① python 怎麼爬取app端數據
可以,但是不提倡這種行為 1,在手機上設置代理,代理到你的電腦上 2,再在電腦上用tcpmp或者其他圖形化的抓包工具獲得數據包,分析這些數據包找到你要的數據 3,根據前兩步的結果,寫代碼模擬app的操作獲得你需要的數據
② python可以爬取什麼數據
一、爬取我們所需要的一線鏈接
channel_extract.py
這里的一線鏈接也就是我們所說的大類鏈接:
from bs4 import BeautifulSoupimport requests
start_url = 'http://lz.ganji.com/wu/'host_url = 'http://lz.ganji.com/'def get_channel_urls(url):
wb_data = requests.get(url)
soup = BeautifulSoup(wb_data.text, 'lxml')
links = soup.select('.fenlei > dt > a') #print(links)
for link in links:
page_url = host_url + link.get('href')
print(page_url)#get_channel_urls(start_url)channel_urls = '''
http://lz.ganji.com/jiaju/
http://lz.ganji.com/rironghuo/
http://lz.ganji.com/shouji/
http://lz.ganji.com/bangong/
http://lz.ganji.com/nongyongpin/
http://lz.ganji.com/jiadian/
http://lz.ganji.com/ershoubijibendiannao/
http://lz.ganji.com/ruanjiantushu/
http://lz.ganji.com/yingyouyunfu/
http://lz.ganji.com/diannao/
http://lz.ganji.com/xianlipin/
http://lz.ganji.com/fushixiaobaxuemao/
http://lz.ganji.com/meironghuazhuang/
http://lz.ganji.com/shuma/
http://lz.ganji.com/laonianyongpin/
http://lz.ganji.com/xuniwupin/
'''
那麼拿我爬取的58同城為例就是爬取了二手市場所有品類的鏈接,也就是我說的大類鏈接;
找到這些鏈接的共同特徵,用函數將其輸出,並作為多行文本儲存起來。
二、獲取我們所需要的詳情頁面的鏈接和詳情信息
page_parsing.py
1、說說我們的資料庫:
先看代碼:
#引入庫文件from bs4 import BeautifulSoupimport requestsimport pymongo #python操作MongoDB的庫import reimport time#鏈接和建立資料庫client = pymongo.MongoClient('localhost', 27017)
ceshi = client['ceshi'] #建ceshi資料庫ganji_url_list = ceshi['ganji_url_list'] #建立表文件ganji_url_info = ceshi['ganji_url_info']123456789101112
2、判斷頁面結構是否和我們想要的頁面結構相匹配,比如有時候會有404頁面;
3、從頁面中提取我們想要的鏈接,也就是每個詳情頁面的鏈接;
這里我們要說的是一個方法就是:
item_link = link.get('href').split('?')[0]12
這里的這個link什麼類型的,這個get方法又是什麼鬼?
後來我發現了這個類型是
<class 'bs4.element.Tab>1
如果我們想要單獨獲取某個屬性,可以這樣,例如我們獲取它的 class 叫什麼
print soup.p['class']
#['title']12
還可以這樣,利用get方法,傳入屬性的名稱,二者是等價的
print soup.p.get('class')#['title']12
下面我來貼上代碼:
#爬取所有商品的詳情頁面鏈接:def get_type_links(channel, num):
list_view = '{0}o{1}/'.format(channel, str(num)) #print(list_view)
wb_data = requests.get(list_view)
soup = BeautifulSoup(wb_data.text, 'lxml')
linkOn = soup.select('.pageBox') #判斷是否為我們所需頁面的標志;
#如果爬下來的select鏈接為這樣:div.pageBox > ul > li:nth-child(1) > a > span 這里的:nth-child(1)要刪掉
#print(linkOn)
if linkOn:
link = soup.select('.zz > .zz-til > a')
link_2 = soup.select('.js-item > a')
link = link + link_2 #print(len(link))
for linkc in link:
linkc = linkc.get('href')
ganji_url_list.insert_one({'url': linkc})
print(linkc) else:
4、爬取詳情頁中我們所需要的信息
我來貼一段代碼:
#爬取趕集網詳情頁鏈接:def get_url_info_ganji(url):
time.sleep(1)
wb_data = requests.get(url)
soup = BeautifulSoup(wb_data.text, 'lxml') try:
title = soup.select('head > title')[0].text
timec = soup.select('.pr-5')[0].text.strip()
type = soup.select('.det-infor > li > span > a')[0].text
price = soup.select('.det-infor > li > i')[0].text
place = soup.select('.det-infor > li > a')[1:]
placeb = [] for placec in place:
placeb.append(placec.text)
tag = soup.select('.second-dt-bewrite > ul > li')[0].text
tag = ''.join(tag.split()) #print(time.split())
data = { 'url' : url, 'title' : title, 'time' : timec.split(), 'type' : type, 'price' : price, 'place' : placeb, 'new' : tag
}
ganji_url_info.insert_one(data) #向資料庫中插入一條數據;
print(data) except IndexError: 21222324252627282930
四、我們的主函數怎麼寫?
main.py
看代碼:
#先從別的文件中引入函數和數據:from multiprocessing import Poolfrom page_parsing import get_type_links,get_url_info_ganji,ganji_url_listfrom channel_extract import channel_urls#爬取所有鏈接的函數:def get_all_links_from(channel):
for i in range(1,100):
get_type_links(channel,i)#後執行這個函數用來爬取所有詳情頁的文件:if __name__ == '__main__':# pool = Pool()# # pool = Pool()# pool.map(get_url_info_ganji, [url['url'] for url in ganji_url_list.find()])# pool.close()# pool.join()#先執行下面的這個函數,用來爬取所有的鏈接:if __name__ == '__main__':
pool = Pool()
pool = Pool()
pool.map(get_all_links_from,channel_urls.split())
pool.close()
pool.join()
五、計數程序
count.py
用來顯示爬取數據的數目;
import timefrom page_parsing import ganji_url_list,ganji_url_infowhile True: # print(ganji_url_list.find().count())
# time.sleep(5)
print(ganji_url_info.find().count())
time.sleep(5)
③ python 爬蟲(學了3天寫出的代碼)
import requests import parsel import threading,os import queue
class Thread(threading.Thread): def init (self,queue,path): threading.Thread. init (self) self.queue = queue self.path = path
def download_novel(url, path): res = get_response(url) selctor = parsel.Selector(res) title = selctor.css('.bookname > h1::text').get() print(title) content = ' '.join(selctor.css('#content::text').getall()) # 使用join方法改變內容; with open( path + title + ".txt","w",encoding='utf-8') as f: f.write(content) print(title,'保存成功!') f.close()
def get_response(url): # 獲得網站源碼; response = requests.get(url) response.encoding = 'utf-8' return response.text
if name == ' main ': # 函數入口 url = str(input('請輸入你要下載小說的url:')) response = get_response(url) sel = parsel.Selector(response) novelname = sel.css('#info > h1::text').get() urllist = sel.css('.box_con p dl dd a::attr(href)').getall() queue = queue.Queue() path = './{}/'.format(novelname)
④ 如何用python 爬蟲抓取金融數據
獲取數據是數據分析中必不可少的一部分,而網路爬蟲是是獲取數據的一個重要渠道之一。鑒於此,我拾起了Python這把利器,開啟了網路爬蟲之路。
本篇使用的版本為python3.5,意在抓取證券之星上當天所有A股數據。程序主要分為三個部分:網頁源碼的獲取、所需內容的提取、所得結果的整理。
一、網頁源碼的獲取
很多人喜歡用python爬蟲的原因之一就是它容易上手。只需以下幾行代碼既可抓取大部分網頁的源碼。
為了減少干擾,我先用正則表達式從整個頁面源碼中匹配出以上的主體部分,然後從主體部分中匹配出每隻股票的信息。代碼如下。
pattern=re.compile('<tbody[sS]*</tbody>')
body=re.findall(pattern,str(content)) #匹配<tbody和</tbody>之間的所有代碼pattern=re.compile('>(.*?)<')
stock_page=re.findall(pattern,body[0]) #匹配>和<之間的所有信息
其中compile方法為編譯匹配模式,findall方法用此匹配模式去匹配出所需信息,並以列表的方式返回。正則表達式的語法還挺多的,下面我只羅列所用到符號的含義。
語法 說明
. 匹配任意除換行符「 」外的字元
* 匹配前一個字元0次或無限次
? 匹配前一個字元0次或一次
s 空白字元:[<空格> fv]
S 非空白字元:[^s]
[...] 字元集,對應的位置可以是字元集中任意字元
(...) 被括起來的表達式將作為分組,裡面一般為我們所需提取的內容
正則表達式的語法挺多的,也許有大牛隻要一句正則表達式就可提取我想提取的內容。在提取股票主體部分代碼時發現有人用xpath表達式提取顯得更簡潔一些,看來頁面解析也有很長的一段路要走。
三、所得結果的整理
通過非貪婪模式(.*?)匹配>和<之間的所有數據,會匹配出一些空白字元出來,所以我們採用如下代碼把空白字元移除。
stock_last=stock_total[:] #stock_total:匹配出的股票數據for data in stock_total: #stock_last:整理後的股票數據
if data=='':
stock_last.remove('')
最後,我們可以列印幾列數據看下效果,代碼如下
print('代碼',' ','簡稱',' ',' ','最新價',' ','漲跌幅',' ','漲跌額',' ','5分鍾漲幅')for i in range(0,len(stock_last),13): #網頁總共有13列數據
print(stock_last[i],' ',stock_last[i+1],' ',' ',stock_last[i+2],' ',' ',stock_last[i+3],' ',' ',stock_last[i+4],' ',' ',stock_last[i+5])
⑤ Python爬取知乎與我所理解的爬蟲與反爬蟲
關於知乎驗證碼登陸的問題,用到了Python上一個重要的圖片處理庫PIL,如果不行,就把圖片存到本地,手動輸入。
通過對知乎登陸是的抓包,可以發現登陸知乎,需要post三個參數,一個是賬號,一個是密碼,一個是xrsf。
這個xrsf隱藏在表單裡面,每次登陸的時候,應該是伺服器隨機產生一個字元串。所有,要模擬登陸的時候,必須要拿到xrsf。
用chrome (或者火狐 httpfox 抓包分析)的結果:
所以,必須要拿到xsrf的數值,注意這是一個動態變化的參數,每次都不一樣。
拿到xsrf,下面就可以模擬登陸了。
使用requests庫的session對象,建立一個會話的好處是,可以把同一個用戶的不同請求聯系起來,直到會話結束都會自動處理cookies。
注意:cookies 是當前目錄的一個文件,這個文件保存了知乎的cookie,如果是第一個登陸,那麼當然是沒有這個文件的,不能通過cookie文件來登陸。必須要輸入密碼。
這是登陸的函數,通過login函數來登陸,post 自己的賬號,密碼和xrsf 到知乎登陸認證的頁面上去,然後得到cookie,將cookie保存到當前目錄下的文件裡面。下次登陸的時候,直接讀取這個cookie文件。
這是cookie文件的內容
以下是源碼:
運行結果:
https://github.com/zhaozhengcoder/Spider/tree/master/spider_hu
反爬蟲最基本的策略:
爬蟲策略:
這兩個都是在http協議的報文段的檢查,同樣爬蟲端可以很方便的設置這些欄位的值,來欺騙伺服器。
反爬蟲進階策略:
1.像知乎一樣,在登錄的表單裡面放入一個隱藏欄位,裡面會有一個隨機數,每次都不一樣,這樣除非你的爬蟲腳本能夠解析這個隨機數,否則下次爬的時候就不行了。
2.記錄訪問的ip,統計訪問次數,如果次數太高,可以認為這個ip有問題。
爬蟲進階策略:
1.像這篇文章提到的,爬蟲也可以先解析一下隱藏欄位的值,然後再進行模擬登錄。
2.爬蟲可以使用ip代理池的方式,來避免被發現。同時,也可以爬一會休息一會的方式來降低頻率。另外,伺服器根據ip訪問次數來進行反爬,再ipv6沒有全面普及的時代,這個策略會很容易造成誤傷。(這個是我個人的理解)。
通過Cookie限制進行反爬蟲:
和Headers校驗的反爬蟲機制類似,當用戶向目標網站發送請求時,會再請求數據中攜帶Cookie,網站通過校驗請求信息是否存在Cookie,以及校驗Cookie的值來判定發起訪問請求的到底是真實的用戶還是爬蟲,第一次打開網頁會生成一個隨機cookie,如果再次打開網頁這個Cookie不存在,那麼再次設置,第三次打開仍然不存在,這就非常有可能是爬蟲在工作了。
反爬蟲進進階策略:
1.數據投毒,伺服器在自己的頁面上放置很多隱藏的url,這些url存在於html文件文件裡面,但是通過css或者js使他們不會被顯示在用戶看到的頁面上面。(確保用戶點擊不到)。那麼,爬蟲在爬取網頁的時候,很用可能取訪問這個url,伺服器可以100%的認為這是爬蟲乾的,然後可以返回給他一些錯誤的數據,或者是拒絕響應。
爬蟲進進階策略:
1.各個網站雖然需要反爬蟲,但是不能夠把網路,谷歌這樣的搜索引擎的爬蟲給幹了(幹了的話,你的網站在網路都說搜不到!)。這樣爬蟲應該就可以冒充是網路的爬蟲去爬。(但是ip也許可能被識破,因為你的ip並不是網路的ip)
反爬蟲進進進階策略:
給個驗證碼,讓你輸入以後才能登錄,登錄之後,才能訪問。
爬蟲進進進階策略:
圖像識別,機器學習,識別驗證碼。不過這個應該比較難,或者說成本比較高。
參考資料:
廖雪峰的python教程
靜覓的python教程
requests庫官方文檔
segmentfault上面有一個人的關於知乎爬蟲的博客,找不到鏈接了
⑥ python+alipay支付寶支付接入(沙箱測試)
本文依據自己的理解和開發編寫的流程中間可能有些邏輯問題歡迎大佬指出。
本文主要說的是沙箱接入,正式應用需要注冊應用的步驟。如果你想接入正式應用建議先把沙箱搞通。原因其一正式應用就是換appid的事,其二正式應用搞壞了折的是真錢!!
調試支付寶支付需要先 在 支付寶開放平台 進行注冊,入駐為 「自助研發者」;鏈接為 https://open.alipay.com/platform/home.htm
第一次進入需要填寫詳細信息 - 注意:切換為 自研開發者
完善個人信息後,在個人管理後台可看到 「沙箱」 服務
註:沙箱為支付寶提供的調試支付的測試環境,在該環境下,可模擬和調試支付流程
具體位置如下: 開發者中心 - 首頁
點擊 研發服務 - 進入沙箱後, 在沙箱應用選項中可以看到支付寶提供的測試應用
註:當您的網站上線運營時,需要在開放平台申請一個應用;並填寫相關信息審核後,方可使用支付功能;沙箱應用為支付寶提供開發者測試用的應用
支付過程中涉及到請求和響應的簽名校驗;
在linux終端中 輸入openssl 進入 交互環境
RSA 鑰匙用途
公鑰加密/私鑰解密
私鑰簽名/公鑰驗簽
點擊 沙箱應用展示信息頁中的 RSA2密鑰 的 設置/查看
提交我方公鑰後,彈框會顯示 支付寶公鑰;該公鑰需要復制保存下來;
保存流程如下:
支付時序圖