導航:首頁 > 編程語言 > python股票回測

python股票回測

發布時間:2023-03-13 02:36:16

python的量化代碼怎麼用到股市中

2010 ~ 2017 滬深A股各行業量化分析

在開始各行業的量化分析之前,我們需要先弄清楚兩個問題:

「2010-2017」投資於優質行業龍頭的收益表現

選好行業之後,下面進入選公司環節。我們知道,即便是一個好的行業也仍然存在表現不好的公司,那麼什麼是好的公司呢,本文試圖從營業收入規模和利潤規模和來考察以上五個基業長青的行業,從它們中去篩選公司作為投資標的。

3.1按營業收入規模構建的行業龍頭投資組合

首先,我們按照營業收入規模,篩選出以上5個行業【醫葯生物,建築裝飾,電氣設備,銀行和汽車】從2010年至今的行業龍頭如下表所示:

結論

通過以上行業分析和投資組合的歷史回測可以看到:

出自:JoinQuant 聚寬數據 JQData

㈡ python回測系統 模擬回測 最簡單量化回測系統有哪些支持期貨和股票

github上有一個jdhc簡單回測 是用python寫的比較簡單,需要設置些參數。

㈢ 使用python做量化交易策略測試和回驗,有哪些比較成熟一些的庫

可以嘗試一下JoinQuant: 聚寬,人人皆為寬客
詳細的API文檔:API文檔 - JoinQuant

免費提供IPython Notebook研究平台,提供分鍾級數據,採用Docker技術隔離,資源獨立、安全性更高、性能更好,同步支持Python2、Python3。
免費提供滬深A股、ETF的歷史交易數據,支持基於日級、分鍾級的精準回測。
免費提供最准確、實時的滬深A股、ETF模擬交易工具,支持基於tick級的模擬交易。
為量化愛好者提供線上交流社區,支持一鍵克隆策略,便於用戶交流量化策略、學習量化知識,一起成長。
基於2005年至今完整的Level-2數據,上市公司財務數據,包含完整的停復牌、復權、退市等信息,盤後及時更新。

㈣ 如何用Python炒股

如果想直接執行python程序的話可以寫一個.bat新建一個記事本,然後寫一段下面的代碼,最後存成.bat文件,以後直接執行這段代碼就可以了。其實也可以直接執行.py文件c:\program files\python file.py

㈤ 如何用python實現Markowitz投資組合優化

多股票策略回測時常常遇到問題。
倉位如何分配?
你以為基金經理都是一拍腦袋就等分倉位了嗎?
或者玩點玄乎的斐波拉契數列?
OMG,誰說的黃金比例,讓我看到你的腦袋(不削才怪)!!

其實,這個問題,好多好多年前馬科維茨(Markowitz)我喜愛的小馬哥就給出答案——投資組合理論。

根據這個理論,我們可以對多資產的組合配置進行三方面的優化。
1.找到有效前沿。在既定的收益率下使組合的方差最小。
2.找到sharpe最優的組合(收益-風險均衡點)

3.找到風險最小的組合

跟著我,一步兩步,輕松實現。
該理論基於用均值和方差來表述組合的優劣的前提。將選取幾只股票,用蒙特卡洛模擬初步探究組合的有效前沿。
通過最大Sharpe和最小方差兩種優化來找到最優的資產組合配置權重參數。
最後,刻畫出可能的分布,兩種最優以及組合的有效前沿。

註:
文中的數據API來自量化平台聚寬,在此表示感謝。
原文見【組合管理】——投資組合理論(有效前沿)(包含正態檢驗部分)

0.導入需要的包
import pandas as pd
import numpy as np
import statsmodels.api as sm #統計運算
import scipy.stats as scs #科學計算
import matplotlib.pyplot as plt #繪圖

1.選取幾只感興趣的股票
000413 東旭光電,000063 中興通訊,002007 華蘭生物,000001 平安銀行,000002 萬科A
並比較一下數據(2015-01-01至2015-12-31)
In[1]:
stock_set = ['000413.XSHE','000063.XSHE','002007.XSHE','000001.XSHE','000002.XSHE']
noa = len(stock_set)
df = get_price(stock_set, start_date = '2015-01-01', end_date ='2015-12-31', 'daily', ['close'])
data = df['close']
#規范化後時序數據
(data/data.ix[0]*100).plot(figsize = (8,5))
Out[1]:

2.計算不同證券的均值、協方差
每年252個交易日,用每日收益得到年化收益。計算投資資產的協方差是構建資產組合過程的核心部分。運用pandas內置方法生產協方差矩陣。
In [2]:
returns = np.log(data / data.shift(1))
returns.mean()*252
Out[2]:

000413.XSHE 0.184516
000063.XSHE 0.176790
002007.XSHE 0.309077
000001.XSHE -0.102059
000002.XSHE 0.547441

In [3]:
returns.cov()*252
Out[3]:

3.給不同資產隨機分配初始權重
由於A股不允許建立空頭頭寸,所有的權重系數均在0-1之間
In [4]:
weights = np.random.random(noa)
weights /= np.sum(weights)
weights
Out[4]:

array([ 0.37505798, 0.21652754, 0.31590981, 0.06087709, 0.03162758])

4.計算預期組合年化收益、組合方差和組合標准差
In [5]:
np.sum(returns.mean()*weights)*252
Out[5]:

0.21622558669017816

In [6]:
np.dot(weights.T, np.dot(returns.cov()*252,weights))
Out[6]:

0.23595133640121463

In [7]:
np.sqrt(np.dot(weights.T, np.dot(returns.cov()* 252,weights)))
Out[7]:

0.4857482232609962

5.用蒙特卡洛模擬產生大量隨機組合
進行到此,我們最想知道的是給定的一個股票池(證券組合)如何找到風險和收益平衡的位置。
下面通過一次蒙特卡洛模擬,產生大量隨機的權重向量,並記錄隨機組合的預期收益和方差。
In [8]:
port_returns = []
port_variance = []
for p in range(4000):
weights = np.random.random(noa)
weights /=np.sum(weights)
port_returns.append(np.sum(returns.mean()*252*weights))
port_variance.append(np.sqrt(np.dot(weights.T, np.dot(returns.cov()*252, weights))))
port_returns = np.array(port_returns)
port_variance = np.array(port_variance)
#無風險利率設定為4%
risk_free = 0.04
plt.figure(figsize = (8,4))
plt.scatter(port_variance, port_returns, c=(port_returns-risk_free)/port_variance, marker = 'o')
plt.grid(True)
plt.xlabel('excepted volatility')
plt.ylabel('expected return')
plt.colorbar(label = 'Sharpe ratio')
Out[8]:

6.投資組合優化1——sharpe最大
建立statistics函數來記錄重要的投資組合統計數據(收益,方差和夏普比)
通過對約束最優問題的求解,得到最優解。其中約束是權重總和為1。
In [9]:
def statistics(weights):
weights = np.array(weights)
port_returns = np.sum(returns.mean()*weights)*252
port_variance = np.sqrt(np.dot(weights.T, np.dot(returns.cov()*252,weights)))
return np.array([port_returns, port_variance, port_returns/port_variance])
#最優化投資組合的推導是一個約束最優化問題
import scipy.optimize as sco
#最小化夏普指數的負值
def min_sharpe(weights):
return -statistics(weights)[2]
#約束是所有參數(權重)的總和為1。這可以用minimize函數的約定表達如下
cons = ({'type':'eq', 'fun':lambda x: np.sum(x)-1})
#我們還將參數值(權重)限制在0和1之間。這些值以多個元組組成的一個元組形式提供給最小化函數
bnds = tuple((0,1) for x in range(noa))
#優化函數調用中忽略的唯一輸入是起始參數列表(對權重的初始猜測)。我們簡單的使用平均分布。
opts = sco.minimize(min_sharpe, noa*[1./noa,], method = 'SLSQP', bounds = bnds, constraints = cons)
opts
Out[9]:
status: 0
success: True
njev: 4
nfev: 28
fun: -1.1623048291871221
x: array([ -3.60840218e-16, 2.24626781e-16, 1.63619563e-01, -2.27085639e-16, 8.36380437e-01])
message: 'Optimization terminated successfully.'
jac: array([ 1.81575805e-01, 5.40387481e-01, 8.18073750e-05, 1.03137662e+00, -1.60038471e-05, 0.00000000e+00])
nit: 4

得到的最優組合權重向量為:
In [10]:
opts['x'].round(3)
Out[10]:
array([-0. , 0. , 0.164, -0. , 0.836])

sharpe最大的組合3個統計數據分別為:
In [11]:
#預期收益率、預期波動率、最優夏普指數
statistics(opts['x']).round(3)
Out[11]:

array([ 0.508, 0.437, 1.162])

7.投資組合優化2——方差最小
接下來,我們通過方差最小來選出最優投資組合。
In [12]:
#但是我們定義一個函數對 方差進行最小化
def min_variance(weights):
return statistics(weights)[1]
optv = sco.minimize(min_variance, noa*[1./noa,],method = 'SLSQP', bounds = bnds, constraints = cons)
optv
Out[12]:
status: 0
success: True
njev: 7
nfev: 50
fun: 0.38542969450547221
x: array([ 1.14787640e-01, 3.28089742e-17, 2.09584008e-01, 3.53487044e-01, 3.22141307e-01])
message: 'Optimization terminated successfully.'
jac: array([ 0.3851725 , 0.43591119, 0.3861807 , 0.3849672 , 0.38553924, 0. ])
nit: 7

方差最小的最優組合權重向量及組合的統計數據分別為:
In [13]:
optv['x'].round(3)
Out[13]:
array([ 0.115, 0. , 0.21 , 0.353, 0.322])

In [14]:
#得到的預期收益率、波動率和夏普指數
statistics(optv['x']).round(3)
Out[14]:
array([ 0.226, 0.385, 0.587])

8.組合的有效前沿
有效前沿有既定的目標收益率下方差最小的投資組合構成。
在最優化時採用兩個約束,1.給定目標收益率,2.投資組合權重和為1。
In [15]:
def min_variance(weights):
return statistics(weights)[1]
#在不同目標收益率水平(target_returns)循環時,最小化的一個約束條件會變化。
target_returns = np.linspace(0.0,0.5,50)
target_variance = []
for tar in target_returns:
cons = ({'type':'eq','fun':lambda x:statistics(x)[0]-tar},{'type':'eq','fun':lambda x:np.sum(x)-1})
res = sco.minimize(min_variance, noa*[1./noa,],method = 'SLSQP', bounds = bnds, constraints = cons)
target_variance.append(res['fun'])
target_variance = np.array(target_variance)

下面是最優化結果的展示。
叉號:構成的曲線是有效前沿(目標收益率下最優的投資組合)
紅星:sharpe最大的投資組合
黃星:方差最小的投資組合
In [16]:
plt.figure(figsize = (8,4))
#圓圈:蒙特卡洛隨機產生的組合分布
plt.scatter(port_variance, port_returns, c = port_returns/port_variance,marker = 'o')
#叉號:有效前沿
plt.scatter(target_variance,target_returns, c = target_returns/target_variance, marker = 'x')
#紅星:標記最高sharpe組合
plt.plot(statistics(opts['x'])[1], statistics(opts['x'])[0], 'r*', markersize = 15.0)
#黃星:標記最小方差組合
plt.plot(statistics(optv['x'])[1], statistics(optv['x'])[0], 'y*', markersize = 15.0)
plt.grid(True)
plt.xlabel('expected volatility')
plt.ylabel('expected return')
plt.colorbar(label = 'Sharpe ratio')
Out[16]:

㈥ 用Python 進行股票分析 有什麼好的入門書籍或者課程嗎

單產品趨勢交易系統,用c語言二次開發來搞,直接圖形化輸出買賣點,回測即可。通達信最新版可以開發dll了,不過介面不太爽,可以改用飛狐、金字塔及其他軟體。
多產品組合投資,用SAS收集價格數據、財務數據等設計策略並回測。sas比python強大很多,不過入門要花1個月(指業余時間學習)。


不推薦先看書籍,關於程序的書應該作為工具書,不當程序員的話按部就班學是浪費時間,而關於股票的書沒經驗就看是空對空。關鍵是你自己怎麼想的,然後就怎
么實踐,重要的是想法,之後就是邊編邊查工具書或論壇。過擬合、滑點之類的問題,真實交易一下才有體會,然後繼續調試即可。

㈦ 中國的 Python 量化交易工具鏈有哪些

萬得的Python API,可以用來獲取實時數據、歷史數據以及下單交易 優點:萬得大而全 缺點:下單交易功能不是事件驅動(例如成交回報需要用戶去查詢,而不是主推)
同花順iFinD的Python API,類似萬得的API 優點:比萬得便宜,同花順的服務態度很好(用戶提出新需求後很快就能給出確定的答復或者解決方案)
掘金的量化平台
通聯數據的量化平台
QuickFix的Python API(可以用來接國信、方正的FIX介面)
Numpy/Scipy/Matplotlib/Pandas(量化分析)
IPyhon/Spyder(適合做量化分析的IDE環境)
Zipline(策略開發回測)
TuShare財經數據介面 - 可以直接抓取新浪財經、鳳凰財經的網站數據,包括行情、基本面、經濟數據等等。完全免費,簡潔易用,API設計得非常友好,提取的數據格式是Pandas的DataFrame。同時可以獲取非高頻實時數據(取決於網站更新速度,同事經驗大約是15秒),一個極好的非高頻股票策略數據解決方案。
恆生電子的量化贏家平台,提供Python介面,鏈接我點進去後沒看到具體的使用教程,希望回頭補一下。
米礦ricequant在我提出這個問題時尚只有Java的API,後來也支持了Python,期待2016有新的突破。

㈧ 用Python怎麼做量化投資

本文將會講解量化投資過程中的基本流程,量化投資無非這幾個流程,數據輸入------策略書寫------回測輸出
其中策略書寫部分還涉及到編程語言的選擇,如果不想苦惱數據輸入和回測輸出的話,還要選擇回測平台。
一、數據
首先,必須是數據,數據是量化投資的基礎
如何得到數據?

Wind:數據來源的最全的還是Wind,但是要付費,學生可以有免費試用的機會,之後還會和大家分享一下怎樣才Wind里摘取數據,Wind有很多軟體的借口,Excel,Matlab,Python,C++。
預測者網:不經意間發現,一個免費提供股票數據網站 預測者網,下載的是CSV格式
TB交易開拓者:Tradeblazer,感謝@孫存浩提供數據源
TuShare:TuShare -財經數據介麵包,基於Python的財經數據包,利用Python進行摘取
如何存儲數據?
Mysql
如何預處理數據?

空值處理:利用DataFrame的fill.na()函數,將空值(Nan)替換成列的平均數、中位數或者眾數
數據標准化
數據如何分類?
行情數據
財務數據
宏觀數據
二、計算語言&軟體

已經有很多人在網上詢問過該選擇什麼語言?筆者一開始用的是matlab,但最終選擇了python
python:庫很多,只有你找不到的,沒有你想不到,和量化這塊結合比較緊密的有:
Numpy&Scipy:科學計算庫,矩陣計算
Pandas:金融數據分析神器,原AQR資本員工寫的一個庫,處理時間序列的標配

Matplotlib:畫圖庫
scikit-learn:機器學習庫
statsmodels:統計分析模塊
TuShare:免費、開源的python財經數據介麵包

Zipline:回測系統
TaLib:技術指標庫
matlab:主要是矩陣運算、科學運算這一塊很強大,主要有優點是WorkSpace變數可視化

python的Numpy+Scipy兩個庫完全可以替代Matlab的矩陣運算
Matplotlib完克Matlab的畫圖功能
python還有很多其他的功能
pycharm(python的一款IDE)有很棒的調試功能,能代替Matlab的WorkSpace變數可視化
推薦的python學習文檔和書籍
關於python的基礎,建議廖雪峰Python 2.7教程,適合於沒有程序基礎的人來先看,涉及到python的基本數據類型、循環語句、條件語句、函數、類與對象、文件讀寫等很重要的基礎知識。

涉及到數據運算的話,其實基礎教程沒什麼應用,python各類包都幫你寫好了,最好的學習資料還是它的官方文檔,文檔中的不僅有API,還會有寫實例教程
pandas文檔
statsmodels文檔
scipy和numpy文檔
matplotlib文檔

TuShare文檔
第二,推薦《利用Python進行數據分析》,pandas的開發初衷就是用來處理金融數據的
三、回測框架和網站
兩個開源的回測框架
PyAlgoTrade - Algorithmic Trading

Zipline, a Pythonic Algorithmic Trading Library

㈨ 怎麼學習python量化交易

下面教你八步寫個量化交易策略——單股票均線策略

1 確定策略內容與框架

若昨日收盤價高出過去20日平均價今天開盤買入股票
若昨日收盤價低於過去20日平均價今天開盤賣出股票

只操作一隻股票,很簡單對吧,但怎麼用代碼說給計算機聽呢?

想想人是怎麼操作的,應該包括這樣兩個部分

既然是單股票策略,事先決定好交易哪一個股票。

每天看看昨日收盤價是否高出過去20日平均價,是的話開盤就買入,不是開盤就賣出。每天都這么做,循環下去。

對應代碼也是這兩個部分

definitialize(context):
用來寫最開始要做什麼的地方
defhandle_data(context,data):
用來寫每天循環要做什麼的地方

2 初始化

我們要寫設置要交易的股票的代碼,比如 兔寶寶(002043)

definitialize(context):
g.security='002043.XSHE'#存入兔寶寶的股票代碼

3 獲取收盤價與均價

首先,獲取昨日股票的收盤價

#用法:變數=data[股票代碼].close
last_price=data[g.security].close#取得最近日收盤價,命名為last_price

然後,獲取近二十日股票收盤價的平均價

#用法:變數=data[股票代碼].mavg(天數,『close』)
#獲取近二十日股票收盤價的平均價,命名為average_price
average_price=data[g.security].mavg(20,'close')

4 判斷是否買賣

數據都獲取完,該做買賣判斷了

#如果昨日收盤價高出二十日平均價,則買入,否則賣出
iflast_price>average_price:
買入
eliflast_price<average_price:
賣出

問題來了,現在該寫買賣下單了,但是拿多少錢去買我們還沒有告訴計算機,所以每天還要獲取賬戶里現金量。

#用法:變數=context.portfolio.cash
cash=context.portfolio.cash#取得當前的現金量,命名為cash

5 買入賣出

#用法:order_value(要買入股票股票的股票代碼,要多少錢去買)
order_value(g.security,cash)#用當前所有資金買入股票
#用法:order_target(要買賣股票的股票代碼,目標持倉金額)
order_target(g.security,0)#將股票倉位調整到0,即全賣出

6 策略代碼寫完,進行回測

把買入賣出的代碼寫好,策略就寫完了,如下

definitialize(context):#初始化
g.security='002043.XSHE'#股票名:兔寶寶
defhandle_data(context,data):#每日循環
last_price=data[g.security].close#取得最近日收盤價
#取得過去二十天的平均價格
average_price=data[g.security].mavg(20,'close')
cash=context.portfolio.cash#取得當前的現金
#如果昨日收盤價高出二十日平均價,則買入,否則賣出。
iflast_price>average_price:
order_value(g.security,cash)#用當前所有資金買入股票
eliflast_price<average_price:
order_target(g.security,0)#將股票倉位調整到0,即全賣出

現在,在策略回測界面右上部,設置回測時間從20140101到20160601,設置初始資金100000,設置回測頻率,然後點擊運行回測。

7 建立模擬交易,使策略和行情實時連接自動運行

策略寫好,回測完成,點擊回測結果界面(如上圖)右上部紅色模擬交易按鈕,新建模擬交易如下圖。 寫好交易名稱,設置初始資金,數據頻率,此處是每天,設置好後點提交。

8 開啟微信通知,接收交易信號

點擊聚寬導航欄我的交易,可以看到創建的模擬交易,如下圖。 點擊右邊的微信通知開關,將OFF調到ON,按照指示掃描二維碼,綁定微信,就能微信接收交易信號了。

閱讀全文

與python股票回測相關的資料

熱點內容
逆拓撲排序演算法描述 瀏覽:586
如何遠程鏈接到linux伺服器地址 瀏覽:628
抹茶app支付方式怎麼選 瀏覽:554
獵人寶寶攻擊命令 瀏覽:159
操作系統是編譯原理嗎 瀏覽:646
雲伺服器遷移後 瀏覽:260
excel格式轉換pdf 瀏覽:987
登錄器一般存在哪個文件夾 瀏覽:535
中興光貓機器碼演算法 瀏覽:330
android響應時間測試 瀏覽:940
java編程思想第四版答案 瀏覽:888
如何對nbt編程 瀏覽:885
mscpdf 瀏覽:948
文件夾d盤突然0位元組可用 瀏覽:272
吃火腿腸的解壓場面 瀏覽:339
衛星鍋加密教程 瀏覽:792
php7的特性是什麼 瀏覽:469
編譯類高級語言源代碼運行過程 瀏覽:177
科普中國app怎麼分享 瀏覽:87
51單片機與32單片機比較 瀏覽:422