導航:首頁 > 編程語言 > 非同步通信python

非同步通信python

發布時間:2023-02-24 03:29:37

python網路編程基礎的作品目錄

關於作者
關於技術審校
致謝
簡介
第1部分 底層網路
第1章 客戶/伺服器網路介紹
第2章 網路客戶端
第3章 網路伺服器
第4章 域名系統
第5章 域名系統
第2部分 Web Service
第6章 Web客戶端訪問
第7章 解析HTML和XHTML
第8章 XML和XML-RPC
第3部分 E-mail服務
第9章 E-mail的編寫和編碼
第10章 簡單郵件傳輸協議(SMTP)
第11章 POP
第12章 IMAP
第4部分 多用途的客戶端協議
第13章 FTP
第14章 資料庫客戶端
第15章 SSL
第5部分 伺服器端框架
第16章 SocketSever
第17章 SimpleXMLRPCServer
第18章 CGI
第19章 Mod_python
第6部分 多任務處理
第20章 forking
第21章 線程
第22章 非同步通信
索引

Ⅱ python非同步有哪些方式

yield相當於return,他將相應的值返回給調用next()或者send()的調用者,從而交出了CPU使用權,而當調用者再次調用next()或者send()的時候,又會返回到yield中斷的地方,如果send有參數,還會將參數返回給yield賦值的變數,如果沒有就和next()一樣賦值為None。但是這里會遇到一個問題,就是嵌套使用generator時外層的generator需要寫大量代碼,看如下示例:
注意以下代碼均在Python3.6上運行調試

#!/usr/bin/env python# encoding:utf-8def inner_generator():
i = 0
while True:
i = yield i if i > 10: raise StopIterationdef outer_generator():
print("do something before yield")
from_inner = 0
from_outer = 1
g = inner_generator()
g.send(None) while 1: try:
from_inner = g.send(from_outer)
from_outer = yield from_inner except StopIteration: breakdef main():
g = outer_generator()
g.send(None)
i = 0
while 1: try:
i = g.send(i + 1)
print(i) except StopIteration: breakif __name__ == '__main__':
main()041

為了簡化,在Python3.3中引入了yield from

yield from

使用yield from有兩個好處,

1、可以將main中send的參數一直返回給最里層的generator,
2、同時我們也不需要再使用while循環和send (), next()來進行迭代。

我們可以將上邊的代碼修改如下:

def inner_generator():
i = 0
while True:
i = yield i if i > 10: raise StopIterationdef outer_generator():
print("do something before coroutine start") yield from inner_generator()def main():
g = outer_generator()
g.send(None)
i = 0
while 1: try:
i = g.send(i + 1)
print(i) except StopIteration: breakif __name__ == '__main__':
main()

執行結果如下:

do something before coroutine start123456789101234567891011

這里inner_generator()中執行的代碼片段我們實際就可以認為是協程,所以總的來說邏輯圖如下:

我們都知道Python由於GIL(Global Interpreter Lock)原因,其線程效率並不高,並且在*nix系統中,創建線程的開銷並不比進程小,因此在並發操作時,多線程的效率還是受到了很大制約的。所以後來人們發現通過yield來中斷代碼片段的執行,同時交出了cpu的使用權,於是協程的概念產生了。在Python3.4正式引入了協程的概念,代碼示例如下:

import asyncio# Borrowed from http://curio.readthedocs.org/en/latest/[email protected] countdown(number, n):
while n > 0:
print('T-minus', n, '({})'.format(number)) yield from asyncio.sleep(1)
n -= 1loop = asyncio.get_event_loop()
tasks = [
asyncio.ensure_future(countdown("A", 2)),
asyncio.ensure_future(countdown("B", 3))]
loop.run_until_complete(asyncio.wait(tasks))
loop.close()12345678910111213141516

示例顯示了在Python3.4引入兩個重要概念協程和事件循環,
通過修飾符@asyncio.coroutine定義了一個協程,而通過event loop來執行tasks中所有的協程任務。之後在Python3.5引入了新的async & await語法,從而有了原生協程的概念。

async & await

在Python3.5中,引入了aync&await 語法結構,通過」aync def」可以定義一個協程代碼片段,作用類似於Python3.4中的@asyncio.coroutine修飾符,而await則相當於」yield from」。

先來看一段代碼,這個是我剛開始使用async&await語法時,寫的一段小程序。

#!/usr/bin/env python# encoding:utf-8import asyncioimport requestsimport time


async def wait_download(url):
response = await requets.get(url)
print("get {} response complete.".format(url))


async def main():
start = time.time()
await asyncio.wait([
wait_download("http://www.163.com"),
wait_download("http://www.mi.com"),
wait_download("http://www.google.com")])
end = time.time()
print("Complete in {} seconds".format(end - start))


loop = asyncio.get_event_loop()
loop.run_until_complete(main())

這里會收到這樣的報錯:

Task exception was never retrieved
future: <Task finished coro=<wait_download() done, defined at asynctest.py:9> exception=TypeError("object Response can't be used in 'await' expression",)>
Traceback (most recent call last):
File "asynctest.py", line 10, in wait_download
data = await requests.get(url)
TypeError: object Response can't be used in 'await' expression123456

這是由於requests.get()函數返回的Response對象不能用於await表達式,可是如果不能用於await,還怎麼樣來實現非同步呢?
原來Python的await表達式是類似於」yield from」的東西,但是await會去做參數檢查,它要求await表達式中的對象必須是awaitable的,那啥是awaitable呢? awaitable對象必須滿足如下條件中其中之一:

1、A native coroutine object returned from a native coroutine function .

原生協程對象

2、A generator-based coroutine object returned from a function decorated with types.coroutine() .

types.coroutine()修飾的基於生成器的協程對象,注意不是Python3.4中asyncio.coroutine

3、An object with an await method returning an iterator.

實現了await method,並在其中返回了iterator的對象

根據這些條件定義,我們可以修改代碼如下:

#!/usr/bin/env python# encoding:utf-8import asyncioimport requestsimport time


async def download(url): # 通過async def定義的函數是原生的協程對象
response = requests.get(url)
print(response.text)


async def wait_download(url):
await download(url) # 這里download(url)就是一個原生的協程對象
print("get {} data complete.".format(url))


async def main():
start = time.time()
await asyncio.wait([
wait_download("http://www.163.com"),
wait_download("http://www.mi.com"),
wait_download("http://www.google.com")])
end = time.time()
print("Complete in {} seconds".format(end - start))


loop = asyncio.get_event_loop()
loop.run_until_complete(main())27282930

好了現在一個真正的實現了非同步編程的小程序終於誕生了。
而目前更牛逼的非同步是使用uvloop或者pyuv,這兩個最新的Python庫都是libuv實現的,可以提供更加高效的event loop。

uvloop和pyuv

pyuv實現了Python2.x和3.x,但是該項目在github上已經許久沒有更新了,不知道是否還有人在維護。
uvloop只實現了3.x, 但是該項目在github上始終活躍。

它們的使用也非常簡單,以uvloop為例,只需要添加以下代碼就可以了

import asyncioimport uvloop
asyncio.set_event_loop_policy(uvloop.EventLoopPolicy())123

Ⅲ python2.7怎麼實現非同步

改進之前
之前,我的查詢步驟很簡單,就是:
前端提交查詢請求 --> 建立資料庫連接 --> 新建游標 --> 執行命令 --> 接受結果 --> 關閉游標、連接
這幾大步驟的順序執行。
這裡面當然問題很大:
建立資料庫連接實際上就是新建一個套接字。這是進程間通信的幾種方法里,開銷最大的了。
在「執行命令」和「接受結果」兩個步驟中,線程在阻塞在資料庫內部的運行過程中,資料庫連接和游標都處於閑置狀態。
這樣一來,每一次查詢都要順序的新建資料庫連接,都要阻塞在資料庫返回結果的過程中。當前端提交大量查詢請求時,查詢效率肯定是很低的。
第一次改進
之前的模塊里,問題最大的就是第一步——建立資料庫連接套接字了。如果能夠一次性建立連接,之後查詢能夠反復服用這個連接就好了。
所以,首先應該把資料庫查詢模塊作為一個單獨的守護進程去執行,而前端app作為主進程響應用戶的點擊操作。那麼兩條進程怎麼傳遞消息呢?翻了幾天Python文檔,終於構思出來:用隊列queue作為生產者(web前端)向消費者(資料庫後端)傳遞任務的渠道。生產者,會與SQL命令一起,同時傳遞一個管道pipe的連接對象,作為任務完成後,回傳結果的渠道。確保,任務的接收方與發送方保持一致。
作為第二個問題的解決方法,可以使用線程池來並發獲取任務隊列中的task,然後執行命令並回傳結果。
第二次改進
第一次改進的效果還是很明顯的,不用任何測試手段。直接點擊頁面鏈接,可以很直觀地感覺到反應速度有很明顯的加快。
但是對於第二個問題,使用線程池還是有些欠妥當。因為,CPython解釋器存在GIL問題,所有線程實際上都在一個解釋器進程里調度。線程稍微開多一點,解釋器進程就會頻繁的切換線程,而線程切換的開銷也不小。線程多一點,甚至會出現「抖動」問題(也就是剛剛喚醒一個線程,就進入掛起狀態,剛剛換到棧幀或內存的上下文,又被換回內存或者磁碟),效率大大降低。也就是說,線程池的並發量很有限。
試過了多進程、多線程,只能在單個線程里做文章了。
Python中的asyncio庫
Python里有大量的協程庫可以實現單線程內的並發操作,比如Twisted、Gevent等等。Python官方在3.5版本里提供了asyncio庫同樣可以實現協程並發。asyncio庫大大降低了Python中協程的實現難度,就像定義普通函數那樣就可以了,只是要在def前面多加一個async關鍵詞。async def函數中,需要阻塞在其他async def函數的位置前面可以加上await關鍵詞。
import asyncio
async def wait():
await asyncio.sleep(2)
async def execute(task):
process_task(task)
await wait()
continue_job()
async def函數的執行稍微麻煩點。需要首先獲取一個loop對象,然後由這個對象代為執行async def函數。
loop = asyncio.get_event_loop()
loop.run_until_complete(execute(task))
loop.close()
loop在執行execute(task)函數時,如果遇到await關鍵字,就會暫時掛起當前協程,轉而去執行其他阻塞在await關鍵詞的協程,從而實現協程並發。
不過需要注意的是,run_until_complete()函數本身是一個阻塞函數。也就是說,當前線程會等候一個run_until_complete()函數執行完畢之後,才會繼續執行下一部函數。所以下面這段代碼並不能並發執行。
for task in task_list:
loop.run_until_complete(task)
對與這個問題,asyncio庫也有相應的解決方案:gather函數。
loop = asyncio.get_event_loop()
tasks = [asyncio.ensure_future(execute(task))
for task in task_list]
loop.run_until_complete(asyncio.gather(*tasks))
loop.close()
當然了,async def函數的執行並不只有這兩種解決方案,還有call_soon與run_forever的配合執行等等,更多內容還請參考官方文檔。
Python下的I/O多路復用
協程,實際上,也存在上下文切換,只不過開銷很輕微。而I/O多路復用則完全不存在這個問題。
目前,Linux上比較火的I/O多路復用API要算epoll了。Tornado,就是通過調用C語言封裝的epoll庫,成功解決了C10K問題(當然還有Pypy的功勞)。
在Linux里查文檔,可以看到epoll只有三類函數,調用起來比較方便易懂。
創建epoll對象,並返回其對應的文件描述符(file descriptor)。
int epoll_create(int size);
int epoll_create1(int flags);
控制監聽事件。第一個參數epfd就對應於前面命令創建的epoll對象的文件描述符;第二個參數表示該命令要執行的動作:監聽事件的新增、修改或者刪除;第三個參數,是要監聽的文件對應的描述符;第四個,代表要監聽的事件。
int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);
等候。這是一個阻塞函數,調用者會等候內核通知所注冊的事件被觸發。
int epoll_wait(int epfd, struct epoll_event *events,
int maxevents, int timeout);
int epoll_pwait(int epfd, struct epoll_event *events,
int maxevents, int timeout,
const sigset_t *sigmask);
在Python的select庫里:
select.epoll()對應於第一類創建函數;
epoll.register(),epoll.unregister(),epoll.modify()均是對控制函數epoll_ctl的封裝;
epoll.poll()則是對等候函數epoll_wait的封裝。
Python里epoll相關API的最大問題應該是在epoll.poll()。相比於其所封裝的epoll_wait,用戶無法手動指定要等候的事件,也就是後者的第二個參數struct epoll_event *events。沒法實現精確控制。因此只能使用替代方案:select.select()函數。
根據Python官方文檔,select.select(rlist, wlist, xlist[, timeout])是對Unix系統中select函數的直接調用,與C語言API的傳參很接近。前三個參數都是列表,其中的元素都是要注冊到內核的文件描述符。如果想用自定義類,就要確保實現了fileno()方法。
其分別對應於:
rlist: 等候直到可讀
wlist: 等候直到可寫
xlist: 等候直到異常。這個異常的定義,要查看系統文檔。
select.select(),類似於epoll.poll(),先注冊文件和事件,然後保持等候內核通知,是阻塞函數。
實際應用
Psycopg2庫支持對非同步和協程,但和一般情況下的用法略有區別。普通資料庫連接支持不同線程中的不同游標並發查詢;而非同步連接則不支持不同游標的同時查詢。所以非同步連接的不同游標之間必須使用I/O復用方法來協調調度。
所以,我的大致實現思路是這樣的:首先並發執行大量協程,從任務隊列中提取任務,再向連接池請求連接,創建游標,然後執行命令,並返回結果。在獲取游標和接受查詢結果之前,均要阻塞等候內核通知連接可用。
其中,連接池返回連接時,會根據引用連接的協程數量,返回負載最輕的連接。這也是自己定義AsyncConnectionPool類的目的。
我的代碼位於:bottle-blog/dbservice.py
存在問題
當然了,這個流程目前還一些問題。
首先就是每次輪詢拿到任務之後,都會走這么一個流程。
獲取連接 --> 新建游標 --> 執行任務 --> 關閉游標 --> 取消連接引用
本來,最好的情況應該是:在輪詢之前,就建好游標;在輪詢時,直接等候內核通知,執行相應任務。這樣可以減少輪詢時的任務量。但是如果協程提前對應好連接,那就不能保證在獲取任務時,保持各連接負載均衡了。
所以這一塊,還有工作要做。
還有就是epoll沒能用上,有些遺憾。
以後打算寫點C語言的內容,或者用Python/C API,或者用Ctypes包裝共享庫,來實現epoll的調用。
最後,請允許我吐槽一下Python的epoll相關文檔:簡直太弱了!!!必須看源碼才能弄清楚功能。

Ⅳ Python標准庫的主要功能有哪些

Python常用庫大全,看看有沒有你需要的。

環境管理
管理 Python 版本和環境的工具
p – 非常簡單的互動式 python 版本管理工具。
pyenv – 簡單的 Python 版本管理工具。
Vex – 可以在虛擬環境中執行命令。
virtualenv – 創建獨立 Python 環境的工具。
virtualenvwrapper- virtualenv 的一組擴展。
包管理
管理包和依賴的工具。
pip – Python 包和依賴關系管理工具。
pip-tools – 保證 Python 包依賴關系更新的一組工具。
conda – 跨平台,Python 二進制包管理工具。
Curdling – 管理 Python 包的命令行工具。
wheel – Python 分發的新標准,意在取代 eggs。
包倉庫
本地 PyPI 倉庫服務和代理。
warehouse – 下一代 PyPI。
Warehousebandersnatch – PyPA 提供的 PyPI 鏡像工具。
devpi – PyPI 服務和打包/測試/分發工具。
localshop – 本地 PyPI 服務(自定義包並且自動對 PyPI 鏡像)。
分發
打包為可執行文件以便分發。
PyInstaller – 將 Python 程序轉換成獨立的執行文件(跨平台)。
dh-virtualenv – 構建並將 virtualenv 虛擬環境作為一個 Debian 包來發布。
Nuitka – 將腳本、模塊、包編譯成可執行文件或擴展模塊。
py2app – 將 Python 腳本變為獨立軟體包(Mac OS X)。
py2exe – 將 Python 腳本變為獨立軟體包(Windows)。
pynsist – 一個用來創建 Windows 安裝程序的工具,可以在安裝程序中打包 Python本身。
構建工具
將源碼編譯成軟體。
buildout – 一個構建系統,從多個組件來創建,組裝和部署應用。
BitBake – 針對嵌入式 Linux 的類似 make 的構建工具。
fabricate – 對任何語言自動找到依賴關系的構建工具。
PlatformIO – 多平台命令行構建工具。
PyBuilder – 純 Python 實現的持續化構建工具。
SCons – 軟體構建工具。
互動式解析器
互動式 Python 解析器。
IPython – 功能豐富的工具,非常有效的使用互動式 Python。
bpython- 界面豐富的 Python 解析器。
ptpython – 高級互動式Python解析器, 構建於python-prompt-toolkit 之上。
文件
文件管理和 MIME(多用途的網際郵件擴充協議)類型檢測。
imghdr – (Python 標准庫)檢測圖片類型。
mimetypes – (Python 標准庫)將文件名映射為 MIME 類型。
path.py – 對 os.path 進行封裝的模塊。
pathlib – (Python3.4+ 標准庫)跨平台的、面向對象的路徑操作庫。
python-magic- 文件類型檢測的第三方庫 libmagic 的 Python 介面。
Unipath- 用面向對象的方式操作文件和目錄
watchdog – 管理文件系統事件的 API 和 shell 工具
日期和時間
操作日期和時間的類庫。
arrow- 更好的 Python 日期時間操作類庫。
Chronyk – Python 3 的類庫,用於解析手寫格式的時間和日期。
dateutil – Python datetime 模塊的擴展。
delorean- 解決 Python 中有關日期處理的棘手問題的庫。
moment – 一個用來處理時間和日期的Python庫。靈感來自於Moment.js。
PyTime – 一個簡單易用的Python模塊,用於通過字元串來操作日期/時間。
pytz – 現代以及歷史版本的世界時區定義。將時區資料庫引入Python。
when.py – 提供用戶友好的函數來幫助用戶進行常用的日期和時間操作。
文本處理
用於解析和操作文本的庫。
通用
chardet – 字元編碼檢測器,兼容 Python2 和 Python3。
difflib – (Python 標准庫)幫助我們進行差異化比較。
ftfy – 讓Unicode文本更完整更連貫。
fuzzywuzzy – 模糊字元串匹配。
Levenshtein – 快速計算編輯距離以及字元串的相似度。
pangu.py – 在中日韓語字元和數字字母之間添加空格。
pyfiglet -figlet 的 Python實現。
shortuuid – 一個生成器庫,用以生成簡潔的,明白的,URL 安全的 UUID。
unidecode – Unicode 文本的 ASCII 轉換形式 。
uniout – 列印可讀的字元,而不是轉義的字元串。
xpinyin – 一個用於把漢字轉換為拼音的庫。

Ⅳ python 什麼是非同步通信


Ⅵ Python中的並行和並發是什麼

並行和並發

無論是並行還是並發,在用戶看來都是'同時'運行的,不管是進程還是線程,都只是一個任務而已,真是幹活的是cpu,cpu來做這些任務,而一個cpu同一時刻只能執行一個任務。

並發是偽並行,即看起來是同時運行。單個cpu+多道技術就可以實現並發,(並行也屬於並發),簡單的可以理解為快速在多個線程來回切換,感覺好像同時在做多個事情。

只有具備多個cpu才能實現並行,單核下,可以利用多道技術,多個核,每個核也都可以利用多道技術(多道技術是針對單核而言的)。 有四個核,六個任務,這樣同一時間有四個任務被執行,假設分別被分配給了cpu1,cpu2,cpu3,cpu4,一旦任務1遇到I/O就被迫中斷執行,此時任務5就拿到cpu1的時間片去執行,這就是單核下的多道技術 ,而一旦任務1的I/O結束了,操作系統會重新調用它(需知進程的調度、分配給哪個cpu運行,由操作系統說了算),可能被分配給四個cpu中的任意一個去執行。

相關推薦:《Python視頻教程》

多道技術:內存中同時存入多道(多個)程序,cpu從一個進程快速切換到另外一個,使每個進程各自運行幾十或幾百毫秒,這樣,雖然在某一個瞬間,一個cpu只能執行一個任務,但在1秒內,cpu卻可以運行多個進程,這就給人產生了並行的錯覺,即偽並發,以此來區分多處理器操作系統的真正硬體並行(多個cpu共享同一個物理內存)。

同步執行:一個進程在執行某個任務時,另外一個進程必須等待其執行完畢,才能繼續執行。

非同步執行:一個進程在執行某個任務時,另外一個進程無需等待其執行完畢,就可以繼續執行,當有消息返回時,系統會通知後者進行處理,這樣可以提高執行效率。

舉個例子,打電話時就是同步通信,發短息時就是非同步通信。

相關推薦:

Python如何實現線程間同步

Ⅶ 用 Python 可以來做什麼

Web 和 Internet開發;科學計算和統計;人工智慧;桌面界面開發;軟體開發;後端開發;網路介面:能方便進行系統維護和管理,Linux下標志性語言之一,是很多系統管理員理想的編程工具。

Python的設計目標之一是讓代碼具備高度的可閱讀性。它設計時盡量使用其它語言經常使用的標點符號和英文單字,讓代碼看起來整潔美觀。它不像其他的靜態語言如C、Pascal那樣需要重復書寫聲明語句,也不像它們的語法那樣經常有特殊情況和意外。

Python標准庫的主要功能有:

1、文本處理,包含文本格式化、正則表達式匹配、文本差異計算與合並、Unicode支持,二進制數據處理等功能

2、文件處理,包含文件操作、創建臨時文件、文件壓縮與歸檔、操作配置文件等功能

3、操作系統功能,包含線程與進程支持、IO復用、日期與時間處理、調用系統函數、寫日記(logging)等功能

4、網路通信,包含網路套接字,SSL加密通信、非同步網路通信等功能

5、網路協議,支持HTTP,FTP,SMTP,POP,IMAP,NNTP,XMLRPC等多種網路協議,並提供了編寫網路伺服器的框架

6、W3C格式支持,包含HTML,SGML,XML的處理

7、其它功能,包括國際化支持、數學運算、HASH、Tkinter等

閱讀全文

與非同步通信python相關的資料

熱點內容
怎麼在安卓手機登繪旅人 瀏覽:404
桌面文件全部加密 瀏覽:401
6s怎麼外接u盤需要什麼app 瀏覽:131
linux查看文件許可權命令 瀏覽:685
安卓手游存檔怎麼用 瀏覽:761
linuxyum安裝ftp 瀏覽:690
村委會主任可以推行政命令嗎 瀏覽:102
電腦文件夾封面多張圖片 瀏覽:263
網吧總伺服器叫什麼 瀏覽:922
多個演算法解決同一個問題 瀏覽:455
小車解壓後我的購車發票呢 瀏覽:977
做app開發用什麼雲伺服器 瀏覽:177
linux網卡子介面 瀏覽:985
21歲職高畢業學程序員怎麼學 瀏覽:321
vs如何對單個文件編譯 瀏覽:6
為什麼有的電腦不能安裝python 瀏覽:75
金蝶迷你版加密狗檢測到過期 瀏覽:186
硬體描述語言編譯結果 瀏覽:655
程序員逆天改命 瀏覽:19
金斗雲伺服器 瀏覽:447