⑴ 問一下python里的numpy的正確讀法是什麼
numpy讀法是:英['nʌmpi],NumPy是Python中科學計算的基礎包。
它是一個Python庫,提供多維數組對象,各種派生對象(如掩碼數組和矩陣),以及用於數組快速操作的各種常式,包括數學邏輯,形狀操作,I / O離散傅立葉變換,隨機模擬等等。
NumPy包的核心是ndarray對象。這封裝了同構數據類型的n維數組,許多操作在編譯代碼中執行以提高性能。
NumPy數組和標准Python序列之間有幾個重要的區別:
1、NumPy數組在創建時具有固定大小,與Python列表(可以動態增長)不同。更改ndarray的大小將創建一個新數組並刪除原始數組。
2、NumPy數組中的元素都需要具有相同的數據類型,因此在內存中的大小相同。例外:可以有(Python,包括NumPy)對象的數組,從而允許不同大小的元素的數組。
3、NumPy數組有助於對大量數據進行高級數學和其他類型的操作。通常,與使用Python的內置序列相比,這些操作的執行效率更高,代碼更少。
4、越來越多的基於Python的科學和數學軟體包正在使用NumPy數組;雖然這些通常支持Python序列輸入,但它們在處理之前將這些輸入轉換為NumPy數組,並且它們通常輸出NumPy數組。
⑵ python關於numpy基礎問題
Python發展至今,已經有越來越多的人使用python進行科學技術,NumPY是python中的一款高性能科學計算和數據分析的基礎包。
ndarray
ndarray(以下簡稱數組)是numpy的數組對象,需要注意的是,它是同構的,也就是說其中的所有元素必須是相同的類型。其中每個數組都有一個shape和dtype。
shape既是數組的形狀,比如
復制代碼
1 import numpy as np
2 from numpy.random import randn
3
4 arr = randn(12).reshape(3, 4)
5
6 arr
7
8 [[ 0.98655235 1.20830283 -0.72135183 0.40292924]
9 [-0.05059849 -0.02714873 -0.62775486 0.83222997]
10 [-0.84826071 -0.29484606 -0.76984902 0.09025059]]
11
12 arr.shape
13 (3, 4)
復制代碼
其中(3, 4)即代表arr是3行4列的數組,其中dtype為float64
一下函數可以用來創建數組
array將輸入數據轉換為ndarray,類型可制定也可默認
asarray將輸入轉換為ndarray
arange類似內置range
ones、ones_like根據形狀創建一個全1的數組、後者可以復制其他數組的形狀
zeros、zeros_like類似上面,全0
empty、empty_like創建新數組、只分配空間
eye、identity創建對角線為1的對角矩陣
數組的轉置和軸對稱
轉置是多維數組的基本運算之一。可以使用.T屬性或者transpose()來實現。.T就是進行軸對換而transpose則可以接收參數進行更豐富的變換
復制代碼
arr = np.arange(6).reshape((2,3))
print arr
[[0 1 2]
[3 4 5]]
print arr.T
[[0 3]
[1 4]
[2 5]]
arr = np.arange(24).reshape((2,3,4))
print arr
[[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
[[12 13 14 15]
[16 17 18 19]
[20 21 22 23]]]
print arr.transpose((0,1,2))
[[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
[[12 13 14 15]
[16 17 18 19]
[20 21 22 23]]]
復制代碼
數組的運算
大小相等的數組之間做任何算術運算都會將運算應用到元素級別。
復制代碼
1 arr = np.arange(9).reshape(3, 3)
2 print arr
3
4 [[0 1 2]
5 [3 4 5]
6 [6 7 8]]
7
8 print arr*arr
9
10 [[ 0 1 4]
11 [ 9 16 25]
12 [36 49 64]]
13
14 print arr+arr
15
16 [[ 0 2 4]
17 [ 6 8 10]
18 [12 14 16]]
19
20 print arr*4
21
22 [[ 0 4 8]
23 [12 16 20]
24 [24 28 32]]
復制代碼
numpy的簡單計算中,ufunc通用函數是對數組中的數據執行元素級運算的函數。
如:
復制代碼
arr = np.arange(6).reshape((2,3))
print arr
[[0 1 2]
[3 4 5]]
print np.square(arr)
[[ 0 1 4]
[ 9 16 25]]
復制代碼
類似的有:abs,fabs,sqrt,square,exp,log,sign,ceil,floor,rint,modf,isnan,isfinite,isinf,cos,cosh,sin,sinh,tan,tanh,
add,subtract,multiply,power,mod,equal,等等
⑶ Python-Numpy基礎
如果你已經裝有 Anaconda,那麼你可以使用以下命令通過終端或命令提示符安裝 NumPy:
conda install numpy
如果你沒有 Anaconda,那麼你可以使用以下命令從終端上安裝 NumPy:
pip install numpy
安裝好 NumPy 後,你就可以啟動 Jupyter notebook 開始學習了。接下來從 NumPy 數組開始
就好比一個矩陣
numpy.empty 方法用來創建一個指定形狀(shape)、數據類型(dtype)且未初始化的數組:
參數說明:
參數 描述
shape 數組形狀
dtype 數據類型,可選
order 有"C"和"F"兩個選項,分別代表,行優先和列優先,在計算機內存中的存儲元素的順序。
舉例
輸出結果
創建指定大小的數組,數組元素以 0 來填充:
舉例
結果輸出
創建指定形狀的數組,數組元素以 1 來填充:
舉例
同樣是類型,但是注意這個和上邊的區別,一個是數組的形式,一個是矩陣的形式。
⑷ (Python)numpy 常用操作
不放回取樣:
從列表ori中不放回地取n個數
通過這種操作,我們可以獲得一個二維列表的子集:
(如果這個二維列表是圖的鄰接矩陣,那麼就是對圖進行隨機采樣,獲得一個圖的子圖)
首先要注意,"+" 操作對於list和numpy.array是完全不同的
python 中的list,"+"代表拼接:
在numpy.array中,"+"代表矩陣相加
keepdim指的是維度不變,常在sum中使用。如:
會發現,keepdim之後還是二維的
這里要注意,pytorch和numpy里max()函數的返回值是不同的
pytorch:
也就是說,max(1)代表求第一維的最大值,對於二維數組來說,就是求縱向的最大值,然後,第一個返回值是最大值所形成數組,第二個返回值是最大值所在的索引。這一個技巧在機器學習的分類任務中很常用,比如我們的分類任務是把數據分成m類,那麼最終我們模型的輸出是m維的,對於n個樣本就是n*m,如果要判斷我們的模型最終的分類結果,就是找n個樣本里,每個樣本m維輸出的最大值索引,代表樣本是這個類的可能性最大。我們可以方便地用這種方式找到最大值地索引:
其中test_out是模型輸出,predict_y則是分類結果
另外一點要注意的是,numpy與pytorch不同,numpy的max()只有一個返回值:
也就是說,numpy.max()不會返回最大值所在的索引
⑸ numpy裡面的mean(x==y),python
這段代碼:是計算自己訓練出來的模型的准確率的
那就是看實際的和預測的是不是相等(用==判斷),
⑹ 關於python代碼,line[:-1]的意思
line[:-1]其實就是去除了這行文本的最後一個字元(換行符)後剩下的部分。
line = "abcde"
line[:-1]
結果為:'abcd'
line = "abcde"
line[::-1]
結果為:'edcba'
(6)pythonnumpy絕對值擴展閱讀:
1.先定義一個array數據
1 import numpy as np2 x=np.array([1,4,3,-1,6,9])
2.現在我們可以看看argsort()函數的具體功能是什麼:
x.argsort()
輸出定義為y=array([3,0,2,1,4,5])。
我們發現argsort()函數是將x中的元素從小到大排列,提取其對應的index(索引),然後輸出到y。例如:x[3]=-1最小,所以y[0]=3,x[5]=9最大,所以y[5]=5。
3.由於在程序中遇到了類似於np.argsort()[num]的形式,一直看不明白,就自己去python環境自己試了下:
ps:這里的num的絕對值小於等於x中元素的個數
當num>=0時,np.argsort()[num]就可以理解為y[num];
當num<0時,np.argsort()[num]就是把數組y的元素反向輸出,例如np.argsort()[-1]即輸出x中最大值對應的index,np.argsort()[-2]即輸出x中第二大值對應的index,依此類推。
這個是num>=0時的輸出。
⑺ 圖解Python中數據分析工具包:Numpy
numpy是我學習python遇到的第一個第三方工具包,它可以讓我們快速上手數據分析。numpy提供了向量和矩陣計算和處理的大部分介面。目前很多python的基礎工具包都是基於numpy開發而來,比如 scikit-learn, SciPy, pandas, 還有 tensorflow。 numpy可以處理表格、圖像、文本等數據,極大地方便我們處理和分析數據。本文主要內容來自於Jay Alammar的一篇文章以及自己學習記錄。
原文地址: https://jalammar.github.io/visual-numpy/
使用過程中,如果希望 Numpy 能創建並初始化數組的值, Numpy 提供了 ones()、zeros() 和 random.random() 等方法。只需傳遞希望生成的元素數量(大小)即可:
還可以進行如下操作:
一般,需要數組和單個數字之間也可以進行運算操作(即向量和標量之間的運算)。比如說 data * 1.6 ,numpy利用一個叫做廣播機制(broadcasting)的概念實現了這一運算。:
我們可以通過索引對numpy數據獲取任意位置數據或者對數據切片
我們可以通過numpy自帶的函數對數據進行一些想要的聚合計算,比如min、max 和 sum ,還可以使用 mean 得到平均值,使用 prod 得到所有元素的乘積,使用 std 得到標准差等等。
上述操作不僅可以應用於單維度數據,還可以用於多維度數據{(矩陣)。
同樣可以使用ones()、zeros() 和 random.random()創建矩陣,只要寫入一個描述矩陣維數的元組即可:
numpy還可以處理更高維度的數據:
創建更高維度數據只需要在創建時,在參數中增加一個維度值即可:
根據數組中數值是否滿足條件,輸出為True或False.
希望得到滿足條件的索引,用np.where函數實現.
根據索引得到對應位置的值.
np.where也可以接受另兩個可選擇的參數a和b。當條件滿足時,輸出a,反之輸出b.
獲取數組最大值和最小值的索引可以使用np.argmax和np.argmin.
1、numpy.tofile()和numpy.fromfile()
保存為二進制格式,但是不保存數組形狀和數據類型, 即都壓縮為一維的數組,需要自己記錄數據的形狀,讀取的時候再reshape.
2、numpy.save() 和 numpy.load()
保存為二進制格式,保存數組形狀和數據類型, 不需要進行reshape
實例:
3、numpy.savetxt()和numpy.loadtxt()
np.savetxt(fname,array,fmt=』%.18e』,delimiter=None)
Parameter解釋:
array:待存入文件的數組。
fmt:寫入文件的格式
實例:
⑻ python數據分析-科學計數法
用python進行數據分析時,查看數據,經常發生數據被自動顯示成科學記數法的模式,或者多行多列數據只顯示前後幾行幾列,中間都是省略號的情形。
import numpy as npnp.set_printoptions(suppress=True, threshold=np.nan)
suppress=True 取消科學記數法
threshold=np.nan 完整輸出(沒有省略號)
display.[max_categories, max_columns, max_colwidth, max_info_columns, max_info_rows, max_rows, max_seq_items, memory_usage, multi_sparse, notebook_repr_html, pprint_nest_depth, precision, show_dimensions]
詳細介紹文檔: pd.set_option
可以在pd.set_option設置display.float_format參數來以政策小數顯示,比如下面設置顯示到小數點後3位
pd.set_option('display.float_format', lambda x: '%.3f' % x)
set_option中還有其它一些控制設置,包括默認顯示列數,行數等等
pd.set_option('display.max_columns',5, 'display.max_rows', 100)
import pandas as pdpd.set_option('display.max_columns', 10000, 'display.max_rows', 10000)
display.max_columns 顯示最大列數
display.max_rows 顯示最大行數
1、pd.set_option(『expand_frame_repr』, False)
True就是可以換行顯示。設置成False的時候不允許換行
2、pd.set_option(『display.max_rows』, 10)
pd.set_option(『display.max_columns』, 10)
顯示的最大行數和列數,如果超額就顯示省略號,這個指的是多少個dataFrame的列。如果比較多又不允許換行,就會顯得很亂。
3、pd.set_option(『precision』, 5)
顯示小數點後的位數
4、pd.set_option(『large_repr』, A)
truncate表示截斷,info表示查看信息,一般選truncate
5、pd.set_option(『max_colwidth』, 5)
列長度
6、pd.set_option(『chop_threshold』, 0.5)
絕對值小於0.5的顯示0.0
7、pd.set_option(『colheader_justify』, 『left』)
顯示居中還是左邊,
8、pd.set_option(『display.width』, 200)
橫向最多顯示多少個字元, 一般80不適合橫向的屏幕,平時多用200.
np.set_printoptions(precision=None, threshold=None, edgeitems=None, linewidth=None, suppress=None, nanstr=None, infstr=None, formatter=None)
參數:
precision 設置浮點數的精度 (默認值:8)
threshold 設置顯示的數目(超出部分省略號顯示, np.nan是完全輸出,默認值:1000)
edgeitems 設置顯示前幾個,後幾個 (默認值:3)
suppress 設置是否科學記數法顯示 (默認值:False)
示例如下:
import numpy as npnp.set_printoptions(precision=4, threshold=8, edgeitems=4, linewidth=75, suppress=True, nanstr='nan', infstr='inf')print("precision=4, 浮點數精確小數點後4位: ", np.array([1.23446789]))print("threshold=8, edgeitems=4, 顯示8個,前4後4: ", np.arange(10))np.set_printoptions(formatter={'all': lambda x :'int:'+str(-x)})print("formatter, 格式化輸出: ", np.arange(5))
輸出如下:
[圖片上傳失敗...(image-15f596-1587702700460)]
注意:precision自動四捨五入
詳細介紹文檔: np.set_printoptions
pd.set_option
pd.set_option(pat, value)
⑼ Python基礎 numpy中的常見函數有哪些
有些Python小白對numpy中的常見函數不太了解,今天小編就整理出來分享給大家。
Numpy是Python的一個科學計算的庫,提供了矩陣運算的功能,其一般與Scipy、matplotlib一起使用。其實,list已經提供了類似於矩陣的表示形式,不過numpy為我們提供了更多的函數。
數組常用函數
1.where()按條件返回數組的索引值
2.take(a,index)從數組a中按照索引index取值
3.linspace(a,b,N)返回一個在(a,b)范圍內均勻分布的數組,元素個數為N個
4.a.fill()將數組的所有元素以指定的值填充
5.diff(a)返回數組a相鄰元素的差值構成的數組
6.sign(a)返回數組a的每個元素的正負符號
7.piecewise(a,[condlist],[funclist])數組a根據布爾型條件condlist返回對應元素結果
8.a.argmax(),a.argmin()返回a最大、最小元素的索引
改變數組維度
a.ravel(),a.flatten():將數組a展平成一維數組
a.shape=(m,n),a.reshape(m,n):將數組a轉換成m*n維數組
a.transpose,a.T轉置數組a
數組組合
1.hstack((a,b)),concatenate((a,b),axis=1)將數組a,b沿水平方向組合
2.vstack((a,b)),concatenate((a,b),axis=0)將數組a,b沿豎直方向組合
3.row_stack((a,b))將數組a,b按行方向組合
4.column_stack((a,b))將數組a,b按列方向組合
數組分割
1.split(a,n,axis=0),vsplit(a,n)將數組a沿垂直方向分割成n個數組
2.split(a,n,axis=1),hsplit(a,n)將數組a沿水平方向分割成n個數組
數組修剪和壓縮
1.a.clip(m,n)設置數組a的范圍為(m,n),數組中大於n的元素設定為n,小於m的元素設定為m
2.a.compress()返回根據給定條件篩選後的數組
數組屬性
1.a.dtype數組a的數據類型
2.a.shape數組a的維度
3.a.ndim數組a的維數
4.a.size數組a所含元素的總個數
5.a.itemsize數組a的元素在內存中所佔的位元組數
6.a.nbytes整個數組a所佔的內存空間7.a.astype(int)轉換a數組的類型為int型
數組計算
1.average(a,weights=v)對數組a以權重v進行加權平均
2.mean(a),max(a),min(a),middle(a),var(a),std(a)數組a的均值、最大值、最小值、中位數、方差、標准差
3.a.prod()數組a的所有元素的乘積
4.a.cumprod()數組a的元素的累積乘積
5.cov(a,b),corrcoef(a,b)數組a和b的協方差、相關系數
6.a.diagonal()查看矩陣a對角線上的元素7.a.trace()計算矩陣a的跡,即對角線元素之和
以上就是numpy中的常見函數。更多Python學習推薦:PyThon學習網教學中心。
⑽ Python—Numpy庫的用法
NumPy 是一個 Python 包。 它代表 「Numeric Python」。 它是一個由多維數組對象和用於處理數組的常式集合組成的庫。
NumPy 支持比 Python 更多種類的數值類型。 下表顯示了 NumPy 中定義的不同標量數據類型。
[('age', 'i1')]
[10 20 30]
[('abc', 21, 50.0), ('xyz', 18, 75.0)]
每個內建類型都有一個唯一定義它的字元代碼:
[[1, 2] [3, 4] [5, 6]]
[[[ 0, 1, 2] [ 3, 4, 5] [ 6, 7, 8] [ 9, 10, 11]] [[12, 13, 14] [15, 16, 17] [18, 19, 20] [21, 22, 23]]]
[1 2 3]
[1 2 3]
[(1, 2, 3) (4, 5)]
原始數組是: [[ 0 5 10 15] [20 25 30 35] [40 45 50 55]]
修改後的數組是: 0 5 10 15 20 25 30 35 40 45 50 55
原始數組是: [[ 0 5 10 15] [20 25 30 35] [40 45 50 55]]
原始數組的轉置是: [[ 0 20 40] [ 5 25 45] [10 30 50] [15 35 55]]
修改後的數組是: 0 5 10 15 20 25 30 35 40 45 50 55
C風格是橫著順序
F風格是豎著的順序
原始數組是: [[ 0 5 10 15] [20 25 30 35] [40 45 50 55]]
修改後的數組是: [[ 0 10 20 30] [ 40 50 60 70] [ 80 90 100 110]]
第一個數組: [[ 0 5 10 15] [20 25 30 35] [40 45 50 55]]
第二個數組: [1 2 3 4]
修改後的數組是: 0:1 5:2 10:3 15:4 20:1 25:2 30:3 35:4 40:1 45:2 50:3 55:4
原始數組: [[0 1 2 3] [4 5 6 7]]
調用 flat 函數之後: 5
原數組: [[0 1 2 3] [4 5 6 7]]
展開的數組:默認是A [0 1 2 3 4 5 6 7]
以 F 風格順序展開的數組: [0 4 1 5 2 6 3 7]
原數組: [[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11]]
轉置數組: [[ 0 4 8] [ 1 5 9] [ 2 6 10] [ 3 7 11]]