看來是同道。你提到的這個問題很難。
java調用python容易。 java甚至可以直接調用python的類。python調用java更容易了。
不過GUI要想融合,據目前20年的技術來看,只有本土的可以。 比如以前的微軟體ActiveX,不管你是什麼語言開發的都可以在windows下用OLE方式嵌入。
java的制圖功能,因為它的設計理念 ,它是封閉的。也就是說,除非你使用了它本地化的GUI方法,否則就不可能實現。
那麼說,如果我一定要實現怎麼辦呢?只能走很長的彎路。方法還是有幾個的。
方法1:
在java的panel里嵌入一個瀏覽器,然後在瀏覽器里顯示統計圖表。這個真是不要太容易了。 不管是你是python生成的本地圖片,還是直接用javascript生成的圖都可以嵌入進去。美觀不用說
方法2:
繪圖使用開源的,比如plt之類的。不過它被本地化成java版本的。然後用java調用python,再用python產生數據後,通過jython調用java本地化的繪圖工具。
表面上看,這個東西就是沒有價值的,為什麼不直接用java調用繪圖。關鍵在於python本身對於數據處理的優勢太明顯。輕松就可以完成復雜的數據結構處理。所以還是有價值的
方法3:
浮動窗口方式。這個就不說了。如果你的java是固定在窗口特定位置的。這個就容易了。怎麼浮動窗口要根據操作系統而定。
方法4:簡單方案
python生成圖片後,輸出成JPEG或者是PNG或者是GIF,然後讓JAVA顯示這個圖片。這個可能是最最簡單的。
方法5:windows專用,不知道可否使用
僅限於特定場景,在要顯示圖片的地方,顯示一個品紅色的純色圖。然後讓python的圖形輸出轉到directshow之類的API,直接寫顯卡。這樣就可以顯示動畫效果。
B. 如何用Python顯示出一維波動方程的動態圖像
Python有一些繪圖的功能,使用turtle模塊。
在命令行輸入
python.exe -m turtledemo
可以打開Python安裝時,系統自帶的一些演示程序。
感覺功能還是比較多的。
程序實現其實還是比較簡單,主要是得搞懂倒是給的文獻,還得跟導師交流如何演示出效果。
C. python中獲取的數據為矩陣形式,如何在python以實時的形式繪制出動態圖
你好,下面是一個畫動態圖的例子。
import matplotlib.pyplot as plt
fig, ax = plt.subplots()
y1 = []
for i in range(50):
y1.append(i) # 每迭代一次,將i放入y1中畫出來
ax.cla() # 清除鍵
ax.bar(y1, label='test', height=y1, width=0.3)
ax.legend()
plt.pause(0.1)
D. Python Matplotlib畫圖
主要用於作圖、可視化問題
pip install matplotlib
導入模塊 pyplot 和 pylab ,可以參考下面鏈接觀察兩者區別:
https://www.cnblogs.com/Shoesy/p/6673947.html
(說白了就是pylay=pyplot+numpy)
輸入這三行解決
主要使用 plot() 來展示,裡面前兩個參數代表 x , y 坐標(注意x,y數量要一樣),第三個參數可以用來設置散點圖( 'o' )或者顏色、線條形式等各種樣式,並且第三個參數可以同時傳入多個,比如要紅色的散點圖就: Ɔr'
(1)顏色樣式:
(2)線條樣式:
(3)點的樣式:
(4)坐標區間:
或者分別設置x、y的區間:
註:
設置點的樣式時默認就是散點圖,以及同類樣式只能設置一個(比如不能設置兩種顏色),並且還可以把多個圖集合在一起展示,那就多 plot 幾個,plot就相當於一個畫布,每plot一個就相當於在上面畫一張圖,再弄就繼續在上面畫
主要用 hist() 來顯示,實現方式很簡單,把一組數據放入括弧里就行了,例如隨機生成一堆正態分布的數,然後直方圖顯示:
其中如果要設置直方圖格式(寬度、上下限、是否要輪廓)可以這樣:
註:
直方圖和折線圖這些不太一樣,折線圖是傳入兩個等長數據,然後每個x、y坐標一一對應展示出來。而直方圖是:第一個參數代表你傳入的所有數據,第二個參數代表你傳入的x軸范圍,然後直方圖會將第一個參數里傳入的數據一個個計算在某個范圍內含有的數據量,因此傳入的兩個參數數據不一定要等長,例如下面的例子:
結果如圖:
可以看出數據被自動分配到對應的范圍內上了
使用 subplot(row, col, area) :三個參數分別是行數、列數和區域,比如要將原圖分成2行2列(切成4份),然後要左下角那個圖就:
如果想4個圖都顯示就4個 subplot ,分別1、2、3、4就行了,然後在各圖的subplot之後寫的都是每個圖的內容,現在我們試試弄一個2行,第一行兩列的圖片(想像下滑鼠的樣子),而且分別是不同的內容:
註:
labels 、 sizes 、 colors 和 explode 的長度都要一樣
1.導入3D圖相關模塊:
2.將畫圖板加到3D模塊里,然後加入數據即可:
3D散點圖舉例:
通過 imread() 讀取,舉例:
https://blog.csdn.net/qq_34859482/article/details/80617391
E. 怎麼用Python製作一個好玩炫酷的GIF動態圖
importsys
importnumpyasnp
importmatplotlib.pyplotasplt
frommatplotlib.animationimportFuncAnimation
fig,ax=plt.subplots()
fig.set_tight_layout(True)
#詢問圖形在屏幕上的大小和DPI(每英寸點數)
#注意當把圖形保存為文件時,需要為此單獨再提供一個DPI
print('figsize:{0}DPI,sizeininches{1}'.format(
fig.get_dpi(),fig.get_size_inches()))
#繪制一個保持不變(不會被重新繪制)的散點圖以及初始直線
x=np.arange(0,20,0.1)
ax.scatter(x,x+np.random.normal(0,3.0,len(x)))
line,=ax.plot(x,x-5,'r-',linewidth=2)
defupdate(i):
label='timestep{0}'.format(i)
print(label)
#更新直線和軸(用一個新X軸標簽)
#以元組形式返回這一幀需要重新繪制的物體
line.set_ydata(x-5+i)
ax.set_xlabel(label)
returnline,ax
if__name__=='__main__':
#會為每一幀調用Update函數
#這里FunAnimation設置一個10幀動畫,每幀間隔200ms
anim=FuncAnimation(fig,update,frames=np.arange(0,10),interval=200)
iflen(sys.argv)>1andsys.argv[1]=='save':
anim.save('line.gif',dpi=80,writer='imagemagick')
else:
#Plt.show()會一直循環動畫
plt.show()
可以生成下面這種圖
F. 如何用Python實現動態圖
首先找到要製作動圖的視頻。 點擊打開觀看。 視頻觀看過程中,打開動圖製作軟體。 選擇需要截取的畫面。 點擊錄制幾秒鍾後,點擊停止並保存。 保存到電腦,然後可以傳到手機進行使用
G. 如何用python繪制簡單條形圖
如何用python繪制簡單條形圖呢?這里離不開matplotlib的使用。
條形圖是數據可視化圖形中很基礎也很常用的一種圖,簡單解釋下:條形圖也叫長條圖(英語:bar chart),亦稱條圖(英語:bar graph)、條狀圖、棒形圖、柱狀圖、條形圖表,是一種以長方形的長度為變數的統計圖表。長條圖用來比較兩個或以上的價值(不同時間或者不同條件),只有一個變數,通常利用於較小的數據集分析。長條圖亦可橫向排列,或用多維方式表達。
那麼一個普通的條形圖是長什麼樣子的呢?
當!當!當!就是下圖的這個樣子:
圖先亮出來啦,接下來研究這個圖是怎麼畫的吧,先看一下原數據長什麼樣子:
實際畫圖的流程和畫折線圖很相近,只是用到的畫圖函數不一樣,繪制條形圖的函數plt.bar():
由於這只是最簡單的一個條形圖,實際上條形圖的函數plt.bar()還有不少可以探索的參數設置,和對折線圖函數plt.plot()的探索差不多,有興趣的孩子可以自己去進行探索哦。
按照條形長短進行排序展示的條形圖
當然也可以有其他的設置,比如說上圖中的線條高低參差不齊,這是因為x軸的數據是按照學校名稱進行排序的,那麼可不可以按照分數的高低進行排序呢?也就是讓所有的長方形按照從高到矮或者從矮到高的順序進行排列?
當然可以啦!這里需要強調的是,條的高低排列等信息都是來源於原數據的,要想讓條形的順序發生改變,需要對畫圖的來源數據進行更改呢!
把原數據逆序排序後截取前十名數據賦值給data_yuwen,作為新的數據源傳入畫圖函數plt.bar(),畫出來的圖自然就不一樣了。
先看一眼數據長什麼樣子:
根據這個數據源繪制出的圖形如下,由於用來畫圖的數據進行了降序排序操作,所以生成條形圖的條也會進行降序排序展示:
很多時候,我們常見的條形圖還有另一種展現形式,那就是橫向的條形圖,比較火的那種動態條形圖絕大多數也都是橫向的條形圖,那麼橫向的條形圖如何繪制呢?
理解plt.bar()主要參數
其實也不難,只要清楚plt.bar()函數中主要參數的作用就可以了!條形圖函數中有五個主要參數,分別是x,height,width,bottom,orientation。其中x控制的是每個條在x軸上位置,height控制的是每個條的長度,width控制的是每個條的寬度,bottom控制的是每個條在y軸方向的起始位置,orientation控制的是條形的方向,是縱向還是橫向,默認是縱向的。
通過一個小例子理解下這幾個參數的作用:
上邊的幾行代碼輸出的圖形如下:
對比著代碼和實際輸出的條形圖,各個主要參數的作用是不是一目瞭然啦?
橫向條形圖
理解了這幾個參數作用後,縱向的條形圖轉換成橫向的條形圖就沒什麼難度了!
需要設置所有條形在x軸的位置都為0,也就全部從最左側開始畫條形;由於是橫向條形圖,所以實際上條的寬度顯示的是數據大小,將width參數設置成原數據中的語文成績;bottom控制每個條在y軸方向的起始位置,設置bottom=range(10)設置每個條形在y軸的起始位置各不相同避免有條形重疊;height控制的是每個條在y軸方向上的長度,條形圖橫向設置後,在y軸上的長度失去了衡量數據的意義,所以直接設置一個常數即可;最後設置條形的方向為橫向,即orientation=「horizontal」。
溫馨提示:數據和標簽一定要匹配,即plt.bar()重點的數據要和plt.yticks()中提取出來的標簽一一對應,一旦不匹配,整個圖展現的結果就是一個錯誤的結果!
上述代碼生成的條形圖如下:
感覺上邊這種生成橫向條形圖的方式有點點繞,和人們的習慣認知有點不大一樣,難道畫一個橫向條形圖就非得轉變自己的習慣認知這么反人類嗎?
當然不是的,實際上有更簡單的方法繪制一個橫向條形圖,之所以沒有一開始就直接用這種簡單的方法,也是為了讓大家體會下條形圖參數的靈活設置而已,而且如果比較繞的方法都能理解了,簡單的方法理解和運用起來就更沒有難度了啊!
不賣關子了,我們來認識下和plt.bar()函數類似的plt.barh()函數。
plt.barh()函數是專門繪制水平條形圖的函數,主要的參數有:
y 控制y軸顯示的標簽來源width 控制橫向條形的長度,即用來進行對比的數據源height 條形的寬度需要設置的參數主要就是這三個,比用plt.bar()函數繪制水平條形圖簡單了很多,具體代碼如下:
效果圖:
和用plt.bar()函數繪制的橫向條形圖一毛一樣對不對?以後有需求繪制橫向條形圖,盡量用plt.barh()函數吧,畢竟它是專門繪制這種類型圖的,簡單好用。
然而實際工作中對於條形圖的需求不只是這些,比如例子中只是對各個學校語文成績的展示,有時候需要各個學科的成績同時展現在一幅條形圖中,有時候也需要繪制堆積條形圖對各學科的成績以及總成績進行展示,這些圖又該如何繪制呢?其實只要理解了各個參數的含義,繪制這些圖也不在話下,至於具體怎麼畫,且看下回分解啊!