管道用於有學園關系的進程之間。
管道的pipe 系統調用實際上就是創建出來兩個文件描述符。
當父進P1程創建出 fd[2] 時,子進程P2 會繼承父進程的所有,所以也會得到pipe 的 2個 文件描述符。
所以毫無瓜葛的兩個進程,一定不會訪問到彼此的pipe。無法用管道進行通信。
管道一般是單工的。f[0]讀,f[1]寫
管道也可以適用於 兄弟進程(只要有血緣即可)。由於管道是單工的,當兩個進程之間需要雙向通信,則需要兩跟管道。
執行
ctrl-c(2號信號) + SIGUSR1 信號 綁了一個新函數。則 ctrl-c 無效。
查看進程的信號
號信號被捕獲。
將2號信號忽略掉
9號信號 kill 和19號信號 stop 不能亂搞,只能用預設。
其它信號甚至段信號也都可以捕獲。
改變程序的執行現場,修改PC指針,有些像goto,只不過返回非0值
運行結果
making segment fault
after segment fault
程序不會死。
如果不忽略 page fault
則會產生 core mp.
不停的給data 賦值,同時每隔1s會有信號進來,列印 data的值。
理論上列印出來的結果同時為0,同時為1
但並非如此,是 0,1,交替隨機的。
signal 非同步的,隨時都可以進來,所以列印出來的結果,並不是我想要的。
信號對於應用程序來說,很像中斷對於內核,都是訪問臨界區數據
信號被屏蔽,延後執行。
寫多線程的程序時,不要以為只有線程之間有競爭,其實信號也會有競爭
system v 的IPC 年代有些久遠。
有血緣關系的進程 key_t 都是相同的。
Key 是私有key IPV PRIVATE
可能用消息隊列,可能用共享內存,可能用信號量進行通訊。
利用 _pathname 路徑,約定好一條路徑。和tcp/ip地址很像,來生成一個key_t key, 用msg_get shm_get 得到共享內存or 信號量。
int id 可以理解為文件描述符 fd。
其中Sys V 的共享內存 最為常用。
一定要檢查路徑,如果僅僅有2個進程,你沒有創建路徑,兩者都是 -1(相當於大家約定好了),那當然能通信拉。但更多的進程出現,則會有問題。
一定要檢查返回值
依然依靠key,但是api 實在是太挫了。P&V 操作都是 semop. (posix 的 ipc跟為簡潔)
POSIX 共享內存當然也需要一個名字,但並不是路徑。
無論讀進程還是寫進程,都需要傳入相同的名字。
如果是unbuntu 會在以下路徑生成文件
其實 2和3 是1 的符號鏈接。 只要保證是一個就能互相通信
關鍵點,mmap 內存的屬性修改為 private 後,產生寫時,虛擬地址一樣,但是物理地址已經不同了
當然 如果子進程修改了程序背景,執行了 exec,那麼完全不一樣了,直接修改了內存邏輯。
㈡ linux 中TCP套接字編程實例 顯示Bind() error:address already in use 怎麼辦 用netstat -nat 查看後結果
你所使用的套接字已被佔用,在Bind()之前你是否申請了套接字,或者申請之後已經被佔用,Bind所使用的套接字來源很重要,可以查查。再有就是linux裡面你的程序如果非法退出或者沒有使用close釋放套接字,在程序結束以後系統會延時自動釋放套接字資源,但是要等幾分鍾,之後你就可以重新使用了。
㈢ 《Linux命令編輯器Shell編程實例大全》pdf下載在線閱讀全文,求百度網盤雲資源
《Linux命令編輯器Shell編程實例大全》網路網盤pdf最新全集下載:
鏈接:https://pan..com/s/1KuGwNJWqX0jvV3RXtMVh4A
㈣ 在LINUX下鍵盤編程 編寫鍵盤應用程序 能夠獲取鍵盤按鍵
提供一個輸入按鍵應用程序實例,你參考一下。
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/select.h>
#include <sys/time.h>
#include <errno.h>
#include <linux/input.h>
int main(void)
{
int buttons_fd;
int key_value,i=0,count;
struct input_event ev_key;
buttons_fd = open("/dev/input/event0", O_RDWR);
if (buttons_fd < 0) {
perror("open device buttons");
exit(1);
}
for (;;) {
count = read(buttons_fd,&ev_key,sizeof(struct input_event));
for(i=0; i<(int)count/sizeof(struct input_event); i++)
if(EV_KEY==ev_key.type)
printf("type:%d,code:%d,value:%d\n", ev_key.type,ev_key.code-1,ev_key.value);
if(EV_SYN==ev_key.type)
printf("syn event\n\n");
}
close(buttons_fd);
return 0;
}
㈤ Linux Shell 教程——想玩轉linux就請一直看下去
Shell 是一個用 C 語言編寫的程序,它是用戶使用 Linux 的橋梁。Shell 既是一種命令語言,又是一種程序設計語言。
Shell 是指一種應用程序,這個應用程序提供了一個界面,用戶通過這個界面訪問操作系統內核的服務。
Ken Thompson 的 sh 是第一種 Unix Shell,Windows Explorer 是一個典型的圖形界面 Shell。
Shell 在線工具
Shell 腳本(shell script),是一種為 shell 編寫的腳本程序。
業界所說的 shell 通常都是指 shell 腳本,但讀者朋友要知道,shell 和 shell script 是兩個不同的概念。
由於習慣的原因,簡潔起見,本文出現的 "shell編程" 都是指 shell 腳本編程,不是指開發 shell 自身。
Shell 編程跟 JavaScript、php 編程一樣,只要有一個能編寫代碼的文本編輯器和一個能解釋執行的腳本解釋器就可以了。
Linux 的 Shell 種類眾多,常見的有:
在一般情況下,人們並不區分 Bourne Shell 和 Bourne Again Shell,所以,像 #!/bin/sh ,它同樣也可以改為 #!/bin/bash 。
#! 告訴系統其後路徑所指定的程序即是解釋此腳本文件的 Shell 程序。
打開文本編輯器(可以使用 vi/vim 命令來創建文件),新建一個文件 test.sh,擴展名為 sh(sh代表shell),擴展名並不影響腳本執行,見名知意就好,如果你用 php 寫 shell 腳本,擴展名就用 php 好了。
輸入一些代碼,第一行一般是這樣:
#!/bin/bash
echo "Hello World !"
運行實例 »
#! 是一個約定的標記,它告訴系統這個腳本需要什麼解釋器來執行,即使用哪一種 Shell。
echo 命令用於向窗口輸出文本。
1、作為可執行程序
將上面的代碼保存為 test.sh,並 cd 到相應目錄:
注意,一定要寫成 ./test.sh ,而不是 test.sh ,運行其它二進制的程序也一樣,直接寫 test.sh,linux 系統會去 PATH 里尋找有沒有叫 test.sh 的,而只有 /bin, /sbin, /usr/bin,/usr/sbin 等在 PATH 里,你的當前目錄通常不在 PATH 里,所以寫成 test.sh 是會找不到命令的,要用 ./test.sh 告訴系統說,就在當前目錄找。
2、作為解釋器參數
這種運行方式是,直接運行解釋器,其參數就是 shell 腳本的文件名,如:
這種方式運行的腳本,不需要在第一行指定解釋器信息,寫了也沒用。
㈥ Linux下如何實現shell多線程編程以提高應用程序的響應
Linux中多線程編程擁有提高應用程序的響應、使多cpu系統更加有效等優點,下面小編將通過Linux下shell多線程編程的例子給大家講解下多線程編程的過程,一起來了解下吧。
#!/bin/bash
#———————————————————————————–
# 此例子說明了一種用wait、read命令模擬多線程的一種技巧
# 此技巧往往用於多主機檢查,比如ssh登錄、ping等等這種單進程比較慢而不耗費cpu的情況
# 還說明了多線程的控制
#———————————————————————————–
function a_sub
{
# 此處定義一個函數,作為一個線程(子進程)
sleep 3 # 線程的作用是sleep 3s
}
tmp_fifofile=「/tmp/$.fifo」 mkfifo $tmp_fifofile # 新建一個fifo類型的文件
exec 6《》$tmp_fifofile # 將fd6指向fifo類型
rm $tmp_fifofile thread=15 # 此處定義線程數
for
((i=0;i《$thread;i++));do echo
done 》&6 # 事實上就是在fd6中放置了$thread個回車符
for
((i=0;i《50;i++));do # 50次循環,可以理解為50個主機,或其他
read -u6 # 一個read -u6命令執行一次,就從fd6中減去一個回車符,然後向下執行,
# fd6中沒有回車符的時候,就停在這了,從而實現了線程數量控制
{ # 此處子進程開始執行,被放到後台
a_sub &&
{ # 此處可以用來判斷子進程的邏輯
echo 「a_sub is finished」
}
||
{ echo 「sub error」
}
echo 》&6 # 當進程結束以後,再向fd6中加上一個回車符,即補上了read -u6減去的那個
}
& done wait # 等待所有的後檯子進程結束
exec 6》&- # 關閉df6 exit 0
說明:
此程序中的命令
mkfifo tmpfile
和linux中的命令
mknod tmpfile p
效?果相同。區別是mkfifo為POSIX標准,因此推薦使用它。該命令創建了一個先入先出的管道文件,並為其分配文件標志符6。管道文件是進程之間通信的一種方式,注意這一句很重要
exec 6《》$tmp_fifofile # 將fd6指向fifo類型
如果沒有這句,在向文件$tmp_fifofile或者&6寫入數據時,程序會被阻塞,直到有read讀出了管道文件中的數據為止。而執行了上面這一句後就可以在程序運行期間不斷向fifo類型的文件寫入數據而不會阻塞,並且數據會被保存下來以供read程序讀出。
通過運行命令:
time 。/multithread.sh 》/dev/null
最終運算時間: 50/15 = 3組(每組15)+1組(5個《15 組成一個組)= 4組,每組花費時間:3秒,
則 3 * 4 = 12 秒。
傳統非多線程的代碼 運算時間: 50 * 3 = 150 秒。
上面就是Linux下shell多線程編程的實例介紹了,使用多線程編程還能夠改善程序結構,有興趣的朋友不妨試試看吧。
㈦ 如何編寫Linux 驅動程序
如何編寫Linux設備驅動程序
回想學習Linux操作系統已經有近一年的時間了,前前後後,零零碎碎的一路學習過來,也該試著寫的東西了。也算是給自己能留下一點記憶和回憶吧!由於完全是自學的,以下內容若有不當之處,還請大家多指教。
Linux是Unix操作系統的一種變種,在Linux下編寫驅動程序的原理和思想完全類似於其他的Unix系統,但它dos或window環境下的驅動程序有很大的區別。在Linux環境下設計驅動程序,思想簡潔,操作方便,功能也很強大,但是支持函數少,只能依賴kernel中的函數,有些常用的操作要自己來編寫,而且調試也不方便。
以下的一些文字主要來源於khg,johnsonm的Write linux device driver,Brennan's Guide to Inline Assembly,The Linux A-Z,還有清華BBS上的有關device driver的一些資料。
一、Linux device driver 的概念
系統調用是操作系統內核和應用程序之間的介面,設備驅動程序是操作系統內核和機器硬體之間的介面。設備驅動程序為應用程序屏蔽了硬體的細節,這樣在應用程序看來,硬體設備只是一個設備文件,應用程序可以象操作普通文件一樣對硬體設備進行操作。設備驅動程序是內核的一部分,它完成以下的功能:
1、對設備初始化和釋放。
2、把數據從內核傳送到硬體和從硬體讀取數據。
3、讀取應用程序傳送給設備文件的數據和回送應用程序請求的數據。
4、檢測和處理設備出現的錯誤。
在Linux操作系統下有三類主要的設備文件類型,一是字元設備,二是塊設備,三是網路設備。字元設備和塊設備的主要區別是:在對字元設備發出讀/寫請求時,實際的硬體I/O一般就緊接著發生了,塊設備則不然,它利用一塊系統內存作緩沖區,當用戶進程對設備請求能滿足用戶的要求,就返回請求的數據,如果不能,就調用請求函數來進行實際的I/O操作。塊設備是主要針對磁碟等慢速設備設計的,以免耗費過多的CPU時間來等待。
已經提到,用戶進程是通過設備文件來與實際的硬體打交道。每個設備文件都都有其文件屬性(c/b),表示是字元設備還是塊設備?另外每個文件都有兩個設備號,第一個是主設備號,標識驅動程序,第二個是從設備號,標識使用同一個設備驅動程序的不同的硬體設備,比如有兩個軟盤,就可以用從設備號來區分他們。設備文件的的主設備號必須與設備驅動程序在登記時申請的主設備號一致,否則用戶進程將無法訪問到驅動程序。
最後必須提到的是,在用戶進程調用驅動程序時,系統進入核心態,這時不再是搶先式調度。也就是說,系統必須在你的驅動程序的子函數返回後才能進行其他的工作。如果你的驅動程序陷入死循環,不幸的是你只有重新啟動機器了,然後就是漫長的fsck。
讀/寫時,它首先察看緩沖區的內容,如果緩沖區的數據未被處理,則先處理其中的內容。
如何編寫Linux操作系統下的設備驅動程序
二、實例剖析
我們來寫一個最簡單的字元設備驅動程序。雖然它什麼也不做,但是通過它可以了解Linux的設備驅動程序的工作原理。把下面的C代碼輸入機器,你就會獲得一個真正的設備驅動程序。
#define __NO_VERSION__
#include <linux/moles.h>
#include <linux/version.h>
char kernel_version [] = UTS_RELEASE;
這一段定義了一些版本信息,雖然用處不是很大,但也必不可少。Johnsonm說所有的驅動程序的開頭都要包含<linux/config.h>,一般來講最好使用。
由於用戶進程是通過設備文件同硬體打交道,對設備文件的操作方式不外乎就是一些系統調用,如 open,read,write,close…, 注意,不是fopen, fread,但是如何把系統調用和驅動程序關聯起來呢?這需要了解一個非常關鍵的數據結構:
struct file_operations
{
int (*seek) (struct inode * ,struct file *, off_t ,int);
int (*read) (struct inode * ,struct file *, char ,int);
int (*write) (struct inode * ,struct file *, off_t ,int);
int (*readdir) (struct inode * ,struct file *, struct dirent * ,int);
int (*select) (struct inode * ,struct file *, int ,select_table *);
int (*ioctl) (struct inode * ,struct file *, unsined int ,unsigned long);
int (*mmap) (struct inode * ,struct file *, struct vm_area_struct *);
int (*open) (struct inode * ,struct file *);
int (*release) (struct inode * ,struct file *);
int (*fsync) (struct inode * ,struct file *);
int (*fasync) (struct inode * ,struct file *,int);
int (*check_media_change) (struct inode * ,struct file *);
int (*revalidate) (dev_t dev);
}
這個結構的每一個成員的名字都對應著一個系統調用。用戶進程利用系統調用在對設備文件進行諸如read/write操作時,系統調用通過設備文件的主設備號找到相應的設備驅動程序,然後讀取這個數據結構相應的函數指針,接著把控制權交給該函數。這是linux的設備驅動程序工作的基本原理。既然是這樣,則編寫設備驅動程序的主要工作就是編寫子函數,並填充file_operations的各個域。
下面就開始寫子程序。
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include<linux/config.h>
#include <linux/errno.h>
#include <asm/segment.h>
unsigned int test_major = 0;
static int read_test(struct inode *node,struct file *file,char *buf,int count)
{
int left;
if (verify_area(VERIFY_WRITE,buf,count) == -EFAULT )
return -EFAULT;
for(left = count ; left > 0 ; left--)
{
__put_user(1,buf,1);
buf++;
}
return count;
}
這個函數是為read調用准備的。當調用read時,read_test()被調用,它把用戶的緩沖區全部寫1。buf 是read調用的一個參數。它是用戶進程空間的一個地址。但是在read_test被調用時,系統進入核心態。所以不能使用buf這個地址,必須用__put_user(),這是kernel提供的一個函數,用於向用戶傳送數據。另外還有很多類似功能的函數。請參考Robert著的《Linux內核設計與實現》(第二版)。然而,在向用戶空間拷貝數據之前,必須驗證buf是否可用。這就用到函數verify_area。
static int write_tibet(struct inode *inode,struct file *file,const char *buf,int count)
{
return count;
}
static int open_tibet(struct inode *inode,struct file *file )
{
MOD_INC_USE_COUNT;
return 0;
}
static void release_tibet(struct inode *inode,struct file *file )
{
MOD_DEC_USE_COUNT;
}
這幾個函數都是空操作。實際調用發生時什麼也不做,他們僅僅為下面的結構提供函數指針。
struct file_operations test_fops = {
NULL,
read_test,
write_test,
NULL, /* test_readdir */
NULL,
NULL, /* test_ioctl */
NULL, /* test_mmap */
open_test,
release_test,
NULL, /* test_fsync */
NULL, /* test_fasync */
/* nothing more, fill with NULLs */
};
這樣,設備驅動程序的主體可以說是寫好了。現在要把驅動程序嵌入內核。驅動程序可以按照兩種方式編譯。一種是編譯進kernel,另一種是編譯成模塊(moles),如果編譯進內核的話,會增加內核的大小,還要改動內核的源文件,而且不能動態的卸載,不利於調試,所以推薦使用模塊方式。
int init_mole(void)
{
int result;
result = register_chrdev(0, "test", &test_fops);
if (result < 0) {
printk(KERN_INFO "test: can't get major number\n");
return result;
}
if (test_major == 0) test_major = result; /* dynamic */
return 0;
}
在用insmod命令將編譯好的模塊調入內存時,init_mole 函數被調用。在這里,init_mole只做了一件事,就是向系統的字元設備表登記了一個字元設備。register_chrdev需要三個參數,參數一是希望獲得的設備號,如果是零的話,系統將選擇一個沒有被佔用的設備號返回。參數二是設備文件名,參數三用來登記驅動程序實際執行操作的函數的指針。
如果登記成功,返回設備的主設備號,不成功,返回一個負值。
void cleanup_mole(void)
{
unregister_chrdev(test_major,"test");
}
在用rmmod卸載模塊時,cleanup_mole函數被調用,它釋放字元設備test在系統字元設備表中佔有的表項。
一個極其簡單的字元設備可以說寫好了,文件名就叫test.c吧。
下面編譯 :
$ gcc -O2 -DMODULE -D__KERNEL__ -c test.c
得到文件test.o就是一個設備驅動程序。
如果設備驅動程序有多個文件,把每個文件按上面的命令行編譯,然後
ld -r file1.o file2.o -o molename。
驅動程序已經編譯好了,現在把它安裝到系統中去。
$ insmod –f test.o
如果安裝成功,在/proc/devices文件中就可以看到設備test,並可以看到它的主設備號。要卸載的話,運行 :
$ rmmod test
下一步要創建設備文件。
mknod /dev/test c major minor
c 是指字元設備,major是主設備號,就是在/proc/devices里看到的。
用shell命令
$ cat /proc/devices
就可以獲得主設備號,可以把上面的命令行加入你的shell script中去。
minor是從設備號,設置成0就可以了。
我們現在可以通過設備文件來訪問我們的驅動程序。寫一個小小的測試程序。
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
main()
{
int testdev;
int i;
char buf[10];
testdev = open("/dev/test",O_RDWR);
if ( testdev == -1 )
{
printf("Cann't open file \n");
exit(0);
}
read(testdev,buf,10);
for (i = 0; i < 10;i++)
printf("%d\n",buf[i]);
close(testdev);
}
編譯運行,看看是不是列印出全1 ?
以上只是一個簡單的演示。真正實用的驅動程序要復雜的多,要處理如中斷,DMA,I/O port等問題。這些才是真正的難點。請看下節,實際情況的處理。
如何編寫Linux操作系統下的設備驅動程序
三、設備驅動程序中的一些具體問題
1。 I/O Port。
和硬體打交道離不開I/O Port,老的ISA設備經常是佔用實際的I/O埠,在linux下,操作系統沒有對I/O口屏蔽,也就是說,任何驅動程序都可對任意的I/O口操作,這樣就很容易引起混亂。每個驅動程序應該自己避免誤用埠。
有兩個重要的kernel函數可以保證驅動程序做到這一點。
1)check_region(int io_port, int off_set)
這個函數察看系統的I/O表,看是否有別的驅動程序佔用某一段I/O口。
參數1:I/O埠的基地址,
參數2:I/O埠佔用的范圍。
返回值:0 沒有佔用, 非0,已經被佔用。
2)request_region(int io_port, int off_set,char *devname)
如果這段I/O埠沒有被佔用,在我們的驅動程序中就可以使用它。在使用之前,必須向系統登記,以防止被其他程序佔用。登記後,在/proc/ioports文件中可以看到你登記的I/O口。
參數1:io埠的基地址。
參數2:io埠佔用的范圍。
參數3:使用這段io地址的設備名。
在對I/O口登記後,就可以放心地用inb(), outb()之類的函來訪問了。
在一些pci設備中,I/O埠被映射到一段內存中去,要訪問這些埠就相當於訪問一段內存。經常性的,我們要獲得一塊內存的物理地址。
2。內存操作
在設備驅動程序中動態開辟內存,不是用malloc,而是kmalloc,或者用get_free_pages直接申請頁。釋放內存用的是kfree,或free_pages。 請注意,kmalloc等函數返回的是物理地址!
注意,kmalloc最大隻能開辟128k-16,16個位元組是被頁描述符結構佔用了。
內存映射的I/O口,寄存器或者是硬體設備的RAM(如顯存)一般佔用F0000000以上的地址空間。在驅動程序中不能直接訪問,要通過kernel函數vremap獲得重新映射以後的地址。
另外,很多硬體需要一塊比較大的連續內存用作DMA傳送。這塊程序需要一直駐留在內存,不能被交換到文件中去。但是kmalloc最多隻能開辟128k的內存。
這可以通過犧牲一些系統內存的方法來解決。
3。中斷處理
同處理I/O埠一樣,要使用一個中斷,必須先向系統登記。
int request_irq(unsigned int irq ,void(*handle)(int,void *,struct pt_regs *),
unsigned int long flags, const char *device);
irq: 是要申請的中斷。
handle:中斷處理函數指針。
flags:SA_INTERRUPT 請求一個快速中斷,0 正常中斷。
device:設備名。
如果登記成功,返回0,這時在/proc/interrupts文件中可以看你請求的中斷。
4。一些常見的問題。
對硬體操作,有時時序很重要(關於時序的具體問題就要參考具體的設備晶元手冊啦!比如網卡晶元RTL8139)。但是如果用C語言寫一些低級的硬體操作的話,gcc往往會對你的程序進行優化,這樣時序會發生錯誤。如果用匯編寫呢,gcc同樣會對匯編代碼進行優化,除非用volatile關鍵字修飾。最保險的辦法是禁止優化。這當然只能對一部分你自己編寫的代碼。如果對所有的代碼都不優化,你會發現驅動程序根本無法裝載。這是因為在編譯驅動程序時要用到gcc的一些擴展特性,而這些擴展特性必須在加了優化選項之後才能體現出來。
寫在後面:學習Linux確實不是一件容易的事情,因為要付出很多精力,也必須具備很好的C語言基礎;但是,學習Linux也是一件非常有趣的事情,它裡麵包含了許多高手的智慧和「幽默」,這些都需要自己親自動手才能體會到,O(∩_∩)O~哈哈!
㈧ Linux多線程編程
程序代碼test.c共兩個線程,一個主線程,一個讀緩存區的線程:
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
char globe_buffer[100];
void *read_buffer_thread(void *arg); //這里先聲明一下讀緩存的線程,具體實現寫在後面了
int main()
{
int res,i;
pthread_t read_thread;
for(i=0;i<20;i++)
globe_buffer[i]=i;
printf("\nTest thread : write buffer finish\n");
sleep(3);\\這里的3秒是多餘,可以不要。
res = pthread_create(&read_thread, NULL, read_buffer_thread, NULL);
if (res != 0)
{
printf("Read Thread creat Error!");
exit(0);
}
sleep(1);
printf("waiting for read thread to finish...\n");
res = pthread_join(read_thread, NULL);
if (res != 0)
{
printf("read thread join failed!\n");
exit(0);
}
printf("read thread test OK, have fun!! exit ByeBye\n");
return 0;
}
void *read_buffer_thread(void *arg)
{
int i,x;
printf("Read buffer thread read data : \n");
for(i=0;i<20;i++)
{
x=globe_buffer[i];
printf("%d ",x);
globe_buffer[i]=0;//清空
}
printf("\nread over\n");
}
---------------------------------------------------------------------------------
以上程序編譯:
gcc -D_REENTRANT test.c -o test.o –lpthread
運行這個程序:
$ ./test.o:
㈨ 《LinuxShell命令行及腳本編程實例詳解》epub下載在線閱讀,求百度網盤雲資源
《Linux Shell命令行及腳本編程實例詳解》(劉艷濤)電子書網盤下載免費在線閱讀
鏈接:https://pan..com/s/1LzVOHvdKkPLVE9wfNoJC2A
書名:Linux Shell命令行及腳本編程實例詳解
作者:劉艷濤
出版社:清華大學出版社
出版年份:2015-1
頁數:408
內容簡介:
本書理論結合實踐,全面、系統地介紹了Linux Shell(Bash)腳本編程的語法、命令、技巧等內容。本書偏重於實踐教學,在講解理論知識時,通過一些典型實例讓讀者了解理論知識在實際環境中的應用,並對易混淆和較難理解的知識點做了重點分析,以加深讀者對知識的理解。另外,作者專門為本書錄制了高清配套教學視頻,以幫助讀者高效學習,同時也提供了本書實例源程序以方便讀者學習。
本書共15章,分為兩篇。主要內容包括:Linux及Linux Shell簡介、初識Linux Shell、常用Shell(Bash)命令、Shell命令進階、Shell編程基礎、Shell的條件執行、Bash循環、Shell函數、正則表達式、腳本輸入處理、Shell重定向、管道和過濾器、捕獲、sed和awk,以及其他Linux Shell種類介紹。
本書使用了大量的實例詳細地介紹了Bash的語法及各種技巧,並以循序漸進的方式講解了Linux Shell(Bash)的各種特性,讓讀者能夠迅速上手,並能學以致用。對於初次接觸Linux Shell的讀者,本書是一本很好的自學教材;對於接觸過Linux Shell的讀者,本書可以作為進階讀物或隨時查閱的技術手冊;另外,本書也可以作為高等學校相關專業的教材和各類培訓學校的教材。
作者簡介:
劉艷濤,就職於一家全球500強的通信公司,從事公司無線產品研發中心的Linux/Unix操作系統的管理和技術支持。擁有近6年的Linux系統管理與運維經驗。在使用Shell等腳本實現自動化管理方面有豐富的經驗。擅長配置Nagios與Ganglia集成的自動化監控和故障報警平台。在結合研發環境對Linux系統性能調優方面有深入的研究。
㈩ LINUX的應用程序控制文件,如.conf是什麼語言編寫的下附舉例.
這塵襲團種語言是類C語言,往往有變成人員自己定義,不執行或不可執行,只是由某個軟體檢查並根據配置文禪高件派橘做相應的動作。