導航:首頁 > 編程語言 > python均線策略

python均線策略

發布時間:2023-03-21 14:03:35

『壹』 python主要可以做什麼

python主要可以做Web 和 Internet開發、科學計算和統計、桌面界面開發、軟體開發、後端開發等領域的工作。

Python是一種解釋型腳本語言。Python可以應用於眾多領域,如:數據分析、組件集成、網路服務、圖像處理、數值計算和科學計算等眾多領域。互聯網公司廣泛使用Python來做的事一般有:自動化運維、自動化測試、大數據分析、爬蟲、Web 等。

(1)python均線策略擴展閱讀

python的主要優點:

簡單易學:Python是一種代表簡單主義思想的語言。閱讀一個良好的Python程序就感覺像是在讀英語一樣。它使你能夠專注於解決問題而不是去搞明白語言本身。因有極其簡單的說明文檔,Python極其容易上手。

運行速度快:Python 的底層是用 C 語言寫的,很多標准庫和第三方庫也都是用 C 寫的,運行速度非常快。

免費、開源資源:Python是FLOSS(自由/開放源碼軟體)之一。使用者可以自由地發布這個軟體的拷貝、閱讀它的源代碼、對它做改動、把它的一部分用於新的自由軟體中。FLOSS是基於一個團體分享知識的概念。

可擴展性:如果需要一段關鍵代碼運行得更快或者希望某些演算法不公開,可以部分程序用C或C++編寫,然後在Python程序中使用它們。

『貳』 python數據分析與應用第三章代碼3-5的數據哪來的

savetxt

import numpy as np

i2 = np.eye(2)

np.savetxt("eye.txt", i2)

3.4 讀入CSV文件

# AAPL,28-01-2011, ,344.17,344.4,333.53,336.1,21144800

c,v=np.loadtxt('data.csv', delimiter=',', usecols=(6,7), unpack=True) #index從0開始

3.6.1 算術平均值

np.mean(c) = np.average(c)

3.6.2 加權平均值

t = np.arange(len(c))

np.average(c, weights=t)

3.8 極值

np.min(c)

np.max(c)

np.ptp(c) 最大值與最小值的差值

3.10 統計分析

np.median(c) 中位數

np.msort(c) 升序排序

np.var(c) 方差

3.12 分析股票收益率

np.diff(c) 可以返回一個由相鄰數組元素的差

值構成的數組

returns = np.diff( arr ) / arr[ : -1] #diff返回的數組比收盤價數組少一個元素

np.std(c) 標准差

對數收益率

logreturns = np.diff( np.log(c) ) #應檢查輸入數組以確保其不含有零和負數

where 可以根據指定的條件返回所有滿足條件的數

組元素的索引值。

posretindices = np.where(returns > 0)

np.sqrt(1./252.) 平方根,浮點數

3.14 分析日期數據

# AAPL,28-01-2011, ,344.17,344.4,333.53,336.1,21144800

dates, close=np.loadtxt('data.csv', delimiter=',', usecols=(1,6), converters={1:datestr2num}, unpack=True)

print "Dates =", dates

def datestr2num(s):

return datetime.datetime.strptime(s, "%d-%m-%Y").date().weekday()

# 星期一 0

# 星期二 1

# 星期三 2

# 星期四 3

# 星期五 4

# 星期六 5

# 星期日 6

#output

Dates = [ 4. 0. 1. 2. 3. 4. 0. 1. 2. 3. 4. 0. 1. 2. 3. 4. 1. 2. 4. 0. 1. 2. 3. 4. 0.

1. 2. 3. 4.]

averages = np.zeros(5)

for i in range(5):

indices = np.where(dates == i)

prices = np.take(close, indices) #按數組的元素運算,產生一個數組作為輸出。

>>>a = [4, 3, 5, 7, 6, 8]

>>>indices = [0, 1, 4]

>>>np.take(a, indices)

array([4, 3, 6])

np.argmax(c) #返回的是數組中最大元素的索引值

np.argmin(c)

3.16 匯總數據

# AAPL,28-01-2011, ,344.17,344.4,333.53,336.1,21144800

#得到第一個星期一和最後一個星期五

first_monday = np.ravel(np.where(dates == 0))[0]

last_friday = np.ravel(np.where(dates == 4))[-1]

#創建一個數組,用於存儲三周內每一天的索引值

weeks_indices = np.arange(first_monday, last_friday + 1)

#按照每個子數組5個元素,用split函數切分數組

weeks_indices = np.split(weeks_indices, 5)

#output

[array([1, 2, 3, 4, 5]), array([ 6, 7, 8, 9, 10]), array([11,12, 13, 14, 15])]

weeksummary = np.apply_along_axis(summarize, 1, weeks_indices,open, high, low, close)

def summarize(a, o, h, l, c): #open, high, low, close

monday_open = o[a[0]]

week_high = np.max( np.take(h, a) )

week_low = np.min( np.take(l, a) )

friday_close = c[a[-1]]

return("APPL", monday_open, week_high, week_low, friday_close)

np.savetxt("weeksummary.csv", weeksummary, delimiter=",", fmt="%s") #指定了文件名、需要保存的數組名、分隔符(在這個例子中為英文標點逗號)以及存儲浮點數的格式。

.png

格式字元串以一個百分號開始。接下來是一個可選的標志字元:-表示結果左對齊,0表示左端補0,+表示輸出符號(正號+或負號-)。第三部分為可選的輸出寬度參數,表示輸出的最小位數。第四部分是精度格式符,以」.」開頭,後面跟一個表示精度的整數。最後是一個類型指定字元,在例子中指定為字元串類型。

numpy.apply_along_axis(func1d, axis, arr, *args, **kwargs)

>>>def my_func(a):

... """Average first and last element of a 1-D array"""

... return (a[0] + a[-1]) * 0.5

>>>b = np.array([[1,2,3], [4,5,6], [7,8,9]])

>>>np.apply_along_axis(my_func, 0, b) #沿著X軸運動,取列切片

array([ 4., 5., 6.])

>>>np.apply_along_axis(my_func, 1, b) #沿著y軸運動,取行切片

array([ 2., 5., 8.])

>>>b = np.array([[8,1,7], [4,3,9], [5,2,6]])

>>>np.apply_along_axis(sorted, 1, b)

array([[1, 7, 8],

[3, 4, 9],

[2, 5, 6]])

3.20 計算簡單移動平均線

(1) 使用ones函數創建一個長度為N的元素均初始化為1的數組,然後對整個數組除以N,即可得到權重。如下所示:

N = int(sys.argv[1])

weights = np.ones(N) / N

print "Weights", weights

在N = 5時,輸出結果如下:

Weights [ 0.2 0.2 0.2 0.2 0.2] #權重相等

(2) 使用這些權重值,調用convolve函數:

c = np.loadtxt('data.csv', delimiter=',', usecols=(6,),unpack=True)

sma = np.convolve(weights, c)[N-1:-N+1] #卷積是分析數學中一種重要的運算,定義為一個函數與經過翻轉和平移的另一個函數的乘積的積分。

t = np.arange(N - 1, len(c)) #作圖

plot(t, c[N-1:], lw=1.0)

plot(t, sma, lw=2.0)

show()

3.22 計算指數移動平均線

指數移動平均線(exponential moving average)。指數移動平均線使用的權重是指數衰減的。對歷史上的數據點賦予的權重以指數速度減小,但永遠不會到達0。

x = np.arange(5)

print "Exp", np.exp(x)

#output

Exp [ 1. 2.71828183 7.3890561 20.08553692 54.59815003]

Linspace 返回一個元素值在指定的范圍內均勻分布的數組。

print "Linspace", np.linspace(-1, 0, 5) #起始值、終止值、可選的元素個數

#output

Linspace [-1. -0.75 -0.5 -0.25 0. ]

(1)權重計算

N = int(sys.argv[1])

weights = np.exp(np.linspace(-1. , 0. , N))

(2)權重歸一化處理

weights /= weights.sum()

print "Weights", weights

#output

Weights [ 0.11405072 0.14644403 0.18803785 0.24144538 0.31002201]

(3)計算及作圖

c = np.loadtxt('data.csv', delimiter=',', usecols=(6,),unpack=True)

ema = np.convolve(weights, c)[N-1:-N+1]

t = np.arange(N - 1, len(c))

plot(t, c[N-1:], lw=1.0)

plot(t, ema, lw=2.0)

show()

3.26 用線性模型預測價格

(x, resials, rank, s) = np.linalg.lstsq(A, b) #系數向量x、一個殘差數組、A的秩以及A的奇異值

print x, resials, rank, s

#計算下一個預測值

print np.dot(b, x)

3.28 繪制趨勢線

>>> x = np.arange(6)

>>> x = x.reshape((2, 3))

>>> x

array([[0, 1, 2], [3, 4, 5]])

>>> np.ones_like(x) #用1填充數組

array([[1, 1, 1], [1, 1, 1]])

類似函數

zeros_like

empty_like

zeros

ones

empty

3.30 數組的修剪和壓縮

a = np.arange(5)

print "a =", a

print "Clipped", a.clip(1, 2) #將所有比給定最大值還大的元素全部設為給定的最大值,而所有比給定最小值還小的元素全部設為給定的最小值

#output

a = [0 1 2 3 4]

Clipped [1 1 2 2 2]

a = np.arange(4)

print a

print "Compressed", a.compress(a > 2) #返回一個根據給定條件篩選後的數組

#output

[0 1 2 3]

Compressed [3]

b = np.arange(1, 9)

print "b =", b

print "Factorial", b.prod() #輸出數組元素階乘結果

#output

b = [1 2 3 4 5 6 7 8]

Factorial 40320

print "Factorials", b.cumprod()

#output

『叄』 學習Python的前景怎麼樣 工作方向有哪些

Python的就業方向主要分為五大塊,分別是:

發展方向一:Linux運維

發展方向二:Python Web網站工程師

發展方向三:Python自動化測試

發展方向四:數據分析

發展方向五:人工智慧

Python具體會涉及到的職業崗位主要有:

0、WEB開發

Python擁有很多免費數據函數庫、免費web網頁模板系統、以及與web伺服器進行交互的庫,可以實現web開發,搭建web框架,目前比較有名氣的Python web框架為Django。從事該領域應從數據、組件、安全等多領域進行學習,從底層了解其工作原理並可駕馭任何業內主流的Web框架。

1. 桌面軟體

Python在圖形界面開發上很強大,可以用tkinter/PyQT框架開發各種桌面軟體!

2. 網路編程

網路編程是Python學習的另一方向,網路編程在生活和開發中無處不在,哪裡有通訊就有網路,它可以稱為是一切開發的「基石」。對於所有編程開發人員必須要知其然並知其所以然,所以網路部分將從協議、封包、解包等底層進行深入剖析。

3. 爬蟲開發

在爬蟲領域,Python幾乎是霸主地位,將網路一切數據作為資源,通過自動化程序進行有針對性的數據採集以及處理。從事該領域應學習爬蟲策略、高性能非同步IO、分布式爬蟲等,並針對Scrapy框架源碼進行深入剖析,從而理解其原理並實現自定義爬蟲框架。

4. 雲計算開發

Python是從事雲計算工作需要掌握的一門編程語言,目前很火的雲計算框架OpenStack就是由Python開發的,如果想要深入學習並進行二次開發,就需要具備Python的技能。

5. 人工智慧

MASA和Google早期大量使用Python,為Python積累了豐富的科學運算庫,當AI時代來臨後,Python從眾多編程語言中脫穎而出,各種人工智慧演算法都基於Python編寫,尤其PyTorch之後,Python作為AI時代頭牌語言的位置基本確定。

6. 自動化運維

Python是一門綜合性的語言,能滿足絕大部分自動化運維需求,前端和後端都可以做,從事該領域,應從設計層面、框架選擇、靈活性、擴展性、故障處理、以及如何優化等層面進行學習。

7. 金融分析

金融分析包含金融知識和Python相關模塊的學習,學習內容囊括NumpyPandasScipy數據分析模塊等,以及常見金融分析策略如「雙均線」、「周規則交易」、「羊駝策略」、「Dual Thrust 交易策略」等。

8. 科學運算

Python是一門很適合做科學計算的編程語言,97年開始,NASA就大量使用Python進行各種復雜的科學運算,隨著NumPy、SciPy、Matplotlib、Enthought librarys等眾多程序庫的開發,使得Python越來越適合做科學計算、繪制高質量的2D和3D圖像。

9. 游戲開發

在網路游戲開發中,Python也有很多應用,相比於Lua or C++,Python比Lua有更高階的抽象能力,可以用更少的代碼描述游戲業務邏輯,Python非常適合編寫1萬行以上的項目,而且能夠很好的把網游項目的規模控制在10萬行代碼以內。

『肆』 python課程內容都有哪些呢

賀聖軍Python輕松入門到項目實戰(經典完整版)(超清視頻)網路網盤

鏈接: https://pan..com/s/1C9k1o65FuQKNe68L3xEx3w

提取碼: ja8v 復制這段內容後打開網路網盤手機App,操作更方便哦

若資源有問題歡迎追問~

『伍』 學Python能幹什麼

Python可以做什麼?
1)網站後端程序員:使用它單間網站,後台服務比較容易維護。如:Gmail、Youtube、知乎、豆瓣
2)自動化運維:自動化處理大量的運維任務
3)數據分析師:快速開發快速驗證,分析數據得到結果
4)游戲開發者:一般是作為游戲腳本內嵌在游戲中
5)自動化測試:編寫為簡單的實現腳本,運用在Selenium/lr中,實現自動化。
6)網站開發:藉助django,flask框架自己搭建網站。
7)爬蟲獲取或處理大量信息:批量下載美劇、運行投資策略、爬合適房源、系統管理員的腳本任務等。

『陸』 學完python可以干什麼

綜述如下:

1、數據分析

現在無論是哪個行業的,做數據分析的人似乎都離不開Python,因為Python給他們帶來的工作效率是非常的大。

2、自動化測試

一切關於自動化的東西,似乎Python都可以滿足,Python可以滿足大多數自動化工作,提升工作效率。

3、人工智慧

下個時代就是人工智慧時代,很多人都在關注,而我們的Python同樣可以做人工智慧,這是一個潛力最大的選擇方向。

Python簡介

Python由荷蘭數學和計算機科學研究學會的Guido van Rossum於1990年代初設計,作為一門叫做ABC語言的替代品。Python提供了高效的高級數據結構,還能簡單有效地面向對象編程。Python語法和動態類型,以及解釋型語言的本質,使它成為多數平台上寫腳本和快速開發應用的編程語言,隨著版本的不斷更新和語言新功能的添加,逐漸被用於獨立的、大型項目的開發。

『柒』 學會Python之後更適合做哪方面的工作

發展前景一:Linux運維用python實現的測試工具及過程,包含伺服器端、客戶端、web、andriod、client端的自動化測試,自動化性能測試的執行、監控和分析,常用selenium appium等框架。Linux運維是必須而且一定要掌握Python語言,Python是一門非常NB的編程語言,它可以滿足Linux運維工程師的工作需求提升效率,總而提升自己的能力,運維工程師需要自己獨立開發一個完整的自動化系統時,這個時候才是真正價值的體現,才能證明自身的能力,讓老闆重視。

發展前景二:Python Web網站工程師我們都知道Web一直都是不可忽視的存在,我們離不開網路,離不開Web,利用Python的框架可以做網站,而且都是一些精美的前端界面,還有我們需要掌握一些數據的應用。

發展前景三:Python自動化測試大家都知道,就是Python語言對測試的幫助是非常大的,自動化測試中Python語言的用途很廣,可以說Python太強大,掌握和熟悉自動化的流程,方法和我們總使用的各個模板,到現在為止,我了解的Python使用最多的應該是自動化測試。

發展前景四:數據分析我們都知道現在來臨了大數據的時代,數據可以說明一切問題的原因,現在很多做數據分析的不是原來那麼簡單,Python語言成為了做數據分析師的第一首選,它同時可以給工作帶來很大的效率。Python有三大神器:numpy,scipy,matplotlib,其中numpy很多底層使用C語言實現的,所以速度很快,用它參加各種數學建模大賽,完全可以替代r語言和MATLAB。spark,Hadoop都開了Python的介面,所以使用Python做大數據的maprece也非常簡單,加上py對資料庫支持都很好,或者類似sqlalchemy的orm也非常強大好用。

發展前景五:人工智慧我們都知道谷歌製作出了的機器人戰勝了一個圍棋大師,這個就是目前剛出頭的人工智慧,當然我們的人工智慧時代還沒有到來,如果這天來了,生活和世界將會發生翻天覆地的變化,而且現在發展這么快,人工智慧的時代不會太遠。Python是一種用LISP和JAVA編譯的語言。按照Norvig文章中對Lips和Python的比較,這兩種語言彼此非常相似,僅有一些細小的差別。還有JPthon,提供了訪問Java圖像用戶界面的途徑。這是PeterNorvig選擇用JPyhton翻譯他人工智慧書籍中程序的的原因。JPython可以讓他使用可移植的GUI演示,和可移植的http/ftp/回頭ml庫。

因此,它非常適合作為人工智慧語言的。以上就是目前比較好的幾個Python的發展規劃和前景,讓你學習Python有個流程,不會暈頭轉向的。Python沒有非常強勢的問題,但是它簡單的語言結構應用非常廣泛,我們不用學習無比艱難的JAVA,Python是最好的選擇,無論上述你選擇哪個方向,都是不會錯的。

『捌』 怎麼學習python量化交易

下面教你八步寫個量化交易策略——單股票均線策略

1 確定策略內容與框架

若昨日收盤價高出過去20日平均價今天開盤買入股票
若昨日收盤價低於過去20日平均價今天開盤賣出股票

只操作一隻股票,很簡單對吧,但怎麼用代碼說給計算機聽呢?

想想人是怎麼操作的,應該包括這樣兩個部分

既然是單股票策略,事先決定好交易哪一個股票。

每天看看昨日收盤價是否高出過去20日平均價,是的話開盤就買入,不是開盤就賣出。每天都這么做,循環下去。

對應代碼也是這兩個部分

definitialize(context):
用來寫最開始要做什麼的地方
defhandle_data(context,data):
用來寫每天循環要做什麼的地方

2 初始化

我們要寫設置要交易的股票的代碼,比如 兔寶寶(002043)

definitialize(context):
g.security='002043.XSHE'#存入兔寶寶的股票代碼

3 獲取收盤價與均價

首先,獲取昨日股票的收盤價

#用法:變數=data[股票代碼].close
last_price=data[g.security].close#取得最近日收盤價,命名為last_price

然後,獲取近二十日股票收盤價的平均價

#用法:變數=data[股票代碼].mavg(天數,『close』)
#獲取近二十日股票收盤價的平均價,命名為average_price
average_price=data[g.security].mavg(20,'close')

4 判斷是否買賣

數據都獲取完,該做買賣判斷了

#如果昨日收盤價高出二十日平均價,則買入,否則賣出
iflast_price>average_price:
買入
eliflast_price<average_price:
賣出

問題來了,現在該寫買賣下單了,但是拿多少錢去買我們還沒有告訴計算機,所以每天還要獲取賬戶里現金量。

#用法:變數=context.portfolio.cash
cash=context.portfolio.cash#取得當前的現金量,命名為cash

5 買入賣出

#用法:order_value(要買入股票股票的股票代碼,要多少錢去買)
order_value(g.security,cash)#用當前所有資金買入股票
#用法:order_target(要買賣股票的股票代碼,目標持倉金額)
order_target(g.security,0)#將股票倉位調整到0,即全賣出

6 策略代碼寫完,進行回測

把買入賣出的代碼寫好,策略就寫完了,如下

definitialize(context):#初始化
g.security='002043.XSHE'#股票名:兔寶寶
defhandle_data(context,data):#每日循環
last_price=data[g.security].close#取得最近日收盤價
#取得過去二十天的平均價格
average_price=data[g.security].mavg(20,'close')
cash=context.portfolio.cash#取得當前的現金
#如果昨日收盤價高出二十日平均價,則買入,否則賣出。
iflast_price>average_price:
order_value(g.security,cash)#用當前所有資金買入股票
eliflast_price<average_price:
order_target(g.security,0)#將股票倉位調整到0,即全賣出

現在,在策略回測界面右上部,設置回測時間從20140101到20160601,設置初始資金100000,設置回測頻率,然後點擊運行回測。

7 建立模擬交易,使策略和行情實時連接自動運行

策略寫好,回測完成,點擊回測結果界面(如上圖)右上部紅色模擬交易按鈕,新建模擬交易如下圖。 寫好交易名稱,設置初始資金,數據頻率,此處是每天,設置好後點提交。

8 開啟微信通知,接收交易信號

點擊聚寬導航欄我的交易,可以看到創建的模擬交易,如下圖。 點擊右邊的微信通知開關,將OFF調到ON,按照指示掃描二維碼,綁定微信,就能微信接收交易信號了。

『玖』 python的應用范圍有哪些

Python是一門簡單、易學並且很有前途的編程語言,很多人都對Python感興趣,但是當學完Python基礎用法之後,又會產生迷茫,尤其是自學的人員,不知道接下來的Python學習方向,以及學完之後能幹些什麼?以下是Python十大應用領域!

1. WEB開發

Python擁有很多免費數據函數庫、免費web網頁模板系統、以及與web伺服器進行交互的庫,可以實現web開發,搭建web框架,目前比較有名氣的Python web框架為Django。從事該領域應從數據、組件、安全等多領域進行學習,從底層了解其工作原理並可駕馭任何業內主流的Web框架。

2. 網路編程

網路編程是Python學習的另一方向,網路編程在生活和開發中無處不在,哪裡有通訊就有網路,它可以稱為是一切開發的「基石」。對於所有編程開發人員必須要知其然並知其所以然,所以網路部分將從協議、封包、解包等底層進行深入剖析。

3. 爬蟲開發

在爬蟲領域,Python幾乎是霸主地位,將網路一切數據作為資源,通過自動化程序進行有針對性的數據採集以及處理。從事該領域應學習爬蟲策略、高性能非同步IO、分布式爬蟲等,並針對Scrapy框架源碼進行深入剖析,從而理解其原理並實現自定義爬蟲框架。

4. 雲計算開發

Python是從事雲計算工作需要掌握的一門編程語言,目前很火的雲計算框架OpenStack就是由Python開發的,如果想要深入學習並進行二次開發,就需要具備Python的技能。

5. 人工智慧

MASA和Google早期大量使用Python,為Python積累了豐富的科學運算庫,當AI時代來臨後,Python從眾多編程語言中脫穎而出,各種人工智慧演算法都基於Python編寫,尤其PyTorch之後,Python作為AI時代頭牌語言的位置基本確定。

6. 自動化運維

Python是一門綜合性的語言,能滿足絕大部分自動化運維需求,前端和後端都可以做,從事該領域,應從設計層面、框架選擇、靈活性、擴展性、故障處理、以及如何優化等層面進行學習。

7. 金融分析

金融分析包含金融知識和Python相關模塊的學習,學習內容囊括Numpy\Pandas\Scipy數據分析模塊等,以及常見金融分析策略如「雙均線」、「周規則交易」、「羊駝策略」、「Dual Thrust 交易策略」等。

8. 科學運算

Python是一門很適合做科學計算的編程語言,97年開始,NASA就大量使用Python進行各種復雜的科學運算,隨著NumPy、SciPy、Matplotlib、Enthought librarys等眾多程序庫的開發,使得Python越來越適合做科學計算、繪制高質量的2D和3D圖像。

9. 游戲開發

在網路游戲開發中,Python也有很多應用,相比於Lua or C++,Python比Lua有更高階的抽象能力,可以用更少的代碼描述游戲業務邏輯,Python非常適合編寫1萬行以上的項目,而且能夠很好的把網游項目的規模控制在10萬行代碼以內。

10. 桌面軟體

Python在圖形界面開發上很強大,可以用tkinter/PyQT框架開發各種桌面軟體!

『拾』 Python能做什麼,能夠開發什麼項目

Python是一種計算機程序設計語言。是一種面向對象的動態類型語言,最初被設計用於編寫自動化腳本(shell),隨著版本的不斷更新和語言新功能的添加,越來越多被用於獨立的、大型項目的開發。

Python是一種解釋型腳本語言,可以應用於Web 和 Internet開發、科學計算和統計、人工智慧、教育、桌面界面開發、軟體開發、後端開發這些領域。

Python的應用

1、系統編程

提供API(Application Programming Interface應用程序編程介面),能方便進行系統維護和管理,Linux下標志性語言之一,是很多系統管理員理想的編程工具。

2、圖形處理

有PIL、Tkinter等圖形庫支持,能方便進行圖形處理。

3、數學處理

NumPy擴展提供大量與許多標准數學庫的介面。

4、文本處理

python提供的re模塊能支持正則表達式,還提供SGML,XML分析模塊,許多程序員利用python進行XML程序的開發。


5、資料庫編程

程序員可通過遵循Python DB-API(資料庫應用程序編程介面)規范的模塊與Microsoft SQL Server,Oracle,Sybase,DB2,MySQL、SQLite等資料庫通信。python自帶有一個Gadfly模塊,提供了一個完整的SQL環境。

6、網路編程

提供豐富的模塊支持sockets編程,能方便快速地開發分布式應用程序。很多大規模軟體開發計劃例如Zope,Mnet 及BitTorrent. Google都在廣泛地使用它。

7、Web編程

應用的開發語言,支持最新的XML技術。

8、多媒體應用

Python的PyOpenGL模塊封裝了「OpenGL應用程序編程介面」,能進行二維和三維圖像處理。PyGame模塊可用於編寫游戲軟體。

9、pymo引擎

PYMO全稱為python memories off,是一款運行於Symbian S60V3,Symbian3,S60V5, Symbian3, Android系統上的AVG游戲引擎。因其基於python2.0平台開發,並且適用於創建秋之回憶(memories off)風格的AVG游戲,故命名為PYMO。

10、黑客編程

python有一個hack的庫,內置了你熟悉的或不熟悉的函數,但是缺少成就感。

閱讀全文

與python均線策略相關的資料

熱點內容
51單片機指令用背嗎 瀏覽:936
unityai演算法 瀏覽:834
我的世界ice伺服器如何打開pvp 瀏覽:975
c語言編程如何做標記 瀏覽:884
python數據分析實戰pdf 瀏覽:985
u盤插入文件夾 瀏覽:918
華為amd雲伺服器 瀏覽:497
漢化編程卡是什麼意思 瀏覽:128
python學習pdf 瀏覽:315
祝緒丹程序員那麼可愛拍吻戲 瀏覽:200
asp源碼會員消費系統 瀏覽:115
java反射設置 瀏覽:154
python一行文 瀏覽:441
排序演算法優缺點 瀏覽:565
惡搞加密文件pdf 瀏覽:674
gif怎麼壓縮圖片大小 瀏覽:219
命令選擇當前不可用 瀏覽:158
歐幾里得演算法如何求逆元 瀏覽:506
男中學生上課解壓神器 瀏覽:373
加密狗拔掉之後怎麼辦 瀏覽:27