導航:首頁 > 編程語言 > python看機器學習代碼

python看機器學習代碼

發布時間:2023-03-03 18:54:09

『壹』 常用python機器學習庫有哪些

Python作為一門理想的集成語言,將各種技術綁定在一起,除了為用戶提供更方便的功能之外,還是一個理想的粘合平台,在開發人員與外部庫的低層次集成人員之間搭建連接,以便用C、C++實現更高效的演算法
使用Python編程可以快速遷移代碼並進行改動,無須花費過多的精力在修改代碼與代碼規范上。開發者在Python中封裝了很多優秀的依賴庫,可以直接拿來使用,常見的機器學習庫如下:
1、Scikit-Learn
Scikit-Learn基於Numpy和Scipy,是專門為機器學習建造的一個Python模塊,提供了大量用於數據挖掘和分析的工具,包括數據預處理、交叉驗證、演算法與可視化演算法等一系列介面。
Scikit-Learn基本功能可分為六個部分:分類、回歸、聚類、數據降維、模型選擇、數據預處理。其中集成了大量分類、回歸、聚類功能,包括支持向量機、邏輯回歸、隨機森林、樸素貝葉斯等。
2、Orange3
Orange3是一個基於組件的數據挖掘和機器學習軟體套裝,支持Python進行腳本開發。它包含一系列的數據可視化、檢索、預處理和建模技術,具有一個良好的用戶界面,同時也可以作為Python的一個模塊使用。
用戶可通過數據可視化進行數據分析,包含統計分布圖、柱狀圖、散點圖,以及更深層次的決策樹、分層聚簇、熱點圖、MDS等,並可使用它自帶的各類附加功能組件進行NLP、文本挖掘、構建網路分析等。
3、XGBoost
XGBoost是專注於梯度提升演算法的機器學習函數庫,因其優良的學習效果及高效的訓練速度而獲得廣泛的關注。XGBoost支持並行處理,比起同樣實現了梯度提升演算法的Scikit-Learn庫,其性能提升10倍以上。XGBoost可以處理回歸、分類和排序等多種任務。
4、NuPIC
NuPIC是專注於時間序列的一個機器學習平台,其核心演算法為HTM演算法,相比於深度學習,其更為接近人類大腦的運行結構。HTM演算法的理論依據主要是人腦中處理高級認知功能的新皮質部分的運行原理。NuPIC可用於預測以及異常檢測,使用面非常廣,僅要求輸入時間序列即可。
5、Milk
Milk是Python中的一個機器學習工具包。Milk注重提升運行速度與降低內存佔用,因此大部分對性能敏感的代碼都是使用C++編寫的,為了便利性在此基礎上提供Python介面。重點提供監督分類方法,如SVMs、KNN、隨機森林和決策樹等。

『貳』 為什麼使用Python來實現機器學習代碼

numpy是科學計算用的。主要是那個array,比較節約內存,而且矩陣運算方便。成為python科學計算的利器。matplotlib是用於可視化的。只先學會XY的散點圖,再加一個柱狀圖就可以了。其它的都可以暫時不學。幾句話就成了。不用找本書。找個例子代碼看完就會了。這兩個只是計算用的。與機器學習有點兒關聯。但還不是機器學習。 機器學習演算法你可以使用R project,那個函數庫更多些。 你要肯下功夫啃代碼,最慢1小時就能掌握 numpy和matplotlib。如果你覺著難,總是想繞圈圈,想容易些,就很難弄會它。也許幾天才會。

『叄』 如何利用python語言實現機器學習演算法

基於以下三個原因,我們選擇Python作為實現機器學習演算法的編程語言:(一) Python的語法清晰;(二) 易於操作純文本文件;(三) 使用廣泛,存在大量的開發文檔。 可執行偽代碼 Python具有清晰的語法結構,大家也把它稱作可執行偽代碼(executable pseudo-code)。默認安裝的Python開發環境已經附帶了很多高級數據類型,如列表、元組、字典、集合、隊列等,無需進一步編程就可以使用這些數據類型的操作。使用這些數據類型使得實現抽象的數學概念非常簡單。此外,讀者還可以使用自己熟悉的編程風格,如面向對象編程、面向過程編程、或者函數式編程。不熟悉Python的讀者可以參閱附錄A,該附錄詳細介紹了Python語言、Python使用的數據類型以及安裝指南。 Python語言處理和操作文本文件非常簡單,非常易於處理非數值型數據。Python語言提供了豐富的正則表達式函數以及很多訪問Web頁面的函數庫,使得從HTML中提取數據變得非常簡單直觀。 Python比較流行 Python語言使用廣泛,代碼範例也很多,便於讀者快速學習和掌握。此外,在開發實際應用程序時,也可以利用豐富的模塊庫縮短開發周期。 在科學和金融領域,Python語言得到了廣泛應用。SciPy和NumPy等許多科學函數庫都實現了向量和矩陣操作,這些函數庫增加了代碼的可讀性,學過線性代數的人都可以看懂代碼的實際功能。另外,科學函數庫SciPy和NumPy使用底層語言(C和Fortran)編寫,提高了相關應用程序的計算性能。本書將大量使用Python的NumPy。 Python的科學工具可以與繪圖工具Matplotlib協同工作。Matplotlib可以繪制二D、三D圖形,也可以處理科學研究中經常使用到的圖形,所以本書也將大量使用Matplotlib。 Python開發環境還提供了互動式shell環境,允許用戶開發程序時查看和檢測程序內容。 Python開發環境將來還會集成Pylab模塊,它將NumPy、SciPy和Matplotlib合並為一個開發環境。在本書寫作時,Pylab還沒有並入Python環境,但是不遠的將來我們肯定可以在Python開發環境找到它。 Python語言的特色 諸如MATLAB和Mathematica等高級程序語言也允許用戶執行矩陣操作,MATLAB甚至還有許多內嵌的特徵可以輕松地構造機器學習應用,而且MATLAB的運算速度也很快。然而MATLAB的不足之處是軟體費用太高,單個軟體授權就要花費數千美元。雖然也有適合MATLAB的第三方插件,但是沒有一個有影響力的大型開源項目。 Java和C等強類型程序設計語言也有矩陣數學庫,然而對於這些程序設計語言來說,最大的問題是即使完成簡單的操作也要編寫大量的代碼。程序員首先需要定義變數的類型,對於Java來說,每次封裝屬性時還需要實現getter和setter方法。另外還要記著實現子類,即使並不想使用子類,也必須實現子類方法。為了完成一個簡單的工作,我們必須花費大量時間編寫了很多無用冗長的代碼。Python語言則與Java和C完全不同,它清晰簡練,而且易於理解,即使不是編程人員也能夠理解程序的含義,而Java和C對於非編程人員則像天書一樣難於理解。 所有人在小學二年級已經學會了寫作,然而大多數人必須從事其他更重要的工作。 ——鮑比·奈特 也許某一天,我們可以在這句話中將「寫作」替代為「編寫代碼」,雖然有些人對於編寫代碼很感興趣,但是對於大多數人來說,編程僅是完成其他任務的工具而已。Python語言是高級編程語言,我們可以花費更多的時間處理數據的內在含義,而無須花費太多精力解決計算機如何得到數據結果。Python語言使得我們很容易表達自己的目的。 Python語言的缺點 Python語言唯一的不足是性能問題。Python程序運行的效率不如Java或者C代碼高,但是我們可以使用Python調用C編譯的代碼。這樣,我們就可以同時利用C和Python的優點,逐步地開發機器學習應用程序。我們可以首先使用Python編寫實驗程序,如果進一步想要在產品中實現機器學習,轉換成C代碼也不困難。如果程序是按照模塊化原則組織的,我們可以先構造可運行的Python程序,然後再逐步使用C代碼替換核心代碼以改進程序的性能。C++ Boost庫就適合完成這個任務,其他類似於Cython和PyPy的工具也可以編寫強類型的Python代碼,改進一般Python程序的性能。 如果程序的演算法或者思想有缺陷,則無論程序的性能如何,都無法得到正確的結果。如果解決問題的思想存在問題,那麼單純通過提高程序的運行效率,擴展用戶規模都無法解決這個核心問題。從這個角度來看,Python快速實現系統的優勢就更加明顯了,我們可以快速地檢驗演算法或者思想是否正確,如果需要,再進一步優化代碼

『肆』 如何讓python實現機器學習

Python 被稱為是最接近 AI 的語言。下面和大家分享一下如何使用Python(3.6及以上版本)實現機器學習演算法的筆記。所有這些演算法的實現都沒有使用其他機器學習庫。這份筆記可以幫大家對演算法以及其底層結構有個基本的了解,但並不是提供最有效的實現哦。
七種演算法包括:
● 線性回歸演算法
● Logistic 回歸演算法
● 感知器
● K 最近鄰演算法
● K 均值聚類演算法
● 含單隱層的神經網路
● 多項式的 Logistic 回歸演算法

『伍』 python機器學習數學

這個題目的意思是平鋪一個28*28的numpy二維數組

```python
importnumpyasnp

defreshape(x):
returnx.flatten()#就是這么簡單,一行搞定


image=np.random.randn(28,28)
print(reshape(image))
```

順便問一下,你這個是在哪個網站的習題

『陸』 怎樣用python實現深度學習

基於Python的深度學習庫、深度學習方向、機器學習方向、自然語言處理方向的一些網站基本都是通過Python來實現的。
機器學習,尤其是現在火爆的深度學習,其工具框架大都提供了Python介面。Python在科學計算領域一直有著較好的聲譽,其簡潔清晰的語法以及豐富的計算工具,深受此領域開發者喜愛。
早在深度學習以及Tensorflow等框架流行之前,Python中即有scikit-learn,能夠很方便地完成幾乎所有機器學習模型,從經典數據集下載到構建模型只需要簡單的幾行代碼。配合Pandas、matplotlib等工具,能很簡單地進行調整。
而Tensorflow、PyTorch、MXNet、Keras等深度學習框架更是極大地拓展了機器學習的可能。使用Keras編寫一個手寫數字識別的深度學習網路僅僅需要寥寥數十行代碼,即可藉助底層實現,方便地調用包括GPU在內的大量資源完成工作。
值得一提的是,無論什麼框架,Python只是作為前端描述用的語言,實際計算則是通過底層的C/C++實現。由於Python能很方便地引入和使用C/C++項目和庫,從而實現功能和性能上的擴展,這樣的大規模計算中,讓開發者更關注邏輯於數據本身,而從內存分配等繁雜工作中解放出來,是Python被廣泛應用到機器學習領域的重要原因。

『柒』 Python語言下的機器學習庫

Python語言下的機器學習庫
Python是最好的編程語言之一,在科學計算中用途廣泛:計算機視覺、人工智慧、數學、天文等。它同樣適用於機器學習也是意料之中的事。當然,它也有些缺點;其中一個是工具和庫過於分散。如果你是擁有unix思維(unix-minded)的人,你會覺得每個工具只做一件事並且把它做好是非常方便的。但是你也需要知道不同庫和工具的優缺點,這樣在構建系統時才能做出合理的決策。工具本身不能改善系統或產品,但是使用正確的工具,我們可以工作得更高效,生產率更高。因此了解正確的工具,對你的工作領域是非常重要的。
這篇文章的目的就是列舉並描述Python可用的最有用的機器學習工具和庫。這個列表中,我們不要求這些庫是用Python寫的,只要有Python介面就夠了。我們在最後也有一小節關於深度學習(Deep Learning)的內容,因為它最近也吸引了相當多的關注。
我們的目的不是列出Python中所有機器學習庫(搜索「機器學習」時Python包索引(PyPI)返回了139個結果),而是列出我們所知的有用並且維護良好的那些。另外,盡管有些模塊可以用於多種機器學習任務,我們只列出主要焦點在機器學習的庫。比如,雖然Scipy包含一些聚類演算法,但是它的主焦點不是機器學習而是全面的科學計算工具集。因此我們排除了Scipy(盡管我們也使用它!)。
另一個需要提到的是,我們同樣會根據與其他科學計算庫的集成效果來評估這些庫,因為機器學習(有監督的或者無監督的)也是數據處理系統的一部分。如果你使用的庫與數據處理系統其他的庫不相配,你就要花大量時間創建不同庫之間的中間層。在工具集中有個很棒的庫很重要,但這個庫能與其他庫良好集成也同樣重要。
如果你擅長其他語言,但也想使用Python包,我們也簡單地描述如何與Python進行集成來使用這篇文章列出的庫。
Scikit-LearnScikit Learn是我們在CB Insights選用的機器學習工具。我們用它進行分類、特徵選擇、特徵提取和聚集。我們最愛的一點是它擁有易用的一致性API,並提供了很多開箱可用的求值、診斷和交叉驗證方法(是不是聽起來很熟悉?Python也提供了「電池已備(譯註:指開箱可用)」的方法)。錦上添花的是它底層使用Scipy數據結構,與Python中其餘使用Scipy、Numpy、Pandas和Matplotlib進行科學計算的部分適應地很好。因此,如果你想可視化分類器的性能(比如,使用精確率與反饋率(precision-recall)圖表,或者接收者操作特徵(Receiver Operating Characteristics,ROC)曲線),Matplotlib可以幫助進行快速可視化。考慮到花在清理和構造數據的時間,使用這個庫會非常方便,因為它可以緊密集成到其他科學計算包上。
另外,它還包含有限的自然語言處理特徵提取能力,以及詞袋(bag of words)、tfidf(Term Frequency Inverse Document Frequency演算法)、預處理(停用詞/stop-words,自定義預處理,分析器)。此外,如果你想快速對小數據集(toy dataset)進行不同基準測試的話,它自帶的數據集模塊提供了常見和有用的數據集。你還可以根據這些數據集創建自己的小數據集,這樣在將模型應用到真實世界中之前,你可以按照自己的目的來檢驗模型是否符合期望。對參數最優化和參數調整,它也提供了網格搜索和隨機搜索。如果沒有強大的社區支持,或者維護得不好,這些特性都不可能實現。我們期盼它的第一個穩定發布版。
StatsmodelsStatsmodels是另一個聚焦在統計模型上的強大的庫,主要用於預測性和探索性分析。如果你想擬合線性模型、進行統計分析,或者預測性建模,那麼Statsmodels非常適合。它提供的統計測試相當全面,覆蓋了大部分情況的驗證任務。如果你是R或者S的用戶,它也提供了某些統計模型的R語法。它的模型同時也接受Numpy數組和Pandas數據幀,讓中間數據結構成為過去!
PyMCPyMC是做貝葉斯曲線的工具。它包含貝葉斯模型、統計分布和模型收斂的診斷工具,也包含一些層次模型。如果想進行貝葉斯分析,你應該看看。
ShogunShogun是個聚焦在支持向量機(Support Vector Machines, SVM)上的機器學習工具箱,用C++編寫。它正處於積極開發和維護中,提供了Python介面,也是文檔化最好的介面。但是,相對於Scikit-learn,我們發現它的API比較難用。而且,也沒提供很多開箱可用的診斷和求值演算法。但是,速度是個很大的優勢。
GensimGensim被定義為「人們的主題建模工具(topic modeling for humans)」。它的主頁上描述,其焦點是狄利克雷劃分(Latent Dirichlet Allocation, LDA)及變體。不同於其他包,它支持自然語言處理,能將NLP和其他機器學習演算法更容易組合在一起。如果你的領域在NLP,並想進行聚集和基本的分類,你可以看看。目前,它們引入了Google的基於遞歸神經網路(Recurrent Neural Network)的文本表示法word2vec。這個庫只使用Python編寫。
OrangeOrange是這篇文章列舉的所有庫中唯一帶有圖形用戶界面(Graphical User Interface,GUI)的。對分類、聚集和特徵選擇方法而言,它是相當全面的,還有些交叉驗證的方法。在某些方面比Scikit-learn還要好(分類方法、一些預處理能力),但與其他科學計算系統(Numpy, Scipy, Matplotlib, Pandas)的適配上比不上Scikit-learn。但是,包含GUI是個很重要的優勢。你可以可視化交叉驗證的結果、模型和特徵選擇方法(某些功能需要安裝Graphviz)。對大多數演算法,Orange都有自己的數據結構,所以你需要將數據包裝成Orange兼容的數據結構,這使得其學習曲線更陡。
PyMVPAPyMVPA是另一個統計學習庫,API上與Scikit-learn很像。包含交叉驗證和診斷工具,但是沒有Scikit-learn全面。
深度學習盡管深度學習是機器學習的一個子節,我們在這里創建單獨一節的原因是,它最新吸引了Google和Facebook人才招聘部門的很多注意。
TheanoTheano是最成熟的深度學習庫。它提供了不錯的數據結構(張量,tensor)來表示神經網路的層,對線性代數來說很高效,與Numpy的數組類似。需要注意的是,它的API可能不是很直觀,用戶的學習曲線會很高。有很多基於Theano的庫都在利用其數據結構。它同時支持開箱可用的GPU編程。
PyLearn2還有另外一個基於Theano的庫,PyLearn2,它給Theano引入了模塊化和可配置性,你可以通過不同的配置文件來創建神經網路,這樣嘗試不同的參數會更容易。可以說,如果分離神經網路的參數和屬性到配置文件,它的模塊化能力更強大。
DecafDecaf是最近由UC Berkeley發布的深度學習庫,在Imagenet分類挑戰中測試發現,其神經網路實現是很先進的(state of art)。
Nolearn如果你想在深度學習中也能使用優秀的Scikit-learn庫API,封裝了Decaf的Nolearn會讓你能夠更輕松地使用它。它是對Decaf的包裝,與Scikit-learn兼容(大部分),使得Decaf更不可思議。
OverFeatOverFeat是最近貓vs.狗(kaggle挑戰)的勝利者,它使用C++編寫,也包含一個Python包裝器(還有Matlab和Lua)。通過Torch庫使用GPU,所以速度很快。也贏得了ImageNet分類的檢測和本地化挑戰。如果你的領域是計算機視覺,你可能需要看看。
HebelHebel是另一個帶有GPU支持的神經網路庫,開箱可用。你可以通過YAML文件(與Pylearn2類似)決定神經網路的屬性,提供了將神級網路和代碼友好分離的方式,可以快速地運行模型。由於開發不久,就深度和廣度上說,文檔很匱乏。就神經網路模型來說,也是有局限的,因為只支持一種神經網路模型(正向反饋,feed-forward)。但是,它是用純Python編寫,將會是很友好的庫,因為包含很多實用函數,比如調度器和監視器,其他庫中我們並沒有發現這些功能。
NeurolabNeuroLab是另一個API友好(與Matlabapi類似)的神經網路庫。與其他庫不同,它包含遞歸神經網路(Recurrent Neural Network,RNN)實現的不同變體。如果你想使用RNN,這個庫是同類API中最好的選擇之一。
與其他語言集成你不了解Python但是很擅長其他語言?不要絕望!Python(還有其他)的一個強項就是它是一個完美的膠水語言,你可以使用自己常用的編程語言,通過Python來訪問這些庫。以下適合各種編程語言的包可以用於將其他語言與Python組合到一起:R -> RPythonMatlab -> matpythonJava -> JythonLua -> Lunatic PythonJulia -> PyCall.jl
不活躍的庫這些庫超過一年沒有發布任何更新,我們列出是因為你有可能會有用,但是這些庫不太可能會進行BUG修復,特別是未來進行增強。MDPMlPyFFnetPyBrain如果我們遺漏了你最愛的Python機器學習包,通過評論讓我們知道。我們很樂意將其添加到文章中。

閱讀全文

與python看機器學習代碼相關的資料

熱點內容
反詐騙app怎麼找回密碼 瀏覽:631
java方法和函數 瀏覽:418
程序員衣服穿反 瀏覽:959
java多類繼承 瀏覽:157
怎麼用多玩我的世界連接伺服器地址 瀏覽:483
為什麼華為手機比安卓流暢 瀏覽:175
javamap多線程 瀏覽:228
卡西歐app怎麼改時間 瀏覽:843
jquery壓縮圖片 瀏覽:970
用紙筒做解壓東西 瀏覽:238
神奇寶貝伺服器如何tp 瀏覽:242
雲伺服器支持退貨嗎 瀏覽:277
貸款等額本息演算法 瀏覽:190
根伺服器地址配置 瀏覽:501
單片機是軟體還是硬體 瀏覽:624
vivo手機怎麼看編譯編號 瀏覽:320
塑鋼扣條演算法 瀏覽:301
linux應用程序安裝 瀏覽:414
linux怎麼查找命令 瀏覽:431
安卓12原生和非原生是什麼意思 瀏覽:277