣一個角色,學會了爬蟲,便有了數據來源,運用這些數據以及相應的爬蟲庫和excel表格,就可以進行簡單的數據分析。
4、Python Web網站工程師
Web一直都是不可忽視的存在,利用Python的框架做一些頁面精美的網站,Python有很多優秀的Web開發框架,如Flask、Django、Bootstar 等,可以幫助你快速搭建一個網站。
5、人工智慧
Python是人工智慧時代的頭牌語言,不管是機器學習 (Machine Learning)還是深度學習(Deep Learning),最常用的工具和框架都需要用Python調用,Python是人工智慧工程師的必備技能之一。
6、自動化運維工程師
運維是必須而且一定要掌握Python語言,使用Python可以自動化批量管理伺服器,起到1個人頂10個人的效果。它在系統管理、文檔管理方面都有很強大的功能。
7、Python自動化測試工程師
Python語言對測試的幫助是非常大的,自動化測試中Python語言的用途很廣,Python提供了很多自動化測試的框架,如Selenium、Pytest等,避免了大量的重復工作,Python自動化測試也變得越來越流行。
8、游戲開發
游戲伺服器領域,主要負責網路游戲的伺服器功能開發、性能優化等工作。
Python沒有非常強勢的問題,但是它簡單的語言結構應用非常廣泛,無論上述你選擇哪個方向,都是不會錯的。
Ⅵ Python爬蟲可以爬取什麼
Python爬蟲可以爬取的東西有很多,Python爬蟲怎麼學?簡單的分析下:
如果你仔細觀察,就不難發現,懂爬蟲、學習爬蟲的人越來越多,一方面,互聯網可以獲取的數據越來越多,另一方面,像 Python這樣的編程語言提供越來越多的優秀工具,讓爬蟲變得簡單、容易上手。
利用爬蟲我們可以獲取大量的價值數據,從而獲得感性認識中不能得到的信息,比如:
知乎:爬取優質答案,為你篩選出各話題下最優質的內容。
淘寶、京東:抓取商品、評論及銷量數據,對各種商品及用戶的消費場景進行分析。
安居客、鏈家:抓取房產買賣及租售信息,分析房價變化趨勢、做不同區域的房價分析。
拉勾網、智聯:爬取各類職位信息,分析各行業人才需求情況及薪資水平。
雪球網:抓取雪球高回報用戶的行為,對股票市場進行分析和預測。
爬蟲是入門Python最好的方式,沒有之一。Python有很多應用的方向,比如後台開發、web開發、科學計算等等,但爬蟲對於初學者而言更友好,原理簡單,幾行代碼就能實現基本的爬蟲,學習的過程更加平滑,你能體會更大的成就感。
掌握基本的爬蟲後,你再去學習Python數據分析、web開發甚至機器學習,都會更得心應手。因為這個過程中,Python基本語法、庫的使用,以及如何查找文檔你都非常熟悉了。
對於小白來說,爬蟲可能是一件非常復雜、技術門檻很高的事情。比如有人認為學爬蟲必須精通 Python,然後哼哧哼哧系統學習 Python 的每個知識點,很久之後發現仍然爬不了數據;有的人則認為先要掌握網頁的知識,遂開始 HTMLCSS,結果入了前端的坑,瘁……
但掌握正確的方法,在短時間內做到能夠爬取主流網站的數據,其實非常容易實現,但建議你從一開始就要有一個具體的目標。
在目標的驅動下,你的學習才會更加精準和高效。那些所有你認為必須的前置知識,都是可以在完成目標的過程中學到的。這里給你一條平滑的、零基礎快速入門的學習路徑。
1.學習 Python 包並實現基本的爬蟲過程
2.了解非結構化數據的存儲
3.學習scrapy,搭建工程化爬蟲
4.學習資料庫知識,應對大規模數據存儲與提取
5.掌握各種技巧,應對特殊網站的反爬措施
6.分布式爬蟲,實現大規模並發採集,提升效率
一
學習 Python 包並實現基本的爬蟲過程
大部分爬蟲都是按「發送請求——獲得頁面——解析頁面——抽取並儲存內容」這樣的流程來進行,這其實也是模擬了我們使用瀏覽器獲取網頁信息的過程。
Python中爬蟲相關的包很多:urllib、requests、bs4、scrapy、pyspider 等,建議從requests+Xpath 開始,requests 負責連接網站,返回網頁,Xpath 用於解析網頁,便於抽取數據。
如果你用過 BeautifulSoup,會發現 Xpath 要省事不少,一層一層檢查元素代碼的工作,全都省略了。這樣下來基本套路都差不多,一般的靜態網站根本不在話下,豆瓣、糗事網路、騰訊新聞等基本上都可以上手了。
當然如果你需要爬取非同步載入的網站,可以學習瀏覽器抓包分析真實請求或者學習Selenium來實現自動化,這樣,知乎、時光網、貓途鷹這些動態的網站也可以迎刃而解。
二
了解非結構化數據的存儲
爬回來的數據可以直接用文檔形式存在本地,也可以存入資料庫中。
開始數據量不大的時候,你可以直接通過 Python 的語法或 pandas 的方法將數據存為csv這樣的文件。
當然你可能發現爬回來的數據並不是干凈的,可能會有缺失、錯誤等等,你還需要對數據進行清洗,可以學習 pandas 包的基本用法來做數據的預處理,得到更干凈的數據。
三
學習 scrapy,搭建工程化的爬蟲
掌握前面的技術一般量級的數據和代碼基本沒有問題了,但是在遇到非常復雜的情況,可能仍然會力不從心,這個時候,強大的 scrapy 框架就非常有用了。
scrapy 是一個功能非常強大的爬蟲框架,它不僅能便捷地構建request,還有強大的 selector 能夠方便地解析 response,然而它最讓人驚喜的還是它超高的性能,讓你可以將爬蟲工程化、模塊化。
學會 scrapy,你可以自己去搭建一些爬蟲框架,你就基本具備爬蟲工程師的思維了。
四
學習資料庫基礎,應對大規模數據存儲
爬回來的數據量小的時候,你可以用文檔的形式來存儲,一旦數據量大了,這就有點行不通了。所以掌握一種資料庫是必須的,學習目前比較主流的 MongoDB 就OK。
MongoDB 可以方便你去存儲一些非結構化的數據,比如各種評論的文本,圖片的鏈接等等。你也可以利用PyMongo,更方便地在Python中操作MongoDB。
因為這里要用到的資料庫知識其實非常簡單,主要是數據如何入庫、如何進行提取,在需要的時候再學習就行。
五
掌握各種技巧,應對特殊網站的反爬措施
當然,爬蟲過程中也會經歷一些絕望啊,比如被網站封IP、比如各種奇怪的驗證碼、userAgent訪問限制、各種動態載入等等。
遇到這些反爬蟲的手段,當然還需要一些高級的技巧來應對,常規的比如訪問頻率控制、使用代理IP池、抓包、驗證碼的OCR處理等等。
往往網站在高效開發和反爬蟲之間會偏向前者,這也為爬蟲提供了空間,掌握這些應對反爬蟲的技巧,絕大部分的網站已經難不到你了.
六
分布式爬蟲,實現大規模並發採集
爬取基本數據已經不是問題了,你的瓶頸會集中到爬取海量數據的效率。這個時候,相信你會很自然地接觸到一個很厲害的名字:分布式爬蟲。
分布式這個東西,聽起來很恐怖,但其實就是利用多線程的原理讓多個爬蟲同時工作,需要你掌握 Scrapy + MongoDB + Redis 這三種工具。
Scrapy 前面我們說過了,用於做基本的頁面爬取,MongoDB 用於存儲爬取的數據,Redis 則用來存儲要爬取的網頁隊列,也就是任務隊列。
所以有些東西看起來很嚇人,但其實分解開來,也不過如此。當你能夠寫分布式的爬蟲的時候,那麼你可以去嘗試打造一些基本的爬蟲架構了,實現一些更加自動化的數據獲取。
你看,這一條學習路徑下來,你已然可以成為老司機了,非常的順暢。所以在一開始的時候,盡量不要系統地去啃一些東西,找一個實際的項目(開始可以從豆瓣、小豬這種簡單的入手),直接開始就好。
因為爬蟲這種技術,既不需要你系統地精通一門語言,也不需要多麼高深的資料庫技術,高效的姿勢就是從實際的項目中去學習這些零散的知識點,你能保證每次學到的都是最需要的那部分。
當然唯一麻煩的是,在具體的問題中,如何找到具體需要的那部分學習資源、如何篩選和甄別,是很多初學者面臨的一個大問題。
以上就是我的回答,希望對你有所幫助,望採納。
Ⅶ [Python]騰訊文檔自動健康打卡 2022-01-17
有什麼不懂的可以參照這個教程,我就是以這個為基礎做出來的
放在Python安裝目錄 就環境變數那個
參考這個設置任務計劃
Ⅷ 學習Python,都能夠做什麼相關的工作
現在互聯網發展迅速,眾多行業巨頭,都已經轉投到人工智慧領域,而人工智慧的首選編程語言就是python,所以學好Python能夠從事的工作還是很多的,而且前景非常不錯。
學完python可以應用於以下領域:
①Web 和 Internet開發
②科學計算和統計
③人工智慧
④桌面界面開發
⑤軟體開發
⑥後端開發
⑦網路爬蟲
可以從事的崗位也很多,比如Python爬蟲工程師,大數據工程師等等!
互聯網行業目前還是最熱門的行業之一,學習IT技能之後足夠優秀是有機會進入騰訊、阿里、網易等互聯網大廠高薪就業的,發展前景非常好,普通人也可以學習。
想要系統學習,你可以考察對比一下開設有相關專業的熱門學校,好的學校擁有根據當下企業需求自主研發課程的能力,能夠在校期間取得大專或本科學歷,中博軟體學院、南京課工場、南京北大青鳥等開設相關專業的學校都是不錯的,建議實地考察對比一下。
祝你學有所成,望採納。
Ⅸ [內附完整源碼和文檔] 基於python的新聞檢索系統
1 系統介紹
1.1 系統需求
新聞檢索系統:定向採集不少於 4 個中文社會新聞網站或頻道,實現這些網站新聞信息及評論信息的自動爬取、抽取、索引和檢索。本項目未使用 lucene,Goose 等成熟開源框架。
1.2 系統思路與框架
本系統總體的實現思路如圖 1 所示:
一個完整的搜索系統主要的步驟是:
對新聞網頁進行爬蟲得到語料庫
抽取新聞的主體內容,得到結構化的 xml 數據
內存式單遍掃描索引構建方法構建倒排索引,供檢索模塊使用
用戶輸入查詢,得到相關文檔返回給用戶
2 設計方案
2.1 新聞爬取
2.1.1 演算法簡述
該模塊針對搜狐,網易,騰訊三大主流新聞網站及官方的參考消息網站進行了新聞獲取。並基於其網站結構,設計了不同的爬取模式。由於網站架構兩兩相似,以下選取兩種類型的典型代表進行介紹:
(1)搜狐新聞
搜狐新聞除正常主頁外,存在隱藏的列表式新聞頁 , 如 http://news.sohu.com/1/0903/62/subject212846206.shtml 。
(2)網易新聞
可以將網易新聞及騰訊新聞歸結為一般類型的新聞主頁,我們採用了自新聞主頁開始的廣度優先的遞歸爬取策略。注意到新聞的正文頁往往是靜態網頁.html,因此,我們將網頁中出現的所有以.html 結尾的網頁的 URL 均記錄下來,在爬取到一定量時,進行一次去重。
對於一些不是新聞的錯分網頁,容錯處理即通過檢查新聞正文標簽
時會被剔除。
新聞正文頁中我們重點關注內容,時間,評論獲取。
2.1.2 創新點
實現了對新聞網頁動態載入的評論進行爬取,如搜狐新聞評論爬取
未藉助開源新聞爬取工具,自己實現了對新聞標題,正文,時間,評論內容,評論數目的高效爬取
2.2 索引構建
分詞,我們藉助開源的 jieba 中文分片語件來完成,jieba 分詞能夠將一個中文句子切成一個個詞項,這樣就可以統計 tf, df 了
去停用詞,去停詞的步驟在 jieba 分詞之後完成
倒排記錄表存儲,詞典用 B-樹或 hash 存儲,倒排記錄表用鄰接鏈表存儲方式,這樣能大大減少存儲空間
倒排索引構建演算法使用內存式單遍掃描索引構建方法(SPIMI),就是依次對每篇新聞進行分詞,如果出現新的詞項則插入到詞典中,否則將該文檔的信息追加到詞項對應的倒排記錄表中。
2.3 檢索模塊
2.3.1 檢索模式
(1)關鍵詞檢索
查詢即根據用戶輸入的關鍵字,返回其相應的新聞。首先根據用戶的查詢進行 jieba 分詞,記錄分詞後詞項的數量以字典形式進行存儲。
完整的源碼和詳細的文檔,上傳到了 WRITE-BUG技術共享平台 上,需要的請自取:
https://www.write-bug.com/article/3122.html