導航:首頁 > 編程語言 > 穩定排序java

穩定排序java

發布時間:2023-03-04 20:06:39

1. java編程的冒泡等排序示例

Java排序演算法
1)分類:
1)插入排序(直接插入排序、希爾排序)
2)交換排序(冒泡排序、快速排序)
3)選擇排序(直接選擇排序、堆排序)
4)歸並排序
5)分配排序(箱排序、基數排序)
所需輔助空間最多:歸並排序
所需輔助空間最少:堆排序
平均速度最快:快速排序
不穩定:快速排序,希爾排序,堆排序。
1)選擇排序演算法的時候
1.數據的規模 ; 2.數據的類型 ; 3.數據已有的順序
一般來說,當數據規模較小時,應選擇直接插入排序或冒泡排序。任何排序演算法在數據量小時基本體現不出來差距。 考慮數據的類型,比如如果全部是正整數,那麼考慮使用桶排序為最優。 考慮數據已有順序,快排是一種不穩定的排序(當然可以改進),對於大部分排好的數據,快排會浪費大量不必要的步驟。數據量極小,而起已經基本排好序,冒泡是最佳選擇。我們說快排好,是指大量隨機數據下,快排效果最理想。而不是所有情況。
3)總結:
——按平均的時間性能來分:
1)時間復雜度為O(nlogn)的方法有:快速排序、堆排序和歸並排序,其中以快速排序為最好;
2)時間復雜度為O(n2)的有:直接插入排序、起泡排序和簡單選擇排序,其中以直接插入為最好,特 別是對那些對關鍵字近似有序的記錄序列尤為如此;
3)時間復雜度為O(n)的排序方法只有,基數排序。
當待排記錄序列按關鍵字順序有序時,直接插入排序和起泡排序能達到O(n)的時間復雜度;而對於快速排序而言,這是最不好的情況,此時的時間性能蛻化為O(n2),因此是應該盡量避免的情況。簡單選擇排序、堆排序和歸並排序的時間性能不隨記錄序列中關鍵字的分布而改變。
——按平均的空間性能來分(指的是排序過程中所需的輔助空間大小):
1) 所有的簡單排序方法(包括:直接插入、起泡和簡單選擇)和堆排序的空間復雜度為O(1);
2) 快速排序為O(logn ),為棧所需的輔助空間;
3) 歸並排序所需輔助空間最多,其空間復雜度為O(n );
4)鏈式基數排序需附設隊列首尾指針,則空間復雜度為O(rd )。
——排序方法的穩定性能:
1) 穩定的排序方法指的是,對於兩個關鍵字相等的記錄,它們在序列中的相對位置,在排序之前和 經過排序之後,沒有改變。
2) 當對多關鍵字的記錄序列進行LSD方法排序時,必須採用穩定的排序方法。
3) 對於不穩定的排序方法,只要能舉出一個實例說明即可。
4) 快速排序,希爾排序和堆排序是不穩定的排序方法。
4)插入排序:
包括直接插入排序,希爾插入排序。
直接插入排序: 將一個記錄插入到已經排序好的有序表中。
1, sorted數組的第0個位置沒有放數據。
2,從sorted第二個數據開始處理:
如果該數據比它前面的數據要小,說明該數據要往前面移動。
首先將該數據備份放到 sorted的第0位置當哨兵。
然後將該數據前面那個數據後移。
然後往前搜索,找插入位置。
找到插入位置之後講 第0位置的那個數據插入對應位置。
O(n*n), 當待排記錄序列為正序時,時間復雜度提高至O(n)。
希爾排序(縮小增量排序 diminishing increment sort):先將整個待排記錄序列分割成若干個子序列分別進行直接插入排序,待整個序列中的記錄基本有序時,再對全體記錄進行一次直接插入排序。
面試穿什麼,這里找答案!
插入排序Java代碼:
public class InsertionSort {
// 插入排序:直接插入排序 ,希爾排序
public void straightInsertionSort(double [] sorted){
int sortedLen= sorted.length;
for(int j=2;j<sortedLen;j++){
if(sorted[j]<sorted[j-1]){
sorted[0]= sorted[j];//先保存一下後面的那個
sorted[j]=sorted[j-1];// 前面的那個後移。
int insertPos=0;
for(int k=j-2;k>=0;k--){
if(sorted[k]>sorted[0]){
sorted[k+1]=sorted[k];
}else{
insertPos=k+1;
break;
}
}
sorted[insertPos]=sorted[0];
}
}
}
public void shellInertionSort(double [] sorted, int inc){
int sortedLen= sorted.length;
for(int j=inc+1;j<sortedLen;j++ ){
if(sorted[j]<sorted[j-inc]){
sorted[0]= sorted[j];//先保存一下後面的那個

int insertPos=j;
for(int k=j-inc;k>=0;k-=inc){
if(sorted[k]>sorted[0]){
sorted[k+inc]=sorted[k];
//數據結構課本上這個地方沒有給出判讀,出錯:
if(k-inc<=0){
insertPos = k;
}
}else{
insertPos=k+inc;
break;
}
}
sorted[insertPos]=sorted[0];
}
}
}
public void shellInsertionSort(double [] sorted){
int[] incs={7,5,3,1};
int num= incs.length;

int inc=0;
for(int j=0;j<num;j++){
inc= incs[j];
shellInertionSort(sorted,inc);
}
}
public static void main(String[] args) {
Random random= new Random(6);

int arraysize= 21;
double [] sorted=new double[arraysize];
System.out.print("Before Sort:");
for(int j=1;j<arraysize;j++){
sorted[j]= (int)(random.nextDouble()* 100);
System.out.print((int)sorted[j]+" ");
}
System.out.println();

InsertionSort sorter=new InsertionSort();
// sorter.straightInsertionSort(sorted);
sorter.shellInsertionSort(sorted);

System.out.print("After Sort:");
for(int j=1;j<sorted.length;j++){
System.out.print((int)sorted[j]+" ");
}
System.out.println();
}
}
面試穿什麼,這里找答案!
5)交換排序:
包括冒泡排序,快速排序。
冒泡排序法:該演算法是專門針對已部分排序的數據進行排序的一種排序演算法。如果在你的數據清單中只有一兩個數據是亂序的話,用這種演算法就是最快的排序演算法。如果你的數據清單中的數據是隨機排列的,那麼這種方法就成了最慢的演算法了。因此在使用這種演算法之前一定要慎重。這種演算法的核心思想是掃描數據清單,尋找出現亂序的兩個相鄰的項目。當找到這兩個項目後,交換項目的位置然後繼續掃描。重復上面的操作直到所有的項目都按順序排好。
快速排序:通過一趟排序,將待排序記錄分割成獨立的兩個部分,其中一部分記錄的關鍵字均比另一部分記錄的關鍵字小,則可分別對這兩部分記錄繼續進行排序,以達到整個序列有序。具體做法是:使用兩個指針low,high, 初值分別設置為序列的頭,和序列的尾,設置pivotkey為第一個記錄,首先從high開始向前搜索第一個小於pivotkey的記錄和pivotkey所在位置進行交換,然後從low開始向後搜索第一個大於pivotkey的記錄和此時pivotkey所在位置進行交換,重復知道low=high了為止。
交換排序Java代碼:
public class ExchangeSort {
public void BubbleExchangeSort(double [] sorted){
int sortedLen= sorted.length;
for(int j=sortedLen;j>0;j--){
int end= j;
for(int k=1;k<end-1;k++){
double tempB= sorted[k];
sorted[k]= sorted[k]<sorted[k+1]?
sorted[k]:sorted[k+1];
if(Math.abs(sorted[k]-tempB)>10e-6){
sorted[k+1]=tempB;
}
}
}
}
public void QuickExchangeSortBackTrack(double [] sorted,
int low,int high){
if(low<high){
int pivot= findPivot(sorted,low,high);
QuickExchangeSortBackTrack(sorted,low,pivot-1);
QuickExchangeSortBackTrack(sorted,pivot+1,high);
}
}
public int findPivot(double [] sorted, int low, int high){
sorted[0]= sorted[low];
while(low<high){
while(low<high && sorted[high]>= sorted[0])--high;
sorted[low]= sorted[high];
while(low<high && sorted[low]<=sorted[0])++low;
sorted[high]= sorted[low];
}
sorted[low]=sorted[0];
return low;
}
public static void main(String[] args) {
Random random= new Random(6);

int arraysize= 21;
double [] sorted=new double[arraysize];
System.out.print("Before Sort:");
for(int j=1;j<arraysize;j++){
sorted[j]= (int)(random.nextDouble()* 100);
System.out.print((int)sorted[j]+" ");
}
System.out.println();

ExchangeSort sorter=new ExchangeSort();
// sorter.BubbleExchangeSort(sorted);
sorter.QuickExchangeSortBackTrack(sorted, 1, arraysize-1);
System.out.print("After Sort:");
for(int j=1;j<sorted.length;j++){
System.out.print((int)sorted[j]+" ");
}
System.out.println();
}
}
6)選擇排序:
分為直接選擇排序, 堆排序
直接選擇排序:第i次選取 i到array.Length-1中間最小的值放在i位置。
堆排序:首先,數組裡面用層次遍歷的順序放一棵完全二叉樹。從最後一個非終端結點往前面調整,直到到達根結點,這個時候除根節點以外的所有非終端節點都已經滿足堆得條件了,於是需要調整根節點使得整個樹滿足堆得條件,於是從根節點開始,沿著它的兒子們往下面走(最大堆沿著最大的兒子走,最小堆沿著最小的兒子走)。 主程序裡面,首先從最後一個非終端節點開始調整到根也調整完,形成一個heap, 然後將heap的根放到後面去(即:每次的樹大小會變化,但是 root都是在1的位置,以方便計算兒子們的index,所以如果需要升序排列,則要逐步大頂堆。因為根節點被一個個放在後面去了。 降序排列則要建立小頂堆)
代碼中的問題: 有時候第2個和第3個順序不對(原因還沒搞明白到底代碼哪裡有錯)
選擇排序Java代碼:
public class SelectionSort {
public void straitSelectionSort(double [] sorted){
int sortedLen= sorted.length;
for(int j=1;j<sortedLen;j++){
int jMin= getMinIndex(sorted,j);
exchange(sorted,j,jMin);
}
}
public void exchange(double [] sorted,int i,int j){
int sortedLen= sorted.length;
if(i<sortedLen && j<sortedLen && i<j && i>=0 && j>=0){
double temp= sorted[i];
sorted[i]=sorted[j];
sorted[j]=temp;
}
}
public int getMinIndex(double [] sorted, int i){
int sortedLen= sorted.length;

int minJ=1;
double min= Double.MAX_VALUE;
for(int j=i;j<sortedLen;j++){
if(sorted[j]<min){
min= sorted[j];
minJ= j;
}
}
return minJ;
}

public void heapAdjust(double [] sorted,int start,int end){
if(start<end){
double temp= sorted[start];
// 這個地方j<end與課本不同,j<=end會報錯:
for(int j=2*start;j<end;j *=2){
if(j+1<end && sorted[j]-sorted[j+1]>10e-6){
++j;
}
if(temp<=sorted[j]){
break;
}
sorted[start]=sorted[j];
start=j;
}
sorted[start]=temp;
}
}
public void heapSelectionSort(double [] sorted){
int sortedLen = sorted.length;

for(int i=sortedLen/2;i>0;i--){
heapAdjust(sorted,i,sortedLen);
}
for(int i=sortedLen;i>1;--i){
exchange(sorted,1,i);
heapAdjust(sorted,1,i-1);
}
}
public static void main(String [] args){
Random random= new Random(6);

int arraysize=9;
double [] sorted=new double[arraysize];
System.out.print("Before Sort:");
for(int j=1;j<arraysize;j++){
sorted[j]= (int)(random.nextDouble()* 100);
System.out.print((int)sorted[j]+" ");
}
System.out.println();

SelectionSort sorter=new SelectionSort();
// sorter.straitSelectionSort(sorted);
sorter.heapSelectionSort(sorted);

System.out.print("After Sort:");
for(int j=1;j<sorted.length;j++){
System.out.print((int)sorted[j]+" ");
}
System.out.println();
}
}
面試穿什麼,這里找答案!
7)歸並排序:
將兩個或兩個以上的有序表組合成一個新的有序表。歸並排序要使用一個輔助數組,大小跟原數組相同,遞歸做法。每次將目標序列分解成兩個序列,分別排序兩個子序列之後,再將兩個排序好的子序列merge到一起。
歸並排序Java代碼:
public class MergeSort {
private double[] bridge;//輔助數組
public void sort(double[] obj){
if (obj == null){
throw new NullPointerException("
The param can not be null!");
}
bridge = new double[obj.length]; // 初始化中間數組
mergeSort(obj, 0, obj.length - 1); // 歸並排序
bridge = null;
}
private void mergeSort(double[] obj, int left, int right){
if (left < right){
int center = (left + right) / 2;
mergeSort(obj, left, center);
mergeSort(obj, center + 1, right);
merge(obj, left, center, right);
}
}
private void merge(double[] obj, int left,
int center, int right){
int mid = center + 1;
int third = left;
int tmp = left;
while (left <= center && mid <= right){
// 從兩個數組中取出小的放入中間數組
if (obj[left]-obj[mid]<=10e-6){
bridge[third++] = obj[left++];
} else{
bridge[third++] = obj[mid++];
}
}

// 剩餘部分依次置入中間數組
while (mid <= right){
bridge[third++] = obj[mid++];
}
while (left <= center){
bridge[third++] = obj[left++];
}
// 將中間數組的內容拷貝回原數組
(obj, tmp, right);
}
private void (double[] obj, int left, int right)
{
while (left <= right){
obj[left] = bridge[left];
left++;
}
}
public static void main(String[] args) {
Random random = new Random(6);

int arraysize = 10;
double[] sorted = new double[arraysize];
System.out.print("Before Sort:");
for (int j = 0; j < arraysize; j++) {
sorted[j] = (int) (random.nextDouble() * 100);
System.out.print((int) sorted[j] + " ");
}
System.out.println();

MergeSort sorter = new MergeSort();
sorter.sort(sorted);

System.out.print("After Sort:");
for (int j = 0; j < sorted.length; j++) {
System.out.print((int) sorted[j] + " ");
}
System.out.println();
}
}
面試穿什麼,這里找答案!

8)基數排序:
使用10個輔助隊列,假設最大數的數字位數為 x, 則一共做 x次,從個位數開始往前,以第i位數字的大小為依據,將數據放進輔助隊列,搞定之後回收。下次再以高一位開始的數字位為依據。
以Vector作輔助隊列,基數排序的Java代碼:
public class RadixSort {
private int keyNum=-1;
private Vector<Vector<Double>> util;

public void distribute(double [] sorted, int nth){
if(nth<=keyNum && nth>0){
util=new Vector<Vector<Double>>();
for(int j=0;j<10;j++){
Vector <Double> temp= new Vector <Double>();
util.add(temp);
}
for(int j=0;j<sorted.length;j++){
int index= getNthDigit(sorted[j],nth);
util.get(index).add(sorted[j]);
}
}
}
public int getNthDigit(double num,int nth){
String nn= Integer.toString((int)num);
int len= nn.length();
if(len>=nth){
return Character.getNumericValue(nn.charAt(len-nth));
}else{
return 0;
}
}
public void collect(double [] sorted){
int k=0;
for(int j=0;j<10;j++){
int len= util.get(j).size();
if(len>0){
for(int i=0;i<len;i++){
sorted[k++]= util.get(j).get(i);
}
}
}
util=null;
}
public int getKeyNum(double [] sorted){
double max= Double.MIN_VALUE;
for(int j=0;j<sorted.length;j++){
if(sorted[j]>max){
max= sorted[j];
}
}
return Integer.toString((int)max).length();
}
public void radixSort(double [] sorted){
if(keyNum==-1){
keyNum= getKeyNum(sorted);
}
for(int i=1;i<=keyNum;i++){
distribute(sorted,i);
collect(sorted);
}
}
public static void main(String[] args) {
Random random = new Random(6);

int arraysize = 21;
double[] sorted = new double[arraysize];
System.out.print("Before Sort:");
for (int j = 0; j < arraysize; j++) {
sorted[j] = (int) (random.nextDouble() * 100);
System.out.print((int) sorted[j] + " ");
}
System.out.println();

RadixSort sorter = new RadixSort();
sorter.radixSort(sorted);

System.out.print("After Sort:");
for (int j = 0; j < sorted.length; j++) {
System.out.print((int) sorted[j] + " ");
}
System.out.println();
}
}

//而來

2. java編程題,對一組{23,55,-65,89,82,99,128}中的元素從小到大進行排序

你看這個鏈接,網頁鏈接

希望可以幫到你,望採納~

3. Java的幾種常見排序

快速排序法、冒泡法、選擇排序法、插入排序法
1.快速排序:

import java.util.Arrays;
public class Test2{
public static void main(String[] args){
int[] a={5,4,2,4,9,1};
Arrays.sort(a); //進行排序
for(int i: a){
System.out.print(i);
}
}
}
2.冒泡排序
public static int[] bubbleSort(int[] args){//冒泡排序演算法
for(int i=0;i<args.length-1;i++){
for(int j=i+1;j<args.length;j++){
if (args[i]>args[j]){
int temp=args[i];
args[i]=args[j];
args[j]=temp;
}
}
}
return args;
}
3.選擇排序
public static int[] selectSort(int[] args){//選擇排序演算法
for (int i=0;i<args.length-1 ;i++ ){
int min=i;
for (int j=i+1;j<args.length ;j++ ){
if (args[min]>args[j]){
min=j;
}
}
if (min!=i){
int temp=args[i];
args[i]=args[min];
args[min]=temp;
}
}
return args;
}
4.插入排序
public static int[] insertSort(int[] args){//插入排序演算法
for(int i=1;i<args.length;i++){
for(int j=i;j>0;j--){
if (args[j]<args[j-1]){
int temp=args[j-1];
args[j-1]=args[j];
args[j]=temp;
}else break;
}
}
return args;
}

4. java里,幾種排序方法各有什麼優缺點

一、冒泡排序

已知一組無序數據a[1]、a[2]、……a[n],需將其按升序排列。首先比較 a[1]與a[2]的值,若a[1]大於a[2]則交換兩者的值,否則不變。再比較a[2]與a[3]的值,若a[2]大於a[3]則交換兩者的值,否則不變。再比較a[3]與a[4],以此類推,最後比較a[n-1]與a[n]的值。這樣處理一輪後,a[n]的值一定是這組數據中最大的。再對 a[1]~a[n-1]以相同方法處理一輪,則a[n-1]的值一定是a[1]~a[n-1]中最大的。再對a[1]~a[n-2]以相同方法處理一輪,以此類推。共處理n-1輪後a[1]、a[2]、……a[n]就以升序排列了。

優點:穩定;

缺點:慢,每次只能移動相鄰兩個數據。

二、選擇排序

冒泡排序的改進版。

每一趟從待排序的數據元素中選出最小(或最大)的一個元素,順序放在已排好序的數列的最後,直到全部待排序的數據元素排完。

選擇排序是不穩定的排序方法。

n個記錄的文件的直接選擇排序可經過n-1趟直接選擇排序得到有序結果:

①初始狀態:無序區為R[1..n],有序區為空。

②第1趟排序

在無序區R[1..n]中選出關鍵字最小的記錄R[k],將它與無序區的第1個記錄R[1]交換,使R[1..1]和R[2..n]分別變為記錄個數增加1個的新有序區和記錄個數減少1個的新無序區。

……

③第i趟排序

第i趟排序開始時,當前有序區和無序區分別為R[1..i-1]和R(1≤i≤n- 1)。該趟排序從當前無序區中選出關鍵字最小的記錄 R[k],將它與無序區的第1個記錄R交換,使R[1..i]和R分別變為記錄個數增加1個的新有序區和記錄個數減少1個的新無序區。

這樣,n個記錄的文件的直接選擇排序可經過n-1趟直接選擇排序得到有序結果。

優點:移動數據的次數已知(n-1次);

缺點:比較次數多。

三、插入排序

已知一組升序排列數據a[1]、a[2]、……a[n],一組無序數據b[1]、 b[2]、……b[m],需將二者合並成一個升序數列。首先比較b[1]與a[1]的值,若b[1]大於a[1],則跳過,比較b[1]與a[2]的值,若b[1]仍然大於a[2],則繼續跳過,直到b[1]小於a數組中某一數據a[x],則將a[x]~a[n]分別向後移動一位,將b[1]插入到原來 a[x]的位置這就完成了b[1]的插入。b[2]~b[m]用相同方法插入。(若無數組a,可將b[1]當作n=1的數組a)

優點:穩定,快;

缺點:比較次數不一定,比較次數越少,插入點後的數據移動越多,特別是當數據總量龐大的時候,但用鏈表可以解決這個問題。

三、縮小增量排序

由希爾在1959年提出,又稱希爾排序(shell排序)。

已知一組無序數據a[1]、a[2]、……a[n],需將其按升序排列。發現當n不大時,插入排序的效果很好。首先取一增量d(d<n),將a[1]、a[1+d]、a[1+2d]……列為第一組,a[2]、a[2+d]、 a[2+2d]……列為第二組……,a[d]、a[2d]、a[3d]……列為最後一組以次類推,在各組內用插入排序,然後取d'<d,重復上述操作,直到d=1。

優點:快,數據移動少;

缺點:不穩定,d的取值是多少,應取多少個不同的值,都無法確切知道,只能憑經驗來取。

四、快速排序

快速排序是目前已知的最快的排序方法。

已知一組無序數據a[1]、a[2]、……a[n],需將其按升序排列。首先任取數據 a[x]作為基準。比較a[x]與其它數據並排序,使a[x]排在數據的第k位,並且使a[1]~a[k-1]中的每一個數據<a[x],a[k+1]~a[n]中的每一個數據>a[x],然後採用分治的策略分別對a[1]~a[k-1]和a[k+1]~a[n] 兩組數據進行快速排序。

優點:極快,數據移動少;

缺點:不穩定。

五、箱排序

已知一組無序正整數數據a[1]、a[2]、……a[n],需將其按升序排列。首先定義一個數組x[m],且m>=a[1]、a[2]、……a[n],接著循環n次,每次x[a]++.

優點:快,效率達到O(1)

缺點:數據范圍必須為正整數並且比較小

六、歸並排序

歸並排序是多次將兩個或兩個以上的有序表合並成一個新的有序表。最簡單的歸並是直接將兩個有序的子表合並成一個有序的表。

歸並排序是穩定的排序.即相等的元素的順序不會改變.如輸入記錄 1(1) 3(2) 2(3) 2(4) 5(5) (括弧中是記錄的關鍵字)時輸出的 1(1) 2(3) 2(4) 3(2) 5(5) 中的2 和 2 是按輸入的順序.這對要排序數據包含多個信息而要按其中的某一個信息排序,要求其它信息盡量按輸入的順序排列時很重要.這也是它比快速排序優勢的地方.

5. java中冒泡排序演算法的詳細解答以及程序

實例說明

用冒泡排序方法對數組進行排序。

實例解析

交換排序的基本思想是兩兩比較待排序記錄的關鍵字,發現兩個記錄的次序相反時即進行交換,直到沒有反序的記錄為止。

應用交換排序基本思想的主要排序方法有冒泡排序和快速排序。

冒泡排序

將被排序的記錄數組 R[1..n] 垂直排列,每個記錄 R[i] 看做是重量為 R[i].key 的氣泡。根據輕氣泡不能在重氣泡之下的原則,從下往上掃描數組 R 。凡掃描到違反本原則的輕氣泡,就使其向上「漂浮」。如此反復進行,直到最後任何兩個氣泡都是輕者在上,重者在下為止。

(1) 初始, R[1..n] 為無序區。

(2) 第一趟掃描,從無序區底部向上依次比較相鄰的兩個氣泡的重量,若發現輕者在下、重者在上,則交換二者的位置。即依次比較 (R[n],R[n-1]) 、 (R[n-1],R[n-2]) 、 … 、 (R[2],R[1]); 對於每對氣泡 (R[j+1],R[j]), 若 R[j+1].key<R[j].key, 則交換 R[j+1] 和 R[j] 的內容。

第一趟掃描完畢時,「最輕」的氣泡就飄浮到該區間的頂部,即關鍵字最小的記錄被放在最高位置 R[1] 上。

(3) 第二趟掃描,掃描 R[2..n]。掃描完畢時,「次輕」的氣泡飄浮到 R[2] 的位置上 …… 最後,經過 n-1 趟掃描可得到有序區 R[1..n]。

注意:第 i 趟掃描時, R[1..i-1] 和 R[i..n] 分別為當前的有序區和無序區。掃描仍是從無序區底部向上直至該區頂部。掃描完畢時,該區中最輕氣泡漂浮到頂部位置 R[i] 上,結果是 R[1..i] 變為新的有序區。

冒泡排序演算法

因為每一趟排序都使有序區增加了一個氣泡,在經過 n-1 趟排序之後,有序區中就有 n-1 個氣泡,而無序區中氣泡的重量總是大於等於有序區中氣泡的重量,所以整個冒泡排序過程至多需要進行 n-1 趟排序。

若在某一趟排序中未發現氣泡位置的交換,則說明待排序的無序區中所有氣泡均滿足輕者在上,重者在下的原則,因此,冒泡排序過程可在此趟排序後終止。為此,在下面給出的演算法中,引入一個布爾量 exchange, 在每趟排序開始前,先將其置為 FALSE 。若排序過程中發生了交換,則將其置為 TRUE 。各趟排序結束時檢查 exchange, 若未曾發生過交換則終止演算法,不再進行下趟排序。


具體演算法如下:

void BubbleSort(SeqList R){
//R(1..n) 是待排序的文件,採用自下向上掃描,對 R 做冒泡排序
int i,j;
Boolean exchange; // 交換標志
for(i=1;i<n;i++){ // 最多做 n-1 趟排序
exchange=FALSE; // 本趟排序開始前,交換標志應為假
for(j=n-1;j>=i;j--) // 對當前無序區 R[i..n] 自下向上掃描
if(R[j+1].key<R[j].key){ // 交換記錄
R[0]=R[j+1]; //R[0] 不是哨兵,僅做暫存單元
R[j+1]=R[j];
R[j]=R[0];
exchange=TRUE; // 發生了交換,故將交換標志置為真
}
if(!exchange) // 本趟排序未發生交換,提前終止演算法
return;
} //endfor( 外循環 )
}//BubbleSort

publicclassBubbleSort{

publicstaticvoidmain(String[]args){
//TODOAuto-generatedmethodstub
List<Integer>lstInteger=newArrayList<Integer>();
lstInteger.add(1);
lstInteger.add(1);
lstInteger.add(3);
lstInteger.add(2);
lstInteger.add(1);
for(inti=0;i<lstInteger.size();i++){
System.out.println(lstInteger.get(i));
}
System.out.println("排序之後-----------------");
lstInteger=sortList(lstInteger);
for(inti=0;i<lstInteger.size();i++){
System.out.println(lstInteger.get(i));
}

}

publicstaticList<Integer>sortList(List<Integer>lstInteger){
inti,j,m;
booleanblChange;
intn=lstInteger.size();

for(i=0;i<n;i++){
blChange=false;
for(j=n-1;j>i;j--){
if(lstInteger.get(j)<lstInteger.get(j-1)){
m=lstInteger.get(j-1);
lstInteger.set(j-1,lstInteger.get(j));
lstInteger.set(j,m);
blChange=true;
}
}
if(!blChange){
returnlstInteger;
}
}
returnlstInteger;
}
}
歸納注釋

演算法的最好時間復雜度:若文件的初始狀態是正序的,一趟掃描即可完成排序。所需的關鍵字比較次數C和記錄移動次數M均達到最小值,即C(min)=n-1,M(min)=0。冒泡排序最好的時間復雜度為O(n)。

演算法的最壞時間復雜度:若初始文件是反序的,需要進行n-1趟排序。每趟排序要進行n-1次關鍵字的比較(1<=i<=n-1),且每次比較都必須移動記錄3次。在這種情況下,比較和移動次數均達到最大值,即C(max)=n(n-1)/2=O(n^2),M(max)=3n(n-1)/2=O(n^2)。冒泡排序的最壞時間復雜度為O(n^2)。

演算法的平均時間復雜度為O(n^2)。雖然冒泡排序不一定要進行n-1趟,但由於它的記錄移動次數較多,故平均時間性能比直接插入排序要差得多。

演算法穩定性:冒泡排序是就地排序,且它是穩定的。

演算法改進:上述的冒泡排序還可做如下的改進,①記住最後一次交換發生位置lastExchange的冒泡排序(該位置之前的相鄰記錄均已有序)。下一趟排序開始時,R[1..lastExchange-1]是有序區,R[lastExchange..n]是無序區。這樣,一趟排序可能使當前有序區擴充多個記錄,從而減少排序的趟數。②改變掃描方向的冒泡排序。冒泡排序具有不對稱性。能一趟掃描完成排序的情況,只有最輕的氣泡位於R[n]的位置,其餘的氣泡均已排好序,那麼也只需一趟掃描就可以完成排序。如對初始關鍵字序列12、18、42、44、45、67、94、10就僅需一趟掃描。需要n-1趟掃描完成排序情況,當只有最重的氣泡位於R[1]的位置,其餘的氣泡均已排好序時,則仍需做n-1趟掃描才能完成排序。比如對初始關鍵字序列:94、10、12、18、42、44、45、67就需7趟掃描。造成不對稱性的原因是每趟掃描僅能使最重氣泡「下沉」一個位置,因此使位於頂端的最重氣泡下沉到底部時,需做n-1趟掃描。在排序過程中交替改變掃描方向,可改進不對稱性

6. 請給出java幾種排序方法

java常見的排序分為:
1 插入類排序
主要就是對於一個已經有序的序列中,插入一個新的記錄。它包括:直接插入排序,折半插入排序和希爾排序
2 交換類排序
這類排序的核心就是每次比較都要「交換」,在每一趟排序都會兩兩發生一系列的「交換」排序,但是每一趟排序都會讓一個記錄排序到它的最終位置上。它包括:起泡排序,快速排序
3 選擇類排序
每一趟排序都從一系列數據中選擇一個最大或最小的記錄,將它放置到第一個或最後一個為位置交換,只有在選擇後才交換,比起交換類排序,減少了交換記錄的時間。屬於它的排序:簡單選擇排序,堆排序
4 歸並類排序
將兩個或兩個以上的有序序列合並成一個新的序列
5 基數排序
主要基於多個關鍵字排序的。
下面針對上面所述的演算法,講解一些常用的java代碼寫的演算法
二 插入類排序之直接插入排序
直接插入排序,一般對於已經有序的隊列排序效果好。
基本思想:每趟將一個待排序的關鍵字按照大小插入到已經排序好的位置上。
演算法思路,從後往前先找到要插入的位置,如果小於則就交換,將元素向後移動,將要插入數據插入該位置即可。時間復雜度為O(n2),空間復雜度為O(1)
package sort.algorithm;
public class DirectInsertSort {
public static void main(String[] args) {
// TODO Auto-generated method stub
int data[] = { 2, 6, 10, 3, 9, 80, 1, 16, 27, 20 };
int temp, j;
for (int i = 1; i < data.length; i++) {
temp = data[i];
j = i - 1;
// 每次比較都是對於已經有序的
while (j >= 0 && data[j] > temp) {
data[j + 1] = data[j];
j--;
}
data[j + 1] = temp;
}
// 輸出排序好的數據
for (int k = 0; k < data.length; k++) {
System.out.print(data[k] + " ");
}
}
}
三 插入類排序之折半插入排序(二分法排序)
條件:在一個已經有序的隊列中,插入一個新的元素
折半插入排序記錄的比較次數與初始序列無關
思想:折半插入就是首先將隊列中取最小位置low和最大位置high,然後算出中間位置mid
將中間位置mid與待插入的數據data進行比較,
如果mid大於data,則就表示插入的數據在mid的左邊,high=mid-1;
如果mid小於data,則就表示插入的數據在mid的右邊,low=mid+1
最後整體進行右移操作。
時間復雜度O(n2),空間復雜度O(1)

package sort.algorithm;
//折半插入排序
public class HalfInsertSort {
public static void main(String[] args) {
int data[] = { 2, 6, 10, 3, 9, 80, 1, 16, 27, 20 };
// 存放臨時要插入的元素數據
int temp;
int low, mid, high;
for (int i = 1; i < data.length; i++) {
temp = data[i];
// 在待插入排序的序號之前進行折半插入
low = 0;
high = i - 1;
while (low <= high) {
mid = (low + high) / 2;
if (temp < data[mid])
high = mid - 1;
else
// low=high的時候也就是找到了要插入的位置,
// 此時進入循環中,將low加1,則就是要插入的位置了
low = mid + 1;
}
// 找到了要插入的位置,從該位置一直到插入數據的位置之間數據向後移動
for (int j = i; j >= low + 1; j--)
data[j] = data[j - 1];
// low已經代表了要插入的位置了
data[low] = temp;
}
for (int k = 0; k < data.length; k++) {
System.out.print(data[k] + " ");
}
}
}

四 插入類排序之希爾排序
希爾排序,也叫縮小增量排序,目的就是盡可能的減少交換次數,每一個組內最後都是有序的。
將待續按照某一種規則分為幾個子序列,不斷縮小規則,最後用一個直接插入排序合成
空間復雜度為O(1),時間復雜度為O(nlog2n)
演算法先將要排序的一組數按某個增量d(n/2,n為要排序數的個數)分成若干組,每組中記錄的下標相差d.對每組中全部元素進行直接插入排序,然後再用一個較小的增量(d/2)對它進行分組,在每組中再進行直接插入排序。當增量減到1時,進行直接插入排序後,排序完成。

package sort.algorithm;
public class ShellSort {
public static void main(String[] args) {
int a[] = { 1, 54, 6, 3, 78, 34, 12, 45, 56, 100 };
double d1 = a.length;
int temp = 0;
while (true)
{
//利用這個在將組內倍數減小
//這里依次為5,3,2,1
d1 = Math.ceil(d1 / 2);
//d為增量每個分組之間索引的增量
int d = (int) d1;
//每個分組內部排序
for (int x = 0; x < d; x++)
{
//組內利用直接插入排序
for (int i = x + d; i < a.length; i += d) {
int j = i - d;
temp = a[i];
for (; j >= 0 && temp < a[j]; j -= d) {
a[j + d] = a[j];
}
a[j + d] = temp;
}
}

if (d == 1)
break;
}
for (int i = 0; i < a.length; i++)
System.out.print(a[i]+" ");
}
}

五 交換類排序之冒泡排序
交換類排序核心就是每次比較都要進行交換
冒泡排序:是一種交換排序
每一趟比較相鄰的元素,較若大小不同則就會發生交換,每一趟排序都能將一個元素放到它最終的位置!每一趟就進行比較。
時間復雜度O(n2),空間復雜度O(1)

package sort.algorithm;
//冒泡排序:是一種交換排序
public class BubbleSort {
// 按照遞增順序排序
public static void main(String[] args) {
// TODO Auto-generated method stub
int data[] = { 2, 6, 10, 3, 9, 80, 1, 16, 27, 20, 13, 100, 37, 16 };
int temp = 0;
// 排序的比較趟數,每一趟都會將剩餘最大數放在最後面
for (int i = 0; i < data.length - 1; i++) {
// 每一趟從開始進行比較,將該元素與其餘的元素進行比較
for (int j = 0; j < data.length - 1; j++) {
if (data[j] > data[j + 1]) {
temp = data[j];
data[j] = data[j + 1];
data[j + 1] = temp;
}
}
}
for (int i = 0; i < data.length; i++)
System.out.print(data[i] + " ");
}
}

7. 數據結構 java開發中常用的排序演算法有哪些

排序演算法有很多,所以在特定情景中使用哪一種演算法很重要。為了選擇合適的演算法,可以按照建議的順序考慮以下標准:
(1)執行時間
(2)存儲空間
(3)編程工作
對於數據量較小的情形,(1)(2)差別不大,主要考慮(3);而對於數據量大的,(1)為首要。

主要排序法有:
一、冒泡(Bubble)排序——相鄰交換
二、選擇排序——每次最小/大排在相應的位置
三、插入排序——將下一個插入已排好的序列中
四、殼(Shell)排序——縮小增量
五、歸並排序
六、快速排序
七、堆排序
八、拓撲排序

一、冒泡(Bubble)排序

----------------------------------Code 從小到大排序n個數------------------------------------
void BubbleSortArray()
{
for(int i=1;i<n;i++)
{
for(int j=0;i<n-i;j++)
{
if(a[j]>a[j+1])//比較交換相鄰元素
{
int temp;
temp=a[j]; a[j]=a[j+1]; a[j+1]=temp;
}
}
}
}
-------------------------------------------------Code------------------------------------------------
效率 O(n²),適用於排序小列表。

二、選擇排序
----------------------------------Code 從小到大排序n個數--------------------------------
void SelectSortArray()
{
int min_index;
for(int i=0;i<n-1;i++)
{
min_index=i;
for(int j=i+1;j<n;j++)//每次掃描選擇最小項
if(arr[j]<arr[min_index]) min_index=j;
if(min_index!=i)//找到最小項交換,即將這一項移到列表中的正確位置
{
int temp;
temp=arr[i]; arr[i]=arr[min_index]; arr[min_index]=temp;
}
}
}
-------------------------------------------------Code-----------------------------------------
效率O(n²),適用於排序小的列表。

三、插入排序
--------------------------------------------Code 從小到大排序n個數-------------------------------------
void InsertSortArray()
{
for(int i=1;i<n;i++)//循環從第二個數組元素開始,因為arr[0]作為最初已排序部分
{
int temp=arr[i];//temp標記為未排序第一個元素
int j=i-1;
while (j>=0 && arr[j]>temp)/*將temp與已排序元素從小到大比較,尋找temp應插入的位置*/
{
arr[j+1]=arr[j];
j--;
}
arr[j+1]=temp;
}
}
------------------------------Code--------------------------------------------------------------
最佳效率O(n);最糟效率O(n²)與冒泡、選擇相同,適用於排序小列表
若列表基本有序,則插入排序比冒泡、選擇更有效率。

四、殼(Shell)排序——縮小增量排序
-------------------------------------Code 從小到大排序n個數-------------------------------------
void ShellSortArray()
{
for(int incr=3;incr<0;incr--)//增量遞減,以增量3,2,1為例
{
for(int L=0;L<(n-1)/incr;L++)//重復分成的每個子列表
{
for(int i=L+incr;i<n;i+=incr)//對每個子列表應用插入排序
{
int temp=arr[i];
int j=i-incr;
while(j>=0&&arr[j]>temp)
{
arr[j+incr]=arr[j];
j-=incr;
}
arr[j+incr]=temp;
}
}
}
}
--------------------------------------Code-------------------------------------------
適用於排序小列表。
效率估計O(nlog2^n)~O(n^1.5),取決於增量值的最初大小。建議使用質數作為增量值,因為如果增量值是2的冪,則在下一個通道中會再次比較相同的元素。
殼(Shell)排序改進了插入排序,減少了比較的次數。是不穩定的排序,因為排序過程中元素可能會前後跳躍。

五、歸並排序
----------------------------------------------Code 從小到大排序---------------------------------------
void MergeSort(int low,int high)
{
if(low>=high) return;//每個子列表中剩下一個元素時停止
else int mid=(low+high)/2;/*將列表劃分成相等的兩個子列表,若有奇數個元素,則在左邊子列表大於右側子列表*/
MergeSort(low,mid);//子列表進一步劃分
MergeSort(mid+1,high);
int [] B=new int [high-low+1];//新建一個數組,用於存放歸並的元素
for(int i=low,j=mid+1,k=low;i<=mid && j<=high;k++)/*兩個子列表進行排序歸並,直到兩個子列表中的一個結束*/
{
if (arr[i]<=arr[j];)
{
B[k]=arr[i];
I++;
}
else
{ B[k]=arr[j]; j++; }
}
for( ;j<=high;j++,k++)//如果第二個子列表中仍然有元素,則追加到新列表
B[k]=arr[j];
for( ;i<=mid;i++,k++)//如果在第一個子列表中仍然有元素,則追加到新列表中
B[k]=arr[i];
for(int z=0;z<high-low+1;z++)//將排序的數組B的 所有元素復制到原始數組arr中
arr[z]=B[z];
}
-----------------------------------------------------Code---------------------------------------------------
效率O(nlogn),歸並的最佳、平均和最糟用例效率之間沒有差異。
適用於排序大列表,基於分治法。

六、快速排序
------------------------------------Code--------------------------------------------
/*快速排序的演算法思想:選定一個樞紐元素,對待排序序列進行分割,分割之後的序列一個部分小於樞紐元素,一個部分大於樞紐元素,再對這兩個分割好的子序列進行上述的過程。*/ void swap(int a,int b){int t;t =a ;a =b ;b =t ;}
int Partition(int [] arr,int low,int high)
{
int pivot=arr[low];//採用子序列的第一個元素作為樞紐元素
while (low < high)
{
//從後往前栽後半部分中尋找第一個小於樞紐元素的元素
while (low < high && arr[high] >= pivot)
{
--high;
}
//將這個比樞紐元素小的元素交換到前半部分
swap(arr[low], arr[high]);
//從前往後在前半部分中尋找第一個大於樞紐元素的元素
while (low <high &&arr [low ]<=pivot )
{
++low ;
}
swap (arr [low ],arr [high ]);//將這個樞紐元素大的元素交換到後半部分
}
return low ;//返回樞紐元素所在的位置
}
void QuickSort(int [] a,int low,int high)
{
if (low <high )
{
int n=Partition (a ,low ,high );
QuickSort (a ,low ,n );
QuickSort (a ,n +1,high );
}
}
----------------------------------------Code-------------------------------------
平均效率O(nlogn),適用於排序大列表。
此演算法的總時間取決於樞紐值的位置;選擇第一個元素作為樞紐,可能導致O(n²)的最糟用例效率。若數基本有序,效率反而最差。選項中間值作為樞紐,效率是O(nlogn)。
基於分治法。

七、堆排序
最大堆:後者任一非終端節點的關鍵字均大於或等於它的左、右孩子的關鍵字,此時位於堆頂的節點的關鍵字是整個序列中最大的。
思想:
(1)令i=l,並令temp= kl ;
(2)計算i的左孩子j=2i+1;
(3)若j<=n-1,則轉(4),否則轉(6);
(4)比較kj和kj+1,若kj+1>kj,則令j=j+1,否則j不變;
(5)比較temp和kj,若kj>temp,則令ki等於kj,並令i=j,j=2i+1,並轉(3),否則轉(6)
(6)令ki等於temp,結束。
-----------------------------------------Code---------------------------
void HeapSort(SeqIAst R)

{ //對R[1..n]進行堆排序,不妨用R[0]做暫存單元 int I; BuildHeap(R); //將R[1-n]建成初始堆for(i=n;i>1;i--) //對當前無序區R[1..i]進行堆排序,共做n-1趟。{ R[0]=R[1]; R[1]=R[i]; R[i]=R[0]; //將堆頂和堆中最後一個記錄交換 Heapify(R,1,i-1); //將R[1..i-1]重新調整為堆,僅有R[1]可能違反堆性質 } } ---------------------------------------Code--------------------------------------

堆排序的時間,主要由建立初始堆和反復重建堆這兩部分的時間開銷構成,它們均是通過調用Heapify實現的。

堆排序的最壞時間復雜度為O(nlgn)。堆排序的平均性能較接近於最壞性能。 由於建初始堆所需的比較次數較多,所以堆排序不適宜於記錄數較少的文件。 堆排序是就地排序,輔助空間為O(1), 它是不穩定的排序方法。

堆排序與直接插入排序的區別:
直接選擇排序中,為了從R[1..n]中選出關鍵字最小的記錄,必須進行n-1次比較,然後在R[2..n]中選出關鍵字最小的記錄,又需要做n-2次比較。事實上,後面的n-2次比較中,有許多比較可能在前面的n-1次比較中已經做過,但由於前一趟排序時未保留這些比較結果,所以後一趟排序時又重復執行了這些比較操作。
堆排序可通過樹形結構保存部分比較結果,可減少比較次數。

八、拓撲排序
例 :學生選修課排課先後順序
拓撲排序:把有向圖中各頂點按照它們相互之間的優先關系排列成一個線性序列的過程。
方法:
在有向圖中選一個沒有前驅的頂點且輸出
從圖中刪除該頂點和所有以它為尾的弧
重復上述兩步,直至全部頂點均已輸出(拓撲排序成功),或者當圖中不存在無前驅的頂點(圖中有迴路)為止。
---------------------------------------Code--------------------------------------
void TopologicalSort()/*輸出拓撲排序函數。若G無迴路,則輸出G的頂點的一個拓撲序列並返回OK,否則返回ERROR*/
{
int indegree[M];
int i,k,j;
char n;
int count=0;
Stack thestack;
FindInDegree(G,indegree);//對各頂點求入度indegree[0....num]
InitStack(thestack);//初始化棧
for(i=0;i<G.num;i++)
Console.WriteLine("結點"+G.vertices[i].data+"的入度為"+indegree[i]);
for(i=0;i<G.num;i++)
{
if(indegree[i]==0)
Push(thestack.vertices[i]);
}
Console.Write("拓撲排序輸出順序為:");
while(thestack.Peek()!=null)
{
Pop(thestack.Peek());
j=locatevex(G,n);
if (j==-2)
{
Console.WriteLine("發生錯誤,程序結束。");
exit();
}
Console.Write(G.vertices[j].data);
count++;
for(p=G.vertices[j].firstarc;p!=NULL;p=p.nextarc)
{
k=p.adjvex;
if (!(--indegree[k]))
Push(G.vertices[k]);
}
}
if (count<G.num)
Cosole.WriteLine("該圖有環,出現錯誤,無法排序。");
else
Console.WriteLine("排序成功。");
}
----------------------------------------Code--------------------------------------
演算法的時間復雜度O(n+e)。

8. Java設計線性表排序演算法

import java.util.Scanner;
import java.util.Arrays;

public class P
{
public static void main(String[] args)
{
Scanner sc=new Scanner(System.in);

float[] A=new float[1],B=new float[1];
int alen=0,blen=0,i,j,k;
String line;

System.out.println("請輸入線性表A的各元素,每行一個(輸入#結束):");
while(true)
{
line=sc.nextLine();
if(line.equals("#"))
break;
A=Arrays.Of(A,++alen);
A[alen-1]=Float.parseFloat(line);
}
System.out.println("請輸入線性表B的各元素,每行一個(輸入#結束):");
while(true)
{
line=sc.nextLine();
if(line.equals("#"))
break;
B=Arrays.Of(B,++blen);
B[blen-1]=Float.parseFloat(line);
}
Arrays.sort(A);
Arrays.sort(B);
System.out.println("升序排序後,線性表A的各元素是:");
for(i=0;i<alen;i++)
{
System.out.print(A[i]+" ");
}
System.out.println();
System.out.println();
System.out.println("升序排序後,線性表B的各元素是:");
for(i=0;i<blen;i++)
{
System.out.print(B[i]+" ");
}
System.out.println();
System.out.println();
A=Arrays.Of(A,alen+blen);
for(i=0;i<blen;i++)
{
if(B[i]>=A[alen-1])
A[alen++]=B[i];
else
{
for(j=0;j<alen-1;j++)
{
if(B[i]<=A[j])
break;
}
for(k=alen-1;k>=j;k--)
{
A[k+1]=A[k];
}
A[j]=B[i];
alen++;
}
}
System.out.println("線性表B按順序插入線性表A中後,線性表A的各元素是:");
for(i=0;i<alen;i++)
{
System.out.print(A[i]+" ");
}
sc.close();
}
}

9. JAVA 冒泡排序法的詳細解釋是什麼

冒泡排序的英文Bubble Sort,是一種最基礎的交換排序。

大家一定都喝過汽水,汽水中常常有許多小小的氣泡,嘩啦嘩啦飄到上面來。這是因為組成小氣泡的二氧化碳比水要輕,所以小氣泡可以一點一點向上浮動。而我們的冒泡排序之所以叫做冒泡排序,正是因為這種排序演算法的每一個元素都可以像小氣泡一樣,根據自身大小,一點一點向著數組的一側移動。

冒泡排序演算法的原理如下:

10. 寫一個簡單的JAVA排序程序

// 排序

public class Array
{
public static int[] random(int n) //產生n個隨機數,返回整型數組
{
if (n>0)
{
int table[] = new int[n];
for (int i=0; i<table.length; i++)
table[i] = (int)(Math.random()*100); //產生一個0~100之間的隨機數
return table; //返回一個數組
}
return null;
}

public static void print(int[] table) //輸出數組元素
{
if (table!=null)
for (int i=0; i<table.length; i++)
System.out.print(" "+table[i]);
System.out.println();
}

public static void insertSort(int[] table) //直接插入排序
{ //數組是引用類型,元素值將被改變
System.out.println("直接插入排序");
for (int i=1; i<table.length; i++) //n-1趟掃描
{
int temp=table[i], j; //每趟將table[i]插入到前面已排序的序列中
// System.out.print("移動");
for (j=i-1; j>-1 && temp<table[j]; j--) //將前面較大元素向後移動
{
// System.out.print(table[j]+", ");
table[j+1] = table[j];
}
table[j+1] = temp; //temp值到達插入位置
System.out.print("第"+i+"趟: ");
print(table);
}
}

public static void shellSort(int[] table) //希爾排序
{
System.out.println("希爾排序");
for (int delta=table.length/2; delta>0; delta/=2) //控制增量,增量減半,若干趟掃描
{
for (int i=delta; i<table.length; i++) //一趟中若干組,每個元素在自己所屬組內進行直接插入排序
{
int temp = table[i]; //當前待插入元素
int j=i-delta; //相距delta遠
while (j>=0 && temp<table[j]) //一組中前面較大的元素向後移動
{
table[j+delta] = table[j];
j-=delta; //繼續與前面的元素比較
}
table[j+delta] = temp; //插入元素位置
}
System.out.print("delta="+delta+" ");
print(table);
}
}

private static void swap(int[] table, int i, int j) //交換數組中下標為i、j的元素
{
if (i>=0 && i<table.length && j>=0 && j<table.length && i!=j) //判斷i、j是否越界
{
int temp = table[j];
table[j] = table[i];
table[i] = temp;
}
}

public static void bubbleSort(int[] table) //冒泡排序
{
System.out.println("冒泡排序");
boolean exchange=true; //是否交換的標記
for (int i=1; i<table.length && exchange; i++) //有交換時再進行下一趟,最多n-1趟
{
exchange=false; //假定元素未交換
for (int j=0; j<table.length-i; j++) //一次比較、交換
if (table[j]>table[j+1]) //反序時,交換
{
int temp = table[j];
table[j] = table[j+1];
table[j+1] = temp;
exchange=true; //有交換
}
System.out.print("第"+i+"趟: ");
print(table);
}
}

public static void quickSort(int[] table) //快速排序
{
quickSort(table, 0, table.length-1);
}

private static void quickSort(int[] table, int low, int high) //一趟快速排序,遞歸演算法
{ //low、high指定序列的下界和上界
if (low<high) //序列有效
{
int i=low, j=high;
int vot=table[i]; //第一個值作為基準值
while (i!=j) //一趟排序
{
while (i<j && vot<=table[j]) //從後向前尋找較小值
j--;
if (i<j)
{
table[i]=table[j]; //較小元素向前移動
i++;
}
while (i<j && table[i]<vot) //從前向後尋找較大值
i++;
if (i<j)
{
table[j]=table[i]; //較大元素向後移動
j--;
}
}
table[i]=vot; //基準值的最終位置
System.out.print(low+".."+high+", vot="+vot+" ");
print(table);
quickSort(table, low, j-1); //前端子序列再排序
quickSort(table, i+1, high); //後端子序列再排序
}
}

public static void selectSort(int[] table) //直接選擇排序
{
System.out.println("直接選擇排序");
for (int i=0; i<table.length-1; i++) //n-1趟排序
{ //每趟在從table[i]開始的子序列中尋找最小元素
int min=i; //設第i個數據元素最小
for (int j=i+1; j<table.length; j++) //在子序列中查找最小值
if (table[j]<table[min])
min = j; //記住最小元素下標

if (min!=i) //將本趟最小元素交換到前邊
{
int temp = table[i];
table[i] = table[min];
table[min] = temp;
}
System.out.print("第"+i+"趟: ");
print(table);
}
}

private static void sift(int[] table, int low, int high) //將以low為根的子樹調整成最小堆
{ //low、high是序列下界和上界
int i=low; //子樹的根
int j=2*i+1; //j為i結點的左孩子
int temp=table[i]; //獲得第i個元素的值
while (j<=high) //沿較小值孩子結點向下篩選
{
if (j<high && table[j]>table[j+1]) //數組元素比較(改成<為最大堆)
j++; //j為左右孩子的較小者
if (temp>table[j]) //若父母結點值較大(改成<為最大堆)
{
table[i]=table[j]; //孩子結點中的較小值上移
i=j; //i、j向下一層
j=2*i+1;
}
else
j=high+1; //退出循環
}
table[i]=temp; //當前子樹的原根值調整後的位置
System.out.print("sift "+low+".."+high+" ");
print(table);
}

public static void heapSort(int[] table)
{
System.out.println("堆排序");
int n=table.length;
for (int j=n/2-1; j>=0; j--) //創建最小堆
sift(table, j, n-1);
// System.out.println("最小堆? "+isMinHeap(table));

for (int j=n-1; j>0; j--) //每趟將最小值交換到後面,再調整成堆
{
int temp = table[0];
table[0] = table[j];
table[j] = temp;
sift(table, 0, j-1);
}
}

public static void mergeSort(int[] X) //歸並排序
{
System.out.println("歸並排序");
int n=1; //已排序的子序列長度,初值為1
int[] Y = new int[X.length]; //Y數組長度同X數組
do
{
mergepass(X, Y, n); //一趟歸並,將X數組中各子序列歸並到Y中
print(Y);
n*=2; //子序列長度加倍

if (n<X.length)
{
mergepass(Y, X, n); //將Y數組中各子序列再歸並到X中
print(X);
n*=2;
}
} while (n<X.length);
}

private static void mergepass(int[] X, int[] Y, int n) //一趟歸並
{
System.out.print("子序列長度n="+n+" ");
int i=0;
while (i<X.length-2*n+1)
{
merge(X,Y,i,i+n,n);
i += 2*n;
}
if (i+n<X.length)
merge(X,Y,i,i+n,n); //再一次歸並
else
for (int j=i; j<X.length; j++) //將X剩餘元素復制到Y中
Y[j]=X[j];
}

private static void merge(int[] X, int[] Y, int m, int r, int n) //一次歸並
{
int i=m, j=r, k=m;
while (i<r && j<r+n && j<X.length) //將X中兩個相鄰子序列歸並到Y中
if (X[i]<X[j]) //較小值復制到Y中
Y[k++]=X[i++];
else
Y[k++]=X[j++];

while (i<r) //將前一個子序列剩餘元素復制到Y中
Y[k++]=X[i++];
while (j<r+n && j<X.length) //將後一個子序列剩餘元素復制到Y中
Y[k++]=X[j++];
}

public static void main(String[] args)
{
// int[] table = {52,26,97,19,66,8,49};//Array.random(9);{49,65,13,81,76,97,38,49};////{85,12,36,24,47,30,53,91,76};//;//{4,5,8,1,2,7,3,6};// {32,26,87,72,26,17};//
int[] table = {13,27,38,49,97,76,49,81}; //最小堆
System.out.print("關鍵字序列: ");
Array.print(table);
// Array.insertSort(table);
// Array.shellSort(table);
// Array.bubbleSort(table);
// Array.quickSort(table);
// Array.selectSort(table);
// Array.heapSort(table);
// Array.mergeSort(table);

System.out.println("最小堆序列? "+Array.isMinHeap(table));
}

//第9章習題
public static boolean isMinHeap(int[] table) //判斷一個數據序列是否為最小堆
{
if (table==null)
return false;

int i = table.length/2 -1; //最深一棵子樹的根結點
while (i>=0)
{
int j=2*i+1; //左孩子
if (j<table.length)
if (table[i]>table[j])
return false;
else
if (j+1<table.length && table[i]>table[j+1]) //右孩子
return false;
i--;
}
return true;
}

}

/*
程序運行結果如下:
關鍵字序列: 32 26 87 72 26 17 8 40
直接插入排序
第1趟排序: 26 32 87 72 26 17 8 40
第2趟排序: 26 32 87 72 26 17 8 40
第3趟排序: 26 32 72 87 26 17 8 40
第4趟排序: 26 26 32 72 87 17 8 40 //排序演算法穩定
第5趟排序: 17 26 26 32 72 87 8 40
第6趟排序: 8 17 26 26 32 72 87 40
第7趟排序: 8 17 26 26 32 40 72 87

關鍵字序列: 42 1 74 25 45 29 87 53
直接插入排序
第1趟排序: 1 42 74 25 45 29 87 53
第2趟排序: 1 42 74 25 45 29 87 53
第3趟排序: 1 25 42 74 45 29 87 53
第4趟排序: 1 25 42 45 74 29 87 53
第5趟排序: 1 25 29 42 45 74 87 53
第6趟排序: 1 25 29 42 45 74 87 53
第7趟排序: 1 25 29 42 45 53 74 87

關鍵字序列: 21 12 2 40 99 97 68 57
直接插入排序
第1趟排序: 12 21 2 40 99 97 68 57
第2趟排序: 2 12 21 40 99 97 68 57
第3趟排序: 2 12 21 40 99 97 68 57
第4趟排序: 2 12 21 40 99 97 68 57
第5趟排序: 2 12 21 40 97 99 68 57
第6趟排序: 2 12 21 40 68 97 99 57
第7趟排序: 2 12 21 40 57 68 97 99

關鍵字序列: 27 38 65 97 76 13 27 49 55 4
希爾排序
delta=5 13 27 49 55 4 27 38 65 97 76
delta=2 4 27 13 27 38 55 49 65 97 76
delta=1 4 13 27 27 38 49 55 65 76 97

關鍵字序列: 49 38 65 97 76 13 27 49 55 4 //嚴書
希爾排序
delta=5 13 27 49 55 4 49 38 65 97 76
delta=2 4 27 13 49 38 55 49 65 97 76 //與嚴書不同
delta=1 4 13 27 38 49 49 55 65 76 97

關鍵字序列: 65 34 25 87 12 38 56 46 14 77 92 23
希爾排序
delta=6 56 34 14 77 12 23 65 46 25 87 92 38
delta=3 56 12 14 65 34 23 77 46 25 87 92 38
delta=1 12 14 23 25 34 38 46 56 65 77 87 92

關鍵字序列: 84 12 43 62 86 7 90 91
希爾排序
delta=4 84 7 43 62 86 12 90 91
delta=2 43 7 84 12 86 62 90 91
delta=1 7 12 43 62 84 86 90 91

關鍵字序列: 32 26 87 72 26 17
冒泡排序
第1趟排序: 26 32 72 26 17 87
第2趟排序: 26 32 26 17 72 87
第3趟排序: 26 26 17 32 72 87
第4趟排序: 26 17 26 32 72 87
第5趟排序: 17 26 26 32 72 87

關鍵字序列: 1 2 3 4 5 6 7 8
冒泡排序
第1趟排序: 1 2 3 4 5 6 7 8

關鍵字序列: 1 3 2 4 5 8 6 7
冒泡排序
第1趟排序: 1 2 3 4 5 6 7 8
第2趟排序: 1 2 3 4 5 6 7 8

關鍵字序列: 4 5 8 1 2 7 3 6
冒泡排序
第1趟排序: 4 5 1 2 7 3 6 8
第2趟排序: 4 1 2 5 3 6 7 8
第3趟排序: 1 2 4 3 5 6 7 8
第4趟排序: 1 2 3 4 5 6 7 8
第5趟排序: 1 2 3 4 5 6 7 8

關鍵字序列: 38 26 97 19 66 1 5 49
0..7, vot=38 5 26 1 19 38 66 97 49
0..3, vot=5 1 5 26 19 38 66 97 49
2..3, vot=26 1 5 19 26 38 66 97 49
5..7, vot=66 1 5 19 26 38 49 66 97

關鍵字序列: 38 5 49 26 19 97 1 66
0..7, vot=38 1 5 19 26 38 97 49 66
0..3, vot=1 1 5 19 26 38 97 49 66
1..3, vot=5 1 5 19 26 38 97 49 66
2..3, vot=19 1 5 19 26 38 97 49 66
5..7, vot=97 1 5 19 26 38 66 49 97
5..6, vot=66 1 5 19 26 38 49 66 97

關鍵字序列: 49 38 65 97 76 13 27 49
0..7, vot=49 49 38 27 13 49 76 97 65
0..3, vot=49 13 38 27 49 49 76 97 65
0..2, vot=13 13 38 27 49 49 76 97 65
1..2, vot=38 13 27 38 49 49 76 97 65
5..7, vot=76 13 27 38 49 49 65 76 97

關鍵字序列: 27 38 65 97 76 13 27 49 55 4
low=0 high=9 vot=27 4 27 13 27 76 97 65 49 55 38
low=0 high=2 vot=4 4 27 13 27 76 97 65 49 55 38
low=1 high=2 vot=27 4 13 27 27 76 97 65 49 55 38
low=4 high=9 vot=76 4 13 27 27 38 55 65 49 76 97
low=4 high=7 vot=38 4 13 27 27 38 55 65 49 76 97
low=5 high=7 vot=55 4 13 27 27 38 49 55 65 76 97

關鍵字序列: 38 26 97 19 66 1 5 49
直接選擇排序
第0趟排序: 1 26 97 19 66 38 5 49
第1趟排序: 1 5 97 19 66 38 26 49
第2趟排序: 1 5 19 97 66 38 26 49
第3趟排序: 1 5 19 26 66 38 97 49
第4趟排序: 1 5 19 26 38 66 97 49
第5趟排序: 1 5 19 26 38 49 97 66
第6趟排序: 1 5 19 26 38 49 66 97

最小堆
關鍵字序列: 81 49 76 27 97 38 49 13 65
sift 3..8 81 49 76 13 97 38 49 27 65
sift 2..8 81 49 38 13 97 76 49 27 65
sift 1..8 81 13 38 27 97 76 49 49 65
sift 0..8 13 27 38 49 97 76 49 81 65
13 27 38 49 97 76 49 81 65
sift 0..7 27 49 38 65 97 76 49 81 13
sift 0..6 38 49 49 65 97 76 81 27 13
sift 0..5 49 65 49 81 97 76 38 27 13
sift 0..4 49 65 76 81 97 49 38 27 13
sift 0..3 65 81 76 97 49 49 38 27 13
sift 0..2 76 81 97 65 49 49 38 27 13
sift 0..1 81 97 76 65 49 49 38 27 13
sift 0..0 97 81 76 65 49 49 38 27 13

最大堆
關鍵字序列: 49 65 13 81 76 27 97 38 49
sift 3..8 49 65 13 81 76 27 97 38 49
sift 2..8 49 65 97 81 76 27 13 38 49
sift 1..8 49 81 97 65 76 27 13 38 49
sift 0..8 97 81 49 65 76 27 13 38 49
97 81 49 65 76 27 13 38 49
sift 0..7 81 76 49 65 49 27 13 38 97
sift 0..6 76 65 49 38 49 27 13 81 97
sift 0..5 65 49 49 38 13 27 76 81 97
sift 0..4 49 38 49 27 13 65 76 81 97
sift 0..3 49 38 13 27 49 65 76 81 97
sift 0..2 38 27 13 49 49 65 76 81 97
sift 0..1 27 13 38 49 49 65 76 81 97
sift 0..0 13 27 38 49 49 65 76 81 97

關鍵字序列: 52 26 97 19 66 8 49
歸並排序
子序列長度n=1 26 52 19 97 8 66 49
子序列長度n=2 19 26 52 97 8 49 66
子序列長度n=4 8 19 26 49 52 66 97

關鍵字序列: 13 27 38 49 97 76 49 81 65
最小堆序列? true

*/

閱讀全文

與穩定排序java相關的資料

熱點內容
怎麼買賣副圖源碼 瀏覽:660
廣東農信app怎麼更改預留手機號碼 瀏覽:777
嵌套頁面php 瀏覽:566
安卓手機怎麼調到微信聊天模式 瀏覽:857
java博客開源系統 瀏覽:719
男人之間的加密對話日語 瀏覽:359
怎麼連遠程連接伺服器 瀏覽:11
安卓二手手機該如何檢測 瀏覽:213
微信可以共享圖片文件夾嗎 瀏覽:80
聯通wifi加密碼 瀏覽:643
錄屏文件夾小米 瀏覽:548
車上的app怎麼重設 瀏覽:24
指定文件夾屬性 瀏覽:131
linuxphp編程 瀏覽:337
以下不正確的是雲伺服器 瀏覽:909
琉璃神社壓縮密碼 瀏覽:715
大一學生解壓視頻 瀏覽:376
單位電腦e盤加密輸入正確密碼 瀏覽:873
phpfileupload 瀏覽:634
刑拘程序員 瀏覽:617