A. python繪圖Turtle庫詳解
Turtle庫是Python語言中一個很流行的繪制圖像的函數庫,想像一個小烏龜,在一個橫軸為x、縱軸為y的坐標系原點,(0,0)位置開始,它根據一組函數指令的控制,在這個平面坐標系中移動,從而在它爬行的路徑上繪制了圖形。
turtle 繪圖的基礎知識:
1. 畫布(canvas)
畫布就是turtle為我們展開用於繪圖區域,我們可以設置它的大小和初始位置。
設置畫布大小
turtle.screensize(canvwidth=None, canvheight=None, bg=None),參數分別為畫布的寬(單位像素), 高, 背景顏色。
如:turtle.screensize(800,600, "green")
turtle.screensize() #返回默認大小(400, 300)
turtle.setup(width=0.5, height=0.75,
startx=None, starty=None),參數:width, height: 輸入寬和高為整數時, 表示像素; 為小數時, 表示占據電腦屏幕的比例,(startx, starty): 這一坐標表示矩形窗口左上角頂點的位置, 如果為空,則窗口位於屏幕中心。
如:turtle.setup(width=0.6,height=0.6)
turtle.setup(width=800,height=800, startx=100, starty=100)
2. 畫筆
2.1 畫筆的狀態
在畫布上,默認有一個坐標原點為畫布中心的坐標軸,坐標原點上有一隻面朝x軸正方向小烏龜。這里我們描述小烏龜時使用了兩個詞語:坐標原點(位置),面朝x軸正方向(方向), turtle繪圖中,就是使用位置方向描述小烏龜(畫筆)的狀態。
2.2 畫筆的屬性
畫筆(畫筆的屬性,顏色、畫線的寬度等)
1) turtle.pensize():設置畫筆的寬度;
2) turtle.pencolor():沒有參數傳入,返回當前畫筆顏色,傳入參數設置畫筆顏色,可以是字元串如"green", "red",也可以是RGB 3元組。
3) turtle.speed(speed):設置畫筆移動速度,畫筆繪制的速度范圍[0,10]整數,數字越大越快。
2.3 繪圖命令
操縱海龜繪圖有著許多的命令,這些命令可以劃分為3種:一種為運動命令,一種為畫筆控制命令,還有一種是全局控制命令。
(1) 畫筆運動命令
命令說明
turtle.forward(distance)向當前畫筆方向移動distance像素長度
turtle.backward(distance)向當前畫筆相反方向移動distance像素長度
turtle.right(degree)順時針移動degree°
turtle.left(degree)逆時針移動degree°
turtle.pendown()移動時繪制圖形,預設時也為繪制
turtle.goto(x,y)將畫筆移動到坐標為x,y的位置
turtle.penup()提起筆移動,不繪制圖形,用於另起一個地方繪制
turtle.circle()畫圓,半徑為正(負),表示圓心在畫筆的左邊(右邊)畫圓
setx( )將當前x軸移動到指定位置
sety( )將當前y軸移動到指定位置
setheading(angle)設置當前朝向為angle角度
home()設置當前畫筆位置為原點,朝向東。
dot(r)繪制一個指定直徑和顏色的圓點
(2) 畫筆控制命令
命令說明
turtle.fillcolor(colorstring)繪制圖形的填充顏色
turtle.color(color1, color2)同時設置pencolor=color1, fillcolor=color2
turtle.filling()返回當前是否在填充狀態
turtle.begin_fill()准備開始填充圖形
turtle.end_fill()填充完成
turtle.hideturtle()隱藏畫筆的turtle形狀
turtle.showturtle()顯示畫筆的turtle形狀
(3) 全局控制命令
命令說明
turtle.clear()清空turtle窗口,但是turtle的位置和狀態不會改變
turtle.reset()清空窗口,重置turtle狀態為起始狀態
turtle.undo()撤銷上一個turtle動作
turtle.isvisible()返回當前turtle是否可見
stamp()復制當前圖形
turtle.write(s
[,font=("font-name",font_size,"font_type")])
寫文本,s為文本內容,font是字體的參數,分別為字體名稱,大小和類型;font為可選項,font參數也是可選項
(4) 其他命令
命令說明
turtle.mainloop()或turtle.done()啟動事件循環 -調用Tkinter的mainloop函數。
必須是烏龜圖形程序中的最後一個語句。
turtle.mode(mode=None)設置烏龜模式(「standard」,「logo」或「world」)並執行重置。如果沒有給出模式,則返回當前模式。
模式初始龜標題正角度
standard向右(東)逆時針
logo向上(北)順時針
turtle.delay(delay=None)設置或返回以毫秒為單位的繪圖延遲。
turtle.begin_poly()開始記錄多邊形的頂點。當前的烏龜位置是多邊形的第一個頂點。
turtle.end_poly()停止記錄多邊形的頂點。當前的烏龜位置是多邊形的最後一個頂點。將與第一個頂點相連。
turtle.get_poly()返回最後記錄的多邊形。
B. 用Python畫圖
今天開始琢磨用Python畫圖,沒使用之前是一臉懵的,我使用的開發環境是Pycharm,這個輸出的是一行行命令,這個圖畫在哪裡呢?
搜索之後發現,它會彈出一個對話框,然後就開始畫了,比如下圖
第一個常用的庫是Turtle,它是Python語言中一個很流行的繪制圖像的函數庫,這個詞的意思就是烏龜,你可以想像下一個小烏龜在一個x和y軸的平面坐標系裡,從原點開始根據指令控制,爬行出來就是繪制的圖形了。
它最常用的指令就是旋轉和移動,比如畫個圓,就是繞著圓心移動;再比如上圖這個怎麼畫呢,其實主要就兩個命令:
turtle.forward(200)
turtle.left(170)
第一個命令是移動200個單位並畫出來軌跡
第二個命令是畫筆順時針轉170度,注意此時並沒有移動,只是轉角度
然後呢? 循環重復就畫出來這個圖了
好玩吧。
有需要仔細研究的可以看下這篇文章 https://blog.csdn.net/zengxiantao1994/article/details/76588580 ,這個牛人最後用這個庫畫個移動的鍾表,太贊了。
Turtle雖好玩,但是我想要的是我給定數據,然後讓它畫圖,這里就找到另一個常用的畫圖的庫了。
Matplotlib是python最著名的繪圖庫,它提供了一整套和matlab相似的命令API,十分適合互動式地行制圖。其中,matplotlib的pyplot模塊一般是最常用的,可以方便用戶快速繪制二維圖表。
使用起來也挺簡單,
首先import matplotlib.pyplot as plt 導入畫圖的圖。
然後給定x和y,用這個命令plt.plot(x, y)就能畫圖了,接著用plt.show()就可以把圖形展示出來。
接著就是各種完善,比如加標題,設定x軸和y軸標簽,范圍,顏色,網格等等,在 https://blog.csdn.net/guoziqing506/article/details/78975150 這篇文章里介紹的很詳細。
現在互聯網的好處就是你需要什麼內容,基本上都能搜索出來,而且還是免費的。
我為什麼要研究這個呢?當然是為了用,比如我把比特幣的曲線自己畫出來可好?
假設現在有個數據csv文件,一列是日期,另一列是比特幣的價格,那用這個命令畫下:
這兩列數據讀到pandas中,日期為df['time']列,比特幣價格為df['ini'],那我只要使用如下命令
plt.plot(df['time'], df['ini'])
plt.show()
就能得到如下圖:
自己畫的是不是很香,哈哈!
然後呢,我在上篇文章 https://www.jianshu.com/p/d4013d8a73de 中介紹過求Ahr999指數,那可不可以也放到這張圖中呢?不就是加一條命令嘛
plt.plot(df['time'], df['Ahr999'])
圖形如下:
但是,Ahr999指數怎麼就一條線不動啊, 原來兩個Y軸不一致,顯示出來太怪了,需要用多Y軸,問題來了。
繼續谷歌一下,把第二個Y軸放右邊就行了,不過呢得使用多圖,重新繪制
fig = plt.figure() # 多圖
ax1 = fig.add_subplot(111)
ax1.plot(df['time'], df['ini'], label="BTC price") # 繪制第一個圖比特幣價格
ax1.set_ylabel('BTC price') # 加上標簽
# 第二個直接對稱就行了
ax2 = ax1.twinx()# 在右邊增加一個Y軸
ax2.plot(df['time'], df['Ahr999'], 'r', label="ahr999") # 繪制第二個圖Ahr999指數,紅色
ax2.set_ylim([0, 50])# 設定第二個Y軸范圍
ax2.set_ylabel('ahr999')
plt.grid(color="k", linestyle=":")# 網格
fig.legend(loc="center")#圖例
plt.show()
跑起來看看效果,雖然丑了點,但終於跑通了。
這樣就可以把所有指數都繪制到一張圖中,等等,三個甚至多個Y軸怎麼加?這又是一個問題,留給愛思考愛學習的你。
有了自己的數據,建立自己的各個指數,然後再放到圖形界面中,同時針對異常情況再自動進行提醒,比如要抄底了,要賣出了,用程序做出自己的晴雨表。
C. 用python代碼繪圖
python中subplot的用法
subplot是python中子圖的繪制,這里主要介紹如何排布子圖與極坐標圖的繪制。
具體用法,需要搜索網上內容,再結合自己的情況修改參數即可。
D. 怎樣用python畫圖,為什麼代碼寫好運行時錯誤
python繪圖(可視化)的模塊非常多,下面我簡單介紹幾個不錯的繪圖庫,感興趣的朋友可以自己嘗試一下,實驗環境win7+python3.6+pycharm5.0,主要內容如下:
matplotlib
這是python中專門用於繪圖的一個模塊,功能強大,制圖種類繁多,使用也最廣泛,下面我簡單介紹一下這個模塊的安裝和使用:
1.首先,安裝matplotlib模塊,這個直接在cmd窗口輸入安裝命令「pip install matplotlib」就行,如下:
2.安裝完成後,我們就可以編寫代碼進行一下簡單測試了,代碼如下,一個稍微復雜的曲線圖:
程序運行效果如下,看著還是非常不錯的:
3.更多示例的話,可以參考一下官網教程,介紹的非常詳細,柱狀圖、散點圖、餅圖等都有,非常適合初學者學習入門:
seaborn
這是一個基於matplotlib的繪圖庫,是matplotlib的高級封裝,代碼量更少,使用起來也更方便,下面我簡單介紹一下這個模塊的安裝和使用:
1.首先,安裝seaborn模塊,這個也直接輸入安裝命令「pip install seaborn」就行,如下,很快就能安裝完成:
2.安裝完成後,我們就可以直接編寫代碼來測試一下這個模塊了,代碼如下,一個折線圖集合:
程序運行截圖如下,效果也非常不錯:
3.更多示例的話,也直接參考官網教程就行,介紹的非常詳細,很適合初學者入門學習:
pyecharts
這是echarts的一個python介面,藉助於echarts強大的可視化功能,python也可以快速構建、繪制各種各樣的圖表,下面我簡單介紹一下這個模塊的安裝和使用:
1.首先,安裝pyecharts模塊,這個也直接輸入命令「pip install pyecharts」就行,如下:
2.安裝完成後,我們就可以編寫代碼來進行下測試了,測試代碼如下,一個簡單的3D散點圖:
程序運行截圖如下(基於瀏覽器進行顯示),效果還是非常不錯的:
至此,我們就完成了利用python來進行繪圖(可視化)。總的來說,這3個繪圖模塊使用起來都非常不錯,對於大多數圖表繪制來說,完全可以滿足需求,當然,還有許多其他繪圖模塊,像ggplot等,也都非常不錯,網上也有相關教程,感興趣的話,可以搜一下,希望以上分享的內容能對你有所幫助吧,也歡迎大家評論、留言進行補充。
python畫圖有很多擴展可以用,比如matplotlib、turtle、pychart等等,看你需要什麼方面了,不同的需求需要用不同的工具。如果做界面還有pyqt、tkinter等等,做 游戲 還有pygame等等。
python報錯需要查看報錯信息,進行調試才能正常運行
E. python繪圖工具turtle庫的使用
#PythonDraw.py
import turtle #導入turtle庫
turtle.setup(650, 350, 200, 200) #設置畫布大小和位置
turtle.penup() #抬起畫筆
turtle.fd(-250) #畫筆在空中向前飛行-250個像素
turtle.pendown() #畫筆落下
turtle.pensize(25) #畫筆寬度25個像素
turtle.pencolor("purple") #畫筆顏色為紫色
turtle.seth(-40) #海龜方向香油轉動45度,但是不行進
for i in range(4): #這里是一個循環
turtle.circle(40, 80) #繞著左邊40遠處的點向轉80度
turtle.circle(-40, 80) #繞著右邊40遠處的點向轉80度
turtle.circle(40, 80/2) #繞著左邊40遠處的點向轉80/2度
turtle.fd(40) #向前40個像素
turtle.circle(16, 180) #繞著左邊16遠處的點向轉180度
turtle.fd(40 * 2/3) #向前40*2/3個像素
turtle.done() #運行完不退出
1.turtle庫基本介紹
有一隻海龜,其在窗體正中心,在畫布上遊走,走過的軌跡形成了繪制的圖形, 海龜由程序控制,可以變換顏色、改變寬度等。
2.turtle庫繪圖窗體布局
不設置位置,默認在屏幕中心顯示
3.turtle庫空間坐標體系
絕對坐標,可以使用goto函數到達指定位置
例如:
4.turtle庫角度坐標體系
5.RGB色彩體系
F. Python 中的可視化工具介紹
幾周前,R語言社區經歷了一場關於畫圖工具的討論。對於我們這種外人來說,具體的細節並不重要,但是我們可以將一些有用的觀點運用到 Python 中。討論的重點是 R 語言自帶的繪圖工具 base R 和 Hadley Wickham 開發的繪圖工具 ggplot2 之間的優劣情況。如果你想了解更多細節內容,請閱讀以下幾篇文章:
其中最重要的兩個內容是:
不是所有人都認同第二個觀點,ggplot2確實無法繪制出所有的圖表類型,但是我會利用它來做分析。
以下是 2016 年 4 月寫的關於繪圖工具的概述。出於多方面的原因,繪圖工具的選取更多地取決於個人偏好,因此本文介紹的 Python 繪圖工具也僅代表我的個人使用偏好。
Matplotlib 是一個強大的工具,它是 Pandas' builtin-plotting 和 Seaborn 的基礎。 Matplotlib 能夠繪制許多不同的圖形,還能調用多個級別的許多 API 。我發現 pyplot api 非常好用,你可能用不上 Transforms 或者 artists ,但是如果你有需求的話可以查閱幫助文檔。我將從 pandas 和 seaborn 圖開始介紹,然後介紹如何調用 pyplot 的 API 。
DataFrame 和 Series 擁有 .plot 的命名空間,其中有許多圖形類別可供選擇(line, hist, scatter, 等等)。 Pandas 對象還提供了額外的用於增強圖形展現效果的數據,如索引變數。
由於 pandas 具有更少的向後兼容的限制,所以它具有更好的美學特性。從這方面來說,我認為 pandas 中的 DataFrame.plot 是一個非常實用的快速探索性分析的工具。
Michael Waskom 所開發的 Seaborn 提供了一個高層次的界面來繪制更吸引人統計圖形。 Seaborn 提供了一個可以快速探索分析數據不同特徵的 API 介面,接下來我們將重點介紹它。
Bokeh 是一款針對瀏覽器開發的可視化工具。
和 matplotlib 一樣,**Bokeh
** 擁有一系列 API 介面。比如 glpyhs 介面,該介面和 matplotllib 中的 Artists 介面非常相似,它主要用於繪制環形圖、方形圖和多邊形圖等。最近 Bokeh 又開放了一個新的圖形介面,該介面主要用於處理詞典數據或 DataFrame 數據,並用於繪制罐頭圖。
以下是一些本文沒有提到的可視化工具:
我們將利用 ggplot2 中的 diamonds 數據集,你可以在 Vincent Arelbundock's RDatasets 中找到它(pd.read_csv(' http://vincentarelbundock.github.io/Rdatasets/csv/ggplot2/diamonds.csv') ),此外我們還需要檢測是否已經安裝 feather 。
[站外圖片上傳中……(4)]
Bokeh 提供了兩個 API,一個是低級的 glyph API,另一個是高級的 Charts API。
[站外圖片上傳中……(5)]
還不是很清楚我們應該在啥時候利用 Bokeh 來進行探索性分析,不過它的互動式功能可以激發我的興趣。就個人而言,由於習慣問題我平時仍然一直使用 matplotlib 來繪圖,我還無法完全切換到 Bokeh 中。
我非常喜歡 Bokeh 的儀表盤功能和 bokeh server 的 webapps。
[站外圖片上傳中……(6)]
[站外圖片上傳中……(7)]
[站外圖片上傳中……(8)]
matplotlib 並不局限於處理 DataFrame 數據,它支持所有使用 getitem 作為鍵值的數據類型。
[站外圖片上傳中……(9)]
[站外圖片上傳中……(10)]
我們從列變數的名字中提取出軸標簽,利用 Pandas 可以更加便捷地繪制一系列共享 x 軸數據的圖形。
[站外圖片上傳中……(11)]
[站外圖片上傳中……(12)]
本文中的剩餘部分將重點介紹 seaborn和為什麼我認為它是探索性分析的強大工具。
我強烈建議你閱讀 Seaborn 的 introctory notes,這上面介紹了 seaborn 的設計邏輯和應用領域。
我們可以通過一個穩定的且易懂的 API 介面來調用 Seaborn。
事實上,seaborn 是基於 matplotlib 開發的,這意味著如果你熟悉 pyplot API的話,那麼你可以很容易地掌握 seaborn。
大多數 seaborn 繪圖函數的參數都由 x, y, hue, 和 data 構成(並不是所有的參數都是必須的)。如果你處理的對象是 DataFrame,那麼你可以直接將列變數的名稱和數據集的名稱一同傳遞到繪圖函數中。
[站外圖片上傳中……(13)]
[站外圖片上傳中……(14)]
[站外圖片上傳中……(15)]
[站外圖片上傳中……(16)]
我們可以很輕易地探究兩個變數之間的關系:
[站外圖片上傳中……(17)]
[站外圖片上傳中……(18)]
或者一次探究多個變數之間的關系:
[站外圖片上傳中……(19)]
[站外圖片上傳中……(20)]
pariplot 是 PairGrid 的一個包裝函數,它提供了 seaborn 一個重要的抽象功能——Grid。Seaborn 的 Grid 將 matplotlib 中Figure 和數據集中的變數聯系起來了。
我們有兩種方式可以和 grids 進行交互操作。其一,seaborn 提供了類似於 pairplot 的包裝函數,它提前設置了許多常見任務的參數;其二,如果你需要更多的自定義選項,那麼你可以直接利用 Grid 方法。
[站外圖片上傳中……(21)]
[站外圖片上傳中……(22)]
[站外圖片上傳中……(23)]
34312 rows × 7 columns
[站外圖片上傳中……(24)]
[站外圖片上傳中……(25)]
FaceGrid 可以通過控制分面變數來生成 Grid圖形,其中PairGrid是它的一個特例。接下來的案例中,我們將以數據集中的 cut 變數為分面變數來繪制圖像:
[站外圖片上傳中……(26)]
[站外圖片上傳中……(27)]
最後一個案例展示了如何將 seaborn 和 matplotlib 結合起來。g.axes是matplotlib.Axes的一個數組,g.fig是matplotlib.Figure的一個特例。這是使用 seaborn 時常見的一個模式:利用 seaborn 的方法來繪制圖像,然後再利用 matplotlib 來調整細節部分。
我認為 seaborn 之所以吸引人是因為它的繪圖語法具有很強的靈活性。你不會被作者所設定的圖表類型所局限住,你可以根據自己的需要創建新的圖表。
[站外圖片上傳中……(28)]
[站外圖片上傳中……(29)]
[站外圖片上傳中……(30)]
[站外圖片上傳中……(31)]
本來,我打算準備更多的例子來介紹 seaborn,但是我會將相關鏈接分享給大家。Seaborn 的說明文檔寫的非常詳細。
最後,我們將結合 scikit-learn 來介紹如何利用 GridSearch 來尋找最佳參數。
[站外圖片上傳中……(32)]
[站外圖片上傳中……(33)]
[站外圖片上傳中……(34)]
原文鏈接: http://tomaugspurger.github.io/modern-6-visualization.html
譯者:Fibears
G. python的作圖包有哪些
1. matplotlib
該python繪圖包與matlab的繪圖功能類似
2. seaborn
用來進行統計數據可視化的工具包,繪制的圖像非常漂亮,該python package也是基於matplotlib的,是純粹由python開發的
H. 無所不能的python編程是怎麼快速畫圖的呢
python繪圖工具有很多,常用的turtle海龜繪圖體系,只要引入import
turtle就可以無需安裝