⑴ python數據統計分析
1. 常用函數庫
scipy包中的stats模塊和statsmodels包是python常用的數據分析工具,scipy.stats以前有一個models子模塊,後來被移除了。這個模塊被重寫並成為了現在獨立的statsmodels包。
scipy的stats包含一些比較基本的工具,比如:t檢驗,正態性檢驗,卡方檢驗之類,statsmodels提供了更為系統的統計模型,包括線性模型,時序分析,還包含數據集,做圖工具等等。
2. 小樣本數據的正態性檢驗
(1) 用途
夏皮羅維爾克檢驗法 (Shapiro-Wilk) 用於檢驗參數提供的一組小樣本數據線是否符合正態分布,統計量越大則表示數據越符合正態分布,但是在非正態分布的小樣本數據中也經常會出現較大的W值。需要查表來估計其概率。由於原假設是其符合正態分布,所以當P值小於指定顯著水平時表示其不符合正態分布。
正態性檢驗是數據分析的第一步,數據是否符合正態性決定了後續使用不同的分析和預測方法,當數據不符合正態性分布時,我們可以通過不同的轉換方法把非正太態數據轉換成正態分布後再使用相應的統計方法進行下一步操作。
(2) 示例
(3) 結果分析
返回結果 p-value=0.029035290703177452,比指定的顯著水平(一般為5%)小,則拒絕假設:x不服從正態分布。
3. 檢驗樣本是否服務某一分布
(1) 用途
科爾莫戈羅夫檢驗(Kolmogorov-Smirnov test),檢驗樣本數據是否服從某一分布,僅適用於連續分布的檢驗。下例中用它檢驗正態分布。
(2) 示例
(3) 結果分析
生成300個服從N(0,1)標准正態分布的隨機數,在使用k-s檢驗該數據是否服從正態分布,提出假設:x從正態分布。最終返回的結果,p-value=0.9260909172362317,比指定的顯著水平(一般為5%)大,則我們不能拒絕假設:x服從正態分布。這並不是說x服從正態分布一定是正確的,而是說沒有充分的證據證明x不服從正態分布。因此我們的假設被接受,認為x服從正態分布。如果p-value小於我們指定的顯著性水平,則我們可以肯定地拒絕提出的假設,認為x肯定不服從正態分布,這個拒絕是絕對正確的。
4.方差齊性檢驗
(1) 用途
方差反映了一組數據與其平均值的偏離程度,方差齊性檢驗用以檢驗兩組或多組數據與其平均值偏離程度是否存在差異,也是很多檢驗和演算法的先決條件。
(2) 示例
(3) 結果分析
返回結果 p-value=0.19337536323599344, 比指定的顯著水平(假設為5%)大,認為兩組數據具有方差齊性。
5. 圖形描述相關性
(1) 用途
最常用的兩變數相關性分析,是用作圖描述相關性,圖的橫軸是一個變數,縱軸是另一變數,畫散點圖,從圖中可以直觀地看到相關性的方向和強弱,線性正相關一般形成由左下到右上的圖形;負面相關則是從左上到右下的圖形,還有一些非線性相關也能從圖中觀察到。
(2) 示例
(3) 結果分析
從圖中可以看到明顯的正相關趨勢。
6. 正態資料的相關分析
(1) 用途
皮爾森相關系數(Pearson correlation coefficient)是反應兩變數之間線性相關程度的統計量,用它來分析正態分布的兩個連續型變數之間的相關性。常用於分析自變數之間,以及自變數和因變數之間的相關性。
(2) 示例
(3) 結果分析
返回結果的第一個值為相關系數表示線性相關程度,其取值范圍在[-1,1],絕對值越接近1,說明兩個變數的相關性越強,絕對值越接近0說明兩個變數的相關性越差。當兩個變數完全不相關時相關系數為0。第二個值為p-value,統計學上,一般當p-value<0.05時,可以認為兩變數存在相關性。
7. 非正態資料的相關分析
(1) 用途
斯皮爾曼等級相關系數(Spearman』s correlation coefficient for ranked data ),它主要用於評價順序變數間的線性相關關系,在計算過程中,只考慮變數值的順序(rank, 值或稱等級),而不考慮變數值的大小。常用於計算類型變數的相關性。
(2) 示例
(3) 結果分析
返回結果的第一個值為相關系數表示線性相關程度,本例中correlation趨近於1表示正相關。第二個值為p-value,p-value越小,表示相關程度越顯著。
8. 單樣本T檢驗
(1) 用途
單樣本T檢驗,用於檢驗數據是否來自一致均值的總體,T檢驗主要是以均值為核心的檢驗。注意以下幾種T檢驗都是雙側T檢驗。
(2) 示例
(3) 結果分析
本例中生成了2列100行的數組,ttest_1samp的第二個參數是分別對兩列估計的均值,p-value返回結果,第一列1.47820719e-06比指定的顯著水平(一般為5%)小,認為差異顯著,拒絕假設;第二列2.83088106e-01大於指定顯著水平,不能拒絕假設:服從正態分布。
9. 兩獨立樣本T檢驗
(1) 用途
由於比較兩組數據是否來自於同一正態分布的總體。注意:如果要比較的兩組數據不滿足方差齊性, 需要在ttest_ind()函數中添加參數equal_var = False。
(2) 示例
(3) 結果分析
返回結果的第一個值為統計量,第二個值為p-value,pvalue=0.19313343989106416,比指定的顯著水平(一般為5%)大,不能拒絕假設,兩組數據來自於同一總結,兩組數據之間無差異。
10. 配對樣本T檢驗
(1) 用途
配對樣本T檢驗可視為單樣本T檢驗的擴展,檢驗的對象由一群來自正態分布獨立樣本更改為二群配對樣本觀測值之差。它常用於比較同一受試對象處理的前後差異,或者按照某一條件進行兩兩配對分別給與不同處理的受試對象之間是否存在差異。
(2) 示例
(3) 結果分析
返回結果的第一個值為統計量,第二個值為p-value,pvalue=0.80964043445811551,比指定的顯著水平(一般為5%)大,不能拒絕假設。
11. 單因素方差分析
(1) 用途
方差分析(Analysis of Variance,簡稱ANOVA),又稱F檢驗,用於兩個及兩個以上樣本均數差別的顯著性檢驗。方差分析主要是考慮各組之間的平均數差別。
單因素方差分析(One-wayAnova),是檢驗由單一因素影響的多組樣本某因變數的均值是否有顯著差異。
當因變數Y是數值型,自變數X是分類值,通常的做法是按X的類別把實例成分幾組,分析Y值在X的不同分組中是否存在差異。
(2) 示例
(3) 結果分析
返回結果的第一個值為統計量,它由組間差異除以組間差異得到,上例中組間差異很大,第二個返回值p-value=6.2231520821576832e-19小於邊界值(一般為0.05),拒絕原假設, 即認為以上三組數據存在統計學差異,並不能判斷是哪兩組之間存在差異 。只有兩組數據時,效果同 stats.levene 一樣。
12. 多因素方差分析
(1) 用途
當有兩個或者兩個以上自變數對因變數產生影響時,可以用多因素方差分析的方法來進行分析。它不僅要考慮每個因素的主效應,還要考慮因素之間的交互效應。
(2) 示例
(3) 結果分析
上述程序定義了公式,公式中,"~"用於隔離因變數和自變數,」+「用於分隔各個自變數, ":"表示兩個自變數交互影響。從返回結果的P值可以看出,X1和X2的值組間差異不大,而組合後的T:G的組間有明顯差異。
13. 卡方檢驗
(1) 用途
上面介紹的T檢驗是參數檢驗,卡方檢驗是一種非參數檢驗方法。相對來說,非參數檢驗對數據分布的要求比較寬松,並且也不要求太大數據量。卡方檢驗是一種對計數資料的假設檢驗方法,主要是比較理論頻數和實際頻數的吻合程度。常用於特徵選擇,比如,檢驗男人和女人在是否患有高血壓上有無區別,如果有區別,則說明性別與是否患有高血壓有關,在後續分析時就需要把性別這個分類變數放入模型訓練。
基本數據有R行C列, 故通稱RC列聯表(contingency table), 簡稱RC表,它是觀測數據按兩個或更多屬性(定性變數)分類時所列出的頻數表。
(2) 示例
(3) 結果分析
卡方檢驗函數的參數是列聯表中的頻數,返回結果第一個值為統計量值,第二個結果為p-value值,p-value=0.54543425102570975,比指定的顯著水平(一般5%)大,不能拒絕原假設,即相關性不顯著。第三個結果是自由度,第四個結果的數組是列聯表的期望值分布。
14. 單變數統計分析
(1) 用途
單變數統計描述是數據分析中最簡單的形式,其中被分析的數據只包含一個變數,不處理原因或關系。單變數分析的主要目的是通過對數據的統計描述了解當前數據的基本情況,並找出數據的分布模型。
單變數數據統計描述從集中趨勢上看,指標有:均值,中位數,分位數,眾數;從離散程度上看,指標有:極差、四分位數、方差、標准差、協方差、變異系數,從分布上看,有偏度,峰度等。需要考慮的還有極大值,極小值(數值型變數)和頻數,構成比(分類或等級變數)。
此外,還可以用統計圖直觀展示數據分布特徵,如:柱狀圖、正方圖、箱式圖、頻率多邊形和餅狀圖。
15. 多元線性回歸
(1) 用途
多元線性回歸模型(multivariable linear regression model ),因變數Y(計量資料)往往受到多個變數X的影響,多元線性回歸模型用於計算各個自變數對因變數的影響程度,可以認為是對多維空間中的點做線性擬合。
(2) 示例
(3) 結果分析
直接通過返回結果中各變數的P值與0.05比較,來判定對應的解釋變數的顯著性,P<0.05則認為自變數具有統計學意義,從上例中可以看到收入INCOME最有顯著性。
16. 邏輯回歸
(1) 用途
當因變數Y為2分類變數(或多分類變數時)可以用相應的logistic回歸分析各個自變數對因變數的影響程度。
(2) 示例
(3) 結果分析
直接通過返回結果中各變數的P值與0.05比較,來判定對應的解釋變數的顯著性,P<0.05則認為自變數具有統計學意義。
⑵ 利用Python進行t檢驗
t檢驗主要用於檢驗計量資料(連續變數)的兩組均值是否存在差異
無論是哪種t檢驗,都有以下的基本前提條件:
檢驗步驟:
各t檢驗的應用場景
⑶ 怎麼用python算p值和t檢驗
引入相關模塊,這次我們使用stats的
產生兩列隨機變數,用到了stats。norm.rvs,參數loc表示平均數,scale表示標准差,size是樣本量這是產生的兩個變數的數據的一部分
ttest_rel的用法:輸出t和p值從p值可以看出,這兩列數據是沒有差異的。
當然,ttest_rel還可以接受pandas.DataFrame數據,先從excel中讀取數據我們可以看一下數據的基本內容:
我們可以選擇scoreA和ScoreB這兩列數據進行T檢驗輸出的結果可見兩列變數均值無差異
我們還可以同時對多個變數進行檢驗,比如:這是產生的結果可見:第一個array表示t值,兩個表示p值,因此我們可以知道p(scoreA)=0.126>0.05
⑷ 如何用python寫 數據分析工具
數據導入
導入本地的或者web端的CSV文件;
數據變換;
數據統計描述;
假設檢驗
單樣本t檢驗;
可視化;
創建自定義函數。
數據導入
這是很關鍵的一步,為了後續的分析我們首先需要導入數據。通常來說,數據是CSV格式,就算不是,至少也可以轉換成CSV格式。在Python中,我們的操作如下:
Python
1
2
3
4
5
6
7
8
import pandas as pd
# Reading data locally
df = pd.read_csv('/Users/al-ahmadgaidasaad/Documents/d.csv')
# Reading data from web
data_url = "t/Analysis-with-Programming/master/2014/Python/Numerical-Descriptions-of-the-Data/data.csv"
df = pd.read_csv(data_url)
為了讀取本地CSV文件,我們需要pandas這個數據分析庫中的相應模塊。其中的read_csv函數能夠讀取本地和web數據。
數據變換
既然在工作空間有了數據,接下來就是數據變換。統計學家和科學家們通常會在這一步移除分析中的非必要數據。我們先看看數據:
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# Head of the data
print df.head()
# OUTPUT
0 12432934148330010553
1 41589235 4287806335257
2 17871922 19551074 4544
317152 14501 3536 1960731687
4 12662385 25303315 8520
# Tail of the data
print df.tail()
# OUTPUT
74 2505 20878 3519 1973716513
7560303 40065 7062 1942261808
76 63116756 3561 1591023349
7713345 38902 2583 1109668663
78 2623 18264 3745 1678716900
對R語言程序員來說,上述操作等價於通過print(head(df))來列印數據的前6行,以及通過print(tail(df))來列印數據的後6行。當然Python中,默認列印是5行,而R則是6行。因此R的代碼head(df, n = 10),在Python中就是df.head(n = 10),列印數據尾部也是同樣道理。
在R語言中,數據列和行的名字通過colnames和rownames來分別進行提取。在Python中,我們則使用columns和index屬性來提取,如下:
Python
1
2
3
4
5
6
7
8
9
10
11
# Extracting column names
print df.columns
# OUTPUT
Index([u'Abra', u'Apayao', u'Benguet', u'Ifugao', u'Kalinga'], dtype='object')
# Extracting row names or the index
print df.index
# OUTPUT
Int64Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], dtype='int64')
數據轉置使用T方法,
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# Transpose data
print df.T
# OUTPUT
01 23 45 67 89
Abra1243 41581787171521266 5576 927215401039 5424
Apayao2934 92351922145012385 7452109917038138210588
Benguet148 42871955 353625307712796 24632592 1064
Ifugao3300
... 69 70 71 72 73 74 75 76 77
Abra ...12763 247059094 620913316 250560303 631113345
Apayao ...376251953235126 6335386132087840065 675638902
Benguet... 2354 4045 5987 3530 2585 3519 7062 3561 2583
Ifugao ... 9838171251894015560 774619737194221591011096
Kalinga...
78
Abra2623
Apayao 18264
Benguet 3745
Ifugao 16787
Kalinga16900
Other transformations such as sort can be done using<code>sort</code>attribute. Now let's extract a specific column. In Python, we do it using either<code>iloc</code>or<code>ix</code>attributes, but<code>ix</code>is more robust and thus I prefer it. Assuming we want the head of the first column of the data, we have
其他變換,例如排序就是用sort屬性。現在我們提取特定的某列數據。Python中,可以使用iloc或者ix屬性。但是我更喜歡用ix,因為它更穩定一些。假設我們需數據第一列的前5行,我們有:
Python
1
2
3
4
5
6
7
8
9
print df.ix[:, 0].head()
# OUTPUT
0 1243
1 4158
2 1787
317152
4 1266
Name: Abra, dtype: int64
順便提一下,Python的索引是從0開始而非1。為了取出從11到20行的前3列數據,我們有:
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
print df.ix[10:20, 0:3]
# OUTPUT
AbraApayaoBenguet
109811311 2560
1127366 15093 3039
12 11001701 2382
13 7212 11001 1088
14 10481427 2847
1525679 15661 2942
16 10552191 2119
17 54376461734
18 10291183 2302
1923710 12222 2598
20 10912343 2654
上述命令相當於df.ix[10:20, ['Abra', 'Apayao', 'Benguet']]。
為了舍棄數據中的列,這里是列1(Apayao)和列2(Benguet),我們使用drop屬性,如下:
Python
1
2
3
4
5
6
7
8
9
print df.drop(df.columns[[1, 2]], axis = 1).head()
# OUTPUT
AbraIfugaoKalinga
0 1243330010553
1 4158806335257
2 17871074 4544
317152 1960731687
4 12663315 8520
axis參數告訴函數到底舍棄列還是行。如果axis等於0,那麼就舍棄行。
統計描述
下一步就是通過describe屬性,對數據的統計特性進行描述:
Python
1
2
3
4
5
6
7
8
9
10
11
12
print df.describe()
# OUTPUT
AbraApayaoBenguetIfugao Kalinga
count 79.000000 79.00000079.000000 79.000000 79.000000
mean 12874.37974716860.6455703237.39240512414.62025330446.417722
std16746.46694515448.1537941588.536429 5034.28201922245.707692
min927.000000401.000000 148.000000 1074.000000 2346.000000
25% 1524.000000 3435.5000002328.000000 8205.000000 8601.500000
50% 5790.00000010588.0000003202.00000013044.00000024494.000000
75%13330.50000033289.0000003918.50000016099.50000052510.500000
max60303.00000054625.0000008813.00000021031.00000068663.000000
假設檢驗
Python有一個很好的統計推斷包。那就是scipy裡面的stats。ttest_1samp實現了單樣本t檢驗。因此,如果我們想檢驗數據Abra列的稻穀產量均值,通過零假設,這里我們假定總體稻穀產量均值為15000,我們有:
Python
1
2
3
4
5
6
7
from scipy import stats as ss
# Perform one sample t-test using 1500 as the true mean
print ss.ttest_1samp(a = df.ix[:, 'Abra'], popmean = 15000)
# OUTPUT
(-1.1281738488299586, 0.26270472069109496)
返回下述值組成的元祖:
t : 浮點或數組類型
t統計量
prob : 浮點或數組類型
two-tailed p-value 雙側概率值
通過上面的輸出,看到p值是0.267遠大於α等於0.05,因此沒有充分的證據說平均稻穀產量不是150000。將這個檢驗應用到所有的變數,同樣假設均值為15000,我們有:
Python
1
2
3
4
5
6
print ss.ttest_1samp(a = df, popmean = 15000)
# OUTPUT
(array([ -1.12817385, 1.07053437, -65.81425599,-4.564575, 6.17156198]),
array([2.62704721e-01, 2.87680340e-01, 4.15643528e-70,
1.83764399e-05, 2.82461897e-08]))
第一個數組是t統計量,第二個數組則是相應的p值。
可視化
Python中有許多可視化模塊,最流行的當屬matpalotlib庫。稍加提及,我們也可選擇bokeh和seaborn模塊。之前的博文中,我已經說明了matplotlib庫中的盒須圖模塊功能。
;
重復100次; 然後
計算出置信區間包含真實均值的百分比
Python中,程序如下:
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
import numpy as np
import scipy.stats as ss
def case(n = 10, mu = 3, sigma = np.sqrt(5), p = 0.025, rep = 100):
m = np.zeros((rep, 4))
for i in range(rep):
norm = np.random.normal(loc = mu, scale = sigma, size = n)
xbar = np.mean(norm)
low = xbar - ss.norm.ppf(q = 1 - p) * (sigma / np.sqrt(n))
up = xbar + ss.norm.ppf(q = 1 - p) * (sigma / np.sqrt(n))
if (mu > low) & (mu < up):
rem = 1
else:
rem = 0
m[i, :] = [xbar, low, up, rem]
inside = np.sum(m[:, 3])
per = inside / rep
desc = "There are " + str(inside) + " confidence intervals that contain "
"the true mean (" + str(mu) + "), that is " + str(per) + " percent of the total CIs"
return {"Matrix": m, "Decision": desc}
上述代碼讀起來很簡單,但是循環的時候就很慢了。下面針對上述代碼進行了改進,這多虧了Python專家,看我上篇博文的15條意見吧。
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
import numpy as np
import scipy.stats as ss
def case2(n = 10, mu = 3, sigma = np.sqrt(5), p = 0.025, rep = 100):
scaled_crit = ss.norm.ppf(q = 1 - p) * (sigma / np.sqrt(n))
norm = np.random.normal(loc = mu, scale = sigma, size = (rep, n))
xbar = norm.mean(1)
low = xbar - scaled_crit
up = xbar + scaled_crit
rem = (mu > low) & (mu < up)
m = np.c_[xbar, low, up, rem]
inside = np.sum(m[:, 3])
per = inside / rep
desc = "There are " + str(inside) + " confidence intervals that contain "
"the true mean (" + str(mu) + "), that is " + str(per) + " percent of the total CIs"
return {"Matrix": m, "Decision": desc}
更新
那些對於本文ipython notebook版本感興趣的,請點擊這里。這篇文章由Nuttens Claude負責轉換成ipython notebook 。
⑸ 數據分析員用python做數據分析是怎麼回事,需要用到python中的那些內容,具體是怎麼操作的
大數據!大數據!其實是離不開數據二字,但是總體來講,自己之前對數據的認知是不太夠的,更多是在關注技術的提升上。換句話講,自己是在做技術,這些技術處理的是數據,而不能算是自己是在做數據的。大規模數據的處理是一個非常大的課題,但是這一點更偏向於是搞技術的。
與數據分析相關的Python庫很多,比如Numpy、pandas、matplotlib、scipy等,數據分析的操作包括數據的導入和導出、數據篩選、數據描述、數據處理、統計分析、可視化等等。接下來我們看一下如何利用Python完成數據的分析。
生成數據表
常見的生成方法有兩種,第一種是導入外部數據,第二種是直接寫入數據,Python支持從多種類型的數據導入。在開始使用Python進行數據導入前需要先導入pandas庫,為了方便起見,我們也同時導入Numpy庫。代碼是最簡模式,裡面有很多可選參數設置,例如列名稱、索引列、數據格式等等。
檢查數據表
Python中使用shape函數來查看數據表的維度,也就是行數和列數。你可以使用info函數查看數據表的整體信息,使用dtypes函數來返回數據格式。Isnull是Python中檢驗空值的函數,你可以對整個數據表進行檢查,也可以單獨對某一列進行空值檢查,返回的結果是邏輯值,包含空值返回True,不包含則返回False。使用unique函數查看唯一值,使用Values函數用來查看數據表中的數值。
數據表清洗
Python中處理空值的方法比較靈活,可以使用Dropna函數用來刪除數據表中包含空值的數據,也可以使用fillna函數對空值進行填充。Python中dtype是查看數據格式的函數,與之對應的是astype函數,用來更改數據格式,Rename是更改列名稱的函數,drop_plicates函數刪除重復值,replace函數實現數據替換。
數據預處理
數據預處理是對清洗完的數據進行整理以便後期的統計和分析工作,主要包括數據表的合並、排序、數值分列、數據分組及標記等工作。在Python中可以使用merge函數對兩個數據表進行合並,合並的方式為inner,此外還有left、right和outer方式。使用ort_values函數和sort_index函數完成排序,使用where函數完成數據分組,使用split函數實現分列。
數據提取
主要是使用三個函數:loc、iloc和ix,其中loc函數按標簽值進行提取,iloc按位置進行提取,ix可以同時按標簽和位置進行提取。除了按標簽和位置提起數據以外,還可以按具體的條件進行數據,比如使用loc和isin兩個函數配合使用,按指定條件對數據進行提取。
數據篩選匯總
Python中使用loc函數配合篩選條件來完成篩選功能,配合sum和 count函數還能實現excel中sumif和countif函數的功能。Python中使用的主要函數是groupby和pivot_table。groupby是進行分類匯總的函數,使用方法很簡單,制定要分組的列名稱就可以,也可以同時制定多個列名稱,groupby 按列名稱出現的順序進行分組。
⑹ python數據分析之t檢驗
t檢驗應用:
1、單樣本檢驗:
2、樣本檢驗
3、對t檢驗
4、獨立樣本t檢驗
5、「配對」或者「重復測量」檢驗
6、檢測一條回歸線斜率是否顯不為零
scipy庫的stats模塊提供ttest_ind用於獨立樣本t檢驗