導航:首頁 > 編程語言 > linuxupdatepython

linuxupdatepython

發布時間:2023-03-21 22:59:37

『壹』 linux 腳本編寫 如何編寫一個腳本,修改已有文件中的內容

實現的方法如下:

1、第一步,打開命令控制台以找到要編輯的文件,執行命令ls來查看下面的一些文件,在下面有一個index.php文件,如下圖所示。

『貳』 linux怎麼升級python版本

如果是redhat/centos, 使用sudo yum -y update即可. 如果源里的新版本不能達到你的要求, 你可以去python.org下載最新版並手動編譯, 如果python.org里的最新版仍不能達到你的要求, 你可以對源碼進行修改編譯並測試.

『叄』 Linux查看版本命令問題

Linux下查看版本號的命令

1,查看內核版本命令:

cat /proc/version

uname -a

uname -rcat /etc/issue

man uname

2,查看linux版本:抄錄如下:

1) 登錄到伺服器執行 lsb_release -a ,即可列出所有版本信息,例如:

[[email protected] ~]# lsb_release -a

LSB Version: 1.3

Distributor ID: RedHatEnterpriseAS

Descrīption: Red Hat Enterprise Linux AS release 4 (Nahant Update 1)

Release: 4

Codename: NahantUpdate1

[[email protected] ~]#

這個命令適用於所有的linux,包括Redhat、SuSE、Debian等發行版。

2) 登錄到linux執行cat /etc/redhat-release ,例如如下:

[[email protected] ~]# cat /etc/redhat-release

Red Hat Enterprise Linux AS release 4 (Nahant Update 1)

[[email protected] ~]#

這種方式下可以直接看到具體的版本號,比如 AS4 Update 1

3)登錄到linux執行rpm -q redhat-release ,例如如下

[[email protected] ~]# rpm -q redhat-release

redhat-release-4AS-2.4

[[email protected] ~]#

這種方式下可看到一個所謂的release號,比如上邊的例子是2.4

這個release號和實際的版本之間存在一定的對應關系,如下:

redhat-release-3AS-1 -> Redhat Enterprise Linux AS 3

redhat-release-3AS-7.4 -> Redhat Enterprise Linux AS 3 Update 4

redhat-release-4AS-2 -> Redhat Enterprise Linux AS 4

redhat-release-4AS-2.4 -> Redhat Enterprise Linux AS 4 Update 1

redhat-release-4AS-3 -> Redhat Enterprise Linux AS 4 Update 2

redhat-release-4AS-4.1 -> Redhat Enterprise Linux AS 4 Update 3

redhat-release-4AS-5.5 -> Redhat Enterprise Linux AS 4 Update 4

更多Linux知識可參考書籍《Linux就該這么學》。

『肆』 更新python 找不到命令 linux

/usr/local/python2.7.2/bin
/usr/local/python-2.7.2/bin

『伍』 Linux系統更改默認Python版本

Linux 默認的Python版本為Python2.X,但是在很多時候我們需要使用Python3.X,那麼我們需要更改Linux的默認Python版本,更改很簡單,只需要兩句話。

sudo update-alternatives --install /usr/bin/python python /usr/bin/python2 100

sudo update-alternatives --install /usr/bin/python python /usr/bin/python3 150

完成之後就可以看見Python版本由2.X改為了3.X。

參考https://www.cnblogs.com/white-the-Alan/p/8900004.html

『陸』 anaconda怎麼運行python

Python易用,但用好卻不易,其中比較頭疼的就是包管理和Python不同版本的問題,特別是當你使用Windows的時候。為了解決這些問題,有不少發行版的Python,比如WinPython、Anaconda等,這些發行版將python和許多常用的package打包,方便pythoners直接使用,此外,還有virtualenv、pyenv等工具管理虛擬環境。

個人嘗試了很多類似的發行版,最終選擇了Anaconda,因為其強大而方便的包管理與環境管理的功能。該文主要介紹下Anaconda,對Anaconda的理解,並簡要總結下相關的操作。

Anaconda概述

Anaconda是一個用於科學計算的Python發行版,支持 Linux, Mac, Windows系統,提供了包管理與環境管理的功能,可以很方便地解決多版本python並存、切換以及各種第三方包安裝問題。Anaconda利用工具/命令conda來進行package和environment的管理,並且已經包含了Python和相關的配套工具。

這里先解釋下conda、anaconda這些概念的差別。conda可以理解為一個工具,也是一個可執行命令,其核心功能是包管理與環境管理。包管理與pip的使用類似,環境管理則允許用戶方便地安裝不同版本的python並可以快速切換。Anaconda則是一個打包的集合,裡面預裝好了conda、某個版本的python、眾多packages、科學計算工具等等,所以也稱為Python的一種發行版。其實還有Miniconda,顧名思義,它只包含最基本的內容——python與conda,以及相關的必須依賴項,對於空間要求嚴格的用戶,Miniconda是一種選擇。

進入下文之前,說明一下conda的設計理念——conda將幾乎所有的工具、第三方包都當做package對待,甚至包括python和conda自身!因此,conda打破了包管理與環境管理的約束,能非常方便地安裝各種版本python、各種package並方便地切換。

Anaconda的安裝

Anaconda的下載頁參見官網下載,Linux、Mac、Windows均支持。

安裝時,會發現有兩個不同版本的Anaconda,分別對應Python 2.7和Python 3.5,兩個版本其實除了這點區別外其他都一樣。後面我們會看到,安裝哪個版本並不本質,因為通過環境管理,我們可以很方便地切換運行時的Python版本。(由於我常用的Python是2.7和3.4,因此傾向於直接安裝Python 2.7對應的Anaconda)

下載後直接按照說明安裝即可。這里想提醒一點:盡量按照Anaconda默認的行為安裝——不使用root許可權,僅為個人安裝,安裝目錄設置在個人主目錄下(Windows就無所謂了)。這樣的好處是,同一台機器上的不同用戶完全可以安裝、配置自己的Anaconda,不會互相影響。

對於Mac、Linux系統,Anaconda安裝好後,實際上就是在主目錄下多了個文件夾(~/anaconda)而已,Windows會寫入注冊表。安裝時,安裝程序會把bin目錄加入PATH(Linux/Mac寫入~/.bashrc,Windows添加到系統變數PATH),這些操作也完全可以自己完成。以Linux/Mac為例,安裝完成後設置PATH的操作是

1

2

3

4

# 將anaconda的bin目錄加入PATH,根據版本不同,也可能是~/anaconda3/bin

echo 'export PATH="~/anaconda2/bin:$PATH"' >> ~/.bashrc

# 更新bashrc以立即生效

source ~/.bashrc

配置好PATH後,可以通過which conda或conda --version命令檢查是否正確。假如安裝的是Python 2.7對應的版本,運行python --version或python -V可以得到Python 2.7.12 :: Anaconda 4.1.1 (64-bit),也說明該發行版默認的環境是Python 2.7。

Conda的環境管理

Conda的環境管理功能允許我們同時安裝若干不同版本的Python,並能自由切換。對於上述安裝過程,假設我們採用的是Python 2.7對應的安裝包,那麼Python 2.7就是默認的環境(默認名字是root,注意這個root不是超級管理員的意思)。

假設我們需要安裝Python 3.4,此時,我們需要做的操作如下:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

# 創建一個名為python34的環境,指定Python版本是3.4(不用管是3.4.x,conda會為我們自動尋找3.4.x中的最新版本)

conda create --name python34 python=3.4

# 安裝好後,使用activate激活某個環境

activate python34 # for Windows

source activate python34 # for Linux & Mac

# 激活後,會發現terminal輸入的地方多了python34的字樣,實際上,此時系統做的事情就是把默認2.7環境從PATH中去除,再把3.4對應的命令加入PATH

# 此時,再次輸入

python --version

# 可以得到`Python 3.4.5 :: Anaconda 4.1.1 (64-bit)`,即系統已經切換到了3.4的環境

# 如果想返回默認的python 2.7環境,運行

deactivate python34 # for Windows

source deactivate python34 # for Linux & Mac

# 刪除一個已有的環境

conda remove --name python34 --all

用戶安裝的不同python環境都會被放在目錄~/anaconda/envs下,可以在命令中運行conda info -e查看已安裝的環境,當前被激活的環境會顯示有一個星號或者括弧。

說明:有些用戶可能經常使用python 3.4環境,因此直接把~/anaconda/envs/python34下面的bin或者Scripts加入PATH,去除anaconda對應的那個bin目錄。這個辦法,怎麼說呢,也是可以的,但總覺得不是那麼elegant……

如果直接按上面說的這么改PATH,你會發現conda命令又找不到了(當然找不到啦,因為conda在~/anaconda/bin里呢),這時候怎麼辦呢?方法有二:1. 顯式地給出conda的絕對地址 2. 在python34環境中也安裝conda工具(推薦)。

Conda的包管理

Conda的包管理就比較好理解了,這部分功能與pip類似。

例如,如果需要安裝scipy:

1

2

3

4

5

6

7

# 安裝scipy

conda install scipy

# conda會從從遠程搜索scipy的相關信息和依賴項目,對於python 3.4,conda會同時安裝numpy和mkl(運算加速的庫)

# 查看已經安裝的packages

conda list

# 最新版的conda是從site-packages文件夾中搜索已經安裝的包,不依賴於pip,因此可以顯示出通過各種方式安裝的包

conda的一些常用操作如下:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

# 查看當前環境下已安裝的包

conda list

# 查看某個指定環境的已安裝包

conda list -n python34

# 查找package信息

conda search numpy

# 安裝package

conda install -n python34 numpy

# 如果不用-n指定環境名稱,則被安裝在當前活躍環境

# 也可以通過-c指定通過某個channel安裝

# 更新package

conda update -n python34 numpy

# 刪除package

conda remove -n python34 numpy

前面已經提到,conda將conda、python等都視為package,因此,完全可以使用conda來管理conda和python的版本,例如

1

2

3

4

5

6

7

8

9

# 更新conda,保持conda最新

conda update conda

# 更新anaconda

conda update anaconda

# 更新python

conda update python

# 假設當前環境是python 3.4, conda會將python升級為3.4.x系列的當前最新版本

補充:如果創建新的python環境,比如3.4,運行conda create -n python34 python=3.4之後,conda僅安裝python 3.4相關的必須項,如python, pip等,如果希望該環境像默認環境那樣,安裝anaconda集合包,只需要:

1

2

3

4

5

6

# 在當前環境下安裝anaconda包集合

conda install anaconda

# 結合創建環境的命令,以上操作可以合並為

conda create -n python34 python=3.4 anaconda

# 也可以不用全部安裝,根據需求安裝自己需要的package即可

設置國內鏡像

如果需要安裝很多packages,你會發現conda下載的速度經常很慢,因為Anaconda.org的伺服器在國外。所幸的是,清華TUNA鏡像源有Anaconda倉庫的鏡像,我們將其加入conda的配置即可:

1

2

3

4

5

6

# 添加Anaconda的TUNA鏡像

conda config --add channels

# TUNA的help中鏡像地址加有引號,需要去掉

# 設置搜索時顯示通道地址

conda config --set show_channel_urls yes

執行完上述命令後,會生成~/.condarc(Linux/Mac)或C:UsersUSER_NAME.condarc文件,記錄著我們對conda的配置,直接手動創建、編輯該文件是相同的效果。

Anaconda具有跨平台、包管理、環境管理的特點,因此很適合快速在新的機器上部署Python環境。總結而言,整套安裝、配置流程如下:

閱讀全文

與linuxupdatepython相關的資料

熱點內容
c語言編程如何做標記 瀏覽:884
python數據分析實戰pdf 瀏覽:983
u盤插入文件夾 瀏覽:916
華為amd雲伺服器 瀏覽:495
漢化編程卡是什麼意思 瀏覽:126
python學習pdf 瀏覽:313
祝緒丹程序員那麼可愛拍吻戲 瀏覽:198
asp源碼會員消費系統 瀏覽:113
java反射設置 瀏覽:152
python一行文 瀏覽:439
排序演算法優缺點 瀏覽:563
惡搞加密文件pdf 瀏覽:674
gif怎麼壓縮圖片大小 瀏覽:217
命令選擇當前不可用 瀏覽:158
歐幾里得演算法如何求逆元 瀏覽:506
男中學生上課解壓神器 瀏覽:373
加密狗拔掉之後怎麼辦 瀏覽:27
雲儲存平台源碼 瀏覽:847
解壓文件蘋果手機rar 瀏覽:149
centos開機命令行模式 瀏覽:697