導航:首頁 > 編程語言 > 哪個python庫更受歡迎

哪個python庫更受歡迎

發布時間:2023-04-03 18:20:10

『壹』 python常用庫有哪些

python常用的庫有sys os 獲取系統相關信息
re 正則表達式模塊
numpy pandas sklearn 模塊用於科學計算

『貳』 python 集成開發環境哪個好

推薦10個好用的Python集成開發環境:

1. Pydev+Eclipse–最好的免費python IDE

Pydev的是Python IDE中使用最普遍的,原因很簡單,它是免費的,同時還提供很多強大的功能來支持高效的Python編程。Pydev是一個運行在eclipse上的開源插件,它把python帶進了eclipse的王國,如果你本來就是是一個eclipse的用戶那麼Pydev將給你家裡一樣的感覺。

Pydev能高居榜首,得益於這些關鍵功能,包括Django集成、自動代碼補全、多語言支持、集成的Python調試、代碼分析、代碼模板、智能縮進、括弧匹配、錯誤標記、源代碼控制集成、代碼折疊、UML編輯和查看和單元測試整合等。

2. PyCharm–最好的商業python IDE

PyCharm是專業的python集成開發環境,有兩個版本。一個是免費的社區版本,另一個是面向企業開發者的更先進的專業版本。

大部分的功能在免費版本中都是可用的,包括智能代碼補全、直觀的項目導航、錯誤檢查和修復、遵循PEP8規范的代碼質量檢查、智能重構,圖形化的調試器和運行器。它還能與IPython
notebook進行集成,並支持Anaconda及其他的科學計算包,比如matplotlib和NumPy。

PyCharm專業版本支持更多高級的功能,比如遠程開發功能、資料庫支持以及對web開發框架的支持等。

3.VIM

VIM是一個很先進的文本編輯器,在python開發者社區中很受歡迎。它是一個開源軟體並遵循GPL協議,所以你可以免費的使用它。

雖然VIM是最好的文本編輯器,但是它提供的功能不亞於此,經過正確的配置後它可以成為一個全功能的Python開發環境。此外VIM還是一個輕量級的、模塊化、快速響應的工具,非常適合那些很牛的程序員—編程從不用滑鼠的人。

4. Wing IDE

Wing IDE是另外一個商業的、面向專業開發人員的python集成開發環境,可以運行在windows、OS X和Linux系統上,支持最新版本的python,包括stackless Python。Wing
IDE分三個版本:免費的基礎版,個人版以及更強大的專業版。

調試功能是Wing IDE的一大亮點,包括多線程調試,線程代碼調試,自動子進程調試,斷點,單步代碼調試,代碼數據檢查等功能,此外還提供了在樹莓派上進行遠程調試的功能。

5.Spyder Python

Spyder Python是一個開源的python集成開發環境,非常適合用來進行科學計算方面的python開發。是一個輕量級的軟體,是用python開發的,遵循MIT協議,可免費使用。

Spyder python的基本功能包括多語言編輯器、互動式控制台、文件查看、variable explorer、文件查找、文件管理等。Spyder IDE也可以運行於windows、Mac或者Linux系統之上。

6.Komodo IDE

Komodo是Activestate公司開發的一個跨平台的集成開發環境,支持多種語言包括python。它是商用產品,但是提供了開源的免費版本叫Komodo Edit,能夠安裝在Mac、Windows和Linux系統上。

和大多數的專業python IDE一樣,Komodo也提供了代碼重構,自動補全,調用提示,括弧匹配,代碼瀏覽器,代碼跳轉,圖形化調試,多進程調試,多線程調試,斷點,代碼分析,集成測試單元等功能,並且集成其他的第三方庫,比如pyWin32。

7.PTVS-Best Python IDE for Windows

PTVS集成在Visual Studio中,就像Pydev可以集成在eclipse中一樣。PTVS將Visual
Studio變成了一個強大的、功能豐富的python集成開發環境,並且它是開源的,完全的免費。PTVS發布於2015年,由社區和微軟自己在維護。

8.Eric Python

Eric是一個開源python代碼編輯器和集成開發環境,提供很多高效編程需要的功能。它是純python編寫的,基於Qt GUI並集成強大的Scintilla編輯器功能。

Eric由Detlev Offenbach創建,遵循GPL協議,免費使用。經過多年的開發完善Eric已經成為一個常用的、功能豐富的集成開發環境。它提供一個可靠的插件管理系統,可以通過插件來擴展功能。Eric提供所有的基礎功能,比如調用提示、代碼折疊、代碼高亮、類瀏覽器、代碼覆蓋及分析等等。

9.Sublime Text3

Sublime Text3是目前為止功能最強大的跨平台的、輕量級的代碼編輯器。通過添加插件Sublime Text3可以成一個全功能的python IDE。

10.Emacs-Python Editor cum IDE

Emacs有屬於它自己的生態系統,它是一個可擴展的並能高度定製的GNU文本編輯器。它可以配置為一個全功能的免費的python集成開發環境。

Emacs在python開發中很受歡迎,他通過python-mode提供開箱即用的python。Emacs可以通過額外的擴展包來增加更多的高級功能。

『叄』 python 比較好用的庫有哪些

Python常用庫大全,看看有沒有你需要的。
環境管理
管理 Python 版本和環境的工具
p – 非常簡單的互動式 python 版本管理工具。
pyenv – 簡單的 Python 版本管理工具。
Vex – 可以在虛擬環境中執行命令
virtualenv – 創建獨立 Python 環境的工具。
virtualenvwrapper- virtualenv 的一組擴展。
包管理
管理包和依賴的工具。
pip – Python 包和依賴關系管理工具。
pip-tools – 保證 Python 包依賴關系更新的一組工具。
conda – 跨平台,Python 二進制包管理工具。
Curdling – 管理 Python 包的命令行工具。
wheel – Python 分發的新標准,意在取代 eggs。
包倉庫
本地 PyPI 倉庫服務和代理。
warehouse – 下一代 PyPI。
Warehousebandersnatch – PyPA 提供的 PyPI 鏡像工具。
devpi – PyPI 服務和打包/測試/分發工具。
localshop – 本地 PyPI 服務(自定義包並且自動對 PyPI 鏡像)。
分發
打包為可執行文件以便分發。
PyInstaller – 將 Python 程序轉換成獨立的執行文件(跨平台)。
dh-virtualenv – 構建並將 virtualenv 虛擬環境作為一個 Debian 包來發布。
Nuitka – 將腳本、孝高模塊、包編譯成可執行文件或擴展模塊。
py2app – 將 Python 腳本變為獨立軟體包(Mac OS X)。
py2exe – 將 Python 腳本變為獨立軟體包(Windows)。
pynsist – 一個用來創建 Windows 安裝程序的工具,可以在安裝程序中打包 Python本身。
構建工具
源碼編譯成軟體。
buildout – 一個構建系統,從多個組件來創建,組裝和部署應用。
BitBake – 針對嵌入式 Linux 的類似 make 的構建工具。
fabricate – 對任何語言自動找到依賴關系的構建工具。
PlatformIO – 多平台命令行構建工具。
PyBuilder – 純 Python 實現的持續化構建工具。
SCons – 軟體構建工具。
互動式解析器
互動式 Python 解析器。
IPython – 功能豐富的工具,非常有效的使用互動式 Python。
bpython- 界面豐富的 Python 解析器。
ptpython – 高級互動式Python解析器, 構建於python-prompt-toolkit 之上。
文件
文件管理和 MIME(多用途的網際郵件擴充協議)類型檢測。
imghdr – (Python 標准庫)檢測圖片類型。
mimetypes – (Python 標准庫)將文件名映射為 MIME 類型。
path.py – 對 os.path 進行封裝的模塊。
pathlib – (Python3.4+ 標准庫)跨平台的、面向對象的路徑操作庫。
python-magic- 文件類型檢測的第三方庫 libmagic 的 Python 介面。
Unipath- 用面向對象的方式操作文件和目錄
watchdog – 管理文件系統事件的 API 和 shell 工具
日期和時間
操作日期和時間的類庫。
arrow- 更好的 Python 日期時間操作類庫。
Chronyk – Python 3 的類庫,用於解析手寫格式的時間和日期。
dateutil – Python datetime 模塊的擴展。
delorean- 解肢攜決 Python 中有關日期處理的棘手問題的庫。
moment – 一個用來處理時間和日期的Python庫。靈感來自於Moment.js。
PyTime – 一個簡單易用的Python模歷慎伏塊,用於通過字元串來操作日期/時間。
pytz – 現代以及歷史版本的世界時區定義。將時區資料庫引入Python。
when.py – 提供用戶友好的函數來幫助用戶進行常用的日期和時間操作。
文本處理
用於解析和操作文本的庫。
通用
chardet – 字元編碼檢測器,兼容 Python2 和 Python3。
difflib – (Python 標准庫)幫助我們進行差異化比較。
ftfy – 讓Unicode文本更完整更連貫。
fuzzywuzzy – 模糊字元串匹配。
Levenshtein – 快速計算編輯距離以及字元串的相似度。
pangu.py – 在中日韓語字元和數字字母之間添加空格。
pyfiglet -figlet 的 Python實現。
shortuuid – 一個生成器庫,用以生成簡潔的,明白的,URL 安全的 UUID。
unidecode – Unicode 文本的 ASCII 轉換形式 。
uniout – 列印可讀的字元,而不是轉義的字元串。
xpinyin – 一個用於把漢字轉換為拼音的庫。

『肆』 python統計哪個產品最受歡迎

python統計明歲Scikits產品埋廳最受歡迎。
Scikits是ScikitsStack額外的軟體包,專為像圖像處理和機器學習輔助等特定功能而設計。它建立在SciPy之上,中集成了有質量的代碼和良好的文檔、簡單易用並且十分高效,是使用Python進行機器學習的實際行業標准。
Python簡捷而清晰,具有豐富和強大的類庫,被廣泛應用於雲計算、Web開發、系統運維、科學激液睜運算、以及人工智慧等領域。

『伍』 這幾個常用的python庫你需要知道

python可以說是近幾年最火熱、最實用的、最容易上手的工具之一了。功能強大、應用廣泛,可以幫你搜集工作數據,還能幫你下載音樂,電影,於是就掀起了一波學習python的大潮,小編也毫不猶豫的加入了。但是對於向小編一樣的小白來說,剛開始學習還是有些困難的,需要首先了解python的一些基礎知識。所以小編就整理了一些常用的python庫,希望對正在學習python的小夥伴有所幫助。
1.Matplotlib
Matplotlib是一個用於創建二維圖和圖形的底層庫。藉由它的幫助,你可以構建各種不同的圖標,從直方圖和散點圖到費笛卡爾坐標圖。matplotlib能夠與很多流行的繪圖庫結合使用。
2.Seaborn
Seaborn本質上是一個基於matplotlib庫的高級API。它包含更適合處理圖表的默認設置。此外,還有豐富的可視化庫,包括一些復雜類型,如時間序列、聯合分布圖(jointplots)和小提琴圖(violindiagrams)。
3.Plotly
Plotly是一個流行的庫,它可以讓你輕松構建復雜的圖形。該軟體包適用於互動式Web應用程,可實現輪廓圖、三元圖和三維圖等視覺效果
4.Bokeh
Bokeh庫使用javaScript小部件在瀏覽器中創建互動式和可縮放的可視化。該庫提供了多種圖表集合,樣式可能性(stylingpossibilities),鏈接圖、添加小部件和定義回調等形式的交互能力,以及許多更有用的特性。
5.Pydot
Pydot是用純Python編寫的Graphviz介面,經常用於生成復雜的定向圖和無向圖,能夠顯示圖形的結構,對於構建神經網路和基於決策樹的演算法時非常有效。
6.pyecharts
是基於網路開源的Echarts而開發的Python可視化工具。
pyecharts功能非常強大,支持多達400+地圖;支持JupyterNotebook、JupyterLab;能夠輕松集成至Flask,Sanic,Django等主流Web框架
7.AutoViz
數據可視化,大多數都需要把數據讀取到內存中,然後對內存中的數據進行可視化。但是,對於真正令人頭疼的是一次又一次的開發讀取離線文件的數據介面。
而AutoViz就是用於解決這個痛點的,它真正的可以做到1行代碼輕松實現可視化。對於txt、json、csv等主流離線數據格式能夠同時兼容,經常用於機器學習、計算機視覺等涉及離線數據較多的應用場景。
8.Altair
Altair是一款基於Vega和Vega-Lite開發的統計可視化庫。具有API簡單、友好、一致等優點,使用起來非常方便,能夠用最簡短的代碼實現數據可視化。
9.cufflinks
cufflinks結合了plotly的強大功能和panda的靈活性,可以方便地進行繪圖,避免了數據可視化過程中,對數據存儲結構和數據類型進行復雜的麻煩。
10Pygal
Pygal 的名氣不是很大,使用圖形框架語法來構建圖像的。繪圖目標比較簡單,使用起來非常方便:實例化圖片;用圖片目標屬性格式化;用 figure.add() 將數據添加到圖片中即可。

『陸』 用python進行windows的界面編程哪個庫和環境最好用

1、Pydev + Eclipse _最好的免費python IDE

Pydev的是Python IDE中使用最普遍的,原因很簡單,它是免費的,同時還提供很多強大的功能來支持高效的Python編程。

2、PyCharm _山悔最好的商業python IDE

PyCharm是來自JetBrains公逗悔正司的全功能python開發環境。

3、 VIM

VIM是一個很先進的文本編輯器,在python開發者社區中很受歡迎

4、Wing IDE

Wing IDE是另外一個商業的、面向專業開發人員的python集成開前灶發環境,由wingware公司開發。

5、Spyder Python

Spyder Python是一個開源的python集成開發環境,非常適合用來進行科學計算方面的python開發。

6、Komodo IDE

Komodo是Activestate公司開發的一個跨平台的集成開發環境,支持多種語言包括python。

7、PTVS - Best Python IDE for Windows

PTVS(Python Tools for Visual Studio)集成在Visual Studio中,就像Pydev可以集成在eclipse中一樣。

『柒』 盤點那些年讓我們相愛恨晚的Python庫-

管理界面的庫。

數據結構、演算法和設計模式的 Python 實現。另請參閱awesome-algorithms。

ASGI兼容的網路伺服器。

用於處理音頻及其元數據的庫。

用於實現身份驗證方案的庫。

從源代碼編譯軟體。

用於增強 Python 內置類的庫。

內容管理系統。

用於緩存數據的庫。

用於聊天機器人開發的庫。

靜態分析、linter 和代碼質量檢查工具。另請參閱awesome-static-analysis。

用於構建命令行應用程序的庫。

有用的基於 CLI 的生產力工具。

用於從 Python 2 遷移到 3 的庫。

計算機視覺庫。

用於並發和並行執行的庫。另請參閱awesome-asyncio。

用於存儲和解析配置選項的庫。

用於數據分析的庫。

用於驗證數據的庫。在許多情況下用於表單。

用於可視化數據的庫。另請參閱awesome-javascript。

用 Python 實現的資料庫。

用於連接和操作資料庫的庫。

用於處理日期和時間的庫。

用於調試代碼的庫。

神經網路和深度學習框架。另請參閱awesome-deep-learning。

適用於 DevOps 的軟體和庫。

分布式計算的框架和庫。

創建用於發布分發的打包可執行文件的庫。

用於生成項目文檔的庫。

用於下載的庫。

電子商務和支付的框架和庫。

用於發送和解析電子郵件的庫。

用於企業環境中系統集成的平台和工具

用於 Python 版本和虛擬環境管理的庫。

用於文件操作和 MIME 類型檢測的庫。

提供外部函數介面的庫。

用於處理表單的庫。

使用 Python 進行函數式編程。

用於處理圖形用戶界面應用程序的庫。

用於使用 GraphQL 的庫。

很棒的 游戲 開發庫。

用於地理編碼地址和處理緯度和經度的庫。

用於處理 HTML 和 XML 的庫。

用於處理 HTTP 的庫。

用於硬體編程的庫。

用於處理圖像的庫。

Python 的實現。

互動式 Python 解釋器 (REPL)。

用於使用 i18n 的庫。

用於調度作業的庫。

用於生成和處理日誌的庫。

機器學習庫。另請參閱awesome-machine-learning。

Microsoft Windows 上的 Python 編程。

不屬於上述類別的有用庫或工具。

用於處理人類語言的庫。

虛擬網路和 SDN(軟體定義網路)的工具和庫。

用於構建用戶活動的庫。

實現對象關系映射或數據映射技術的庫。

用於包和依賴管理的庫。

本地 PyPI 存儲庫伺服器和代理。

滲透測試的框架和工具。

允許或拒絕用戶訪問數據或功能的庫。

用於啟動和與操作系統進程通信的庫。

用於構建推薦系統的庫。

用於 Python 的重構工具和庫

用於構建 RESTful API 的庫。

機器人庫。

RPC 兼容的伺服器。

用於科學計算的庫。另請參閱Python-for-Scientists。

用於對數據進行索引和執行搜索查詢的庫和軟體。

用於序列化復雜數據類型的庫

用於開發無伺服器 Python 代碼的框架。

基於 Python 的 shell。

用於解析和操作特定文本格式的庫。

靜態站點生成器是一種軟體,它以一些文本 + 模板作為輸入並在輸出中生成 HTML 文件。

用於標記項目的庫。

用於處理任務隊列的庫。

用於模板和詞法分析的庫和工具。

用於測試代碼庫和生成測試數據的庫。

用於解析和操作純文本的庫。

用於訪問第三方服務 API 的庫。另請參閱Python API 包裝器和庫列表。

用於解析 URL 的庫。

用於處理視頻和 GIF 的庫。

用於管理、壓縮和縮小網站資產的工具。

用於提取 Web 內容的庫。

用於自動抓取網頁的庫。

傳統的全棧 Web 框架。另請參閱RESTful API。

用於使用 WebSocket 的庫。

WSGI 兼容的網路伺服器。

在哪裡可以發現學習資源或新的 Python 庫。

『捌』 2017年10大流行Python庫有哪些

1、NumPy
NumPy是構建科學計算 stack 的最基礎的包。它為 Python 中的 n 維數組和矩陣的操作提供了大量有用的功能。該庫還提供了 NumPy 數組類型的數學運算向量化,可以提升性能,從而加快執行速度。

2、SciPy
SciPy 是一個工程和科學軟體庫, 包含線性代數、優化、集成和統計的模塊。SciPy 庫的主
要功能建立在 NumPy 的基礎之上,它通過其特定的子模塊提供高效的數值常式操作。SciPy 的所有子模塊中的函數都有詳細的文檔,這也是一個優勢。
3、Pandas
Pandas是一個 Python 包,旨在通過「標記(labeled)」和「關系(relational)」數據進行工作,簡單直觀。Pandas 是 data wrangling 的完美工具。它設計用於快速簡單的數據操作、聚合和可視化。
4、Seaborn
Seaborn 主要關注統計模型的可視化;這種可視化包括熱度圖(heat map),可以總結數據但也描繪總體分布。Seaborn 基於 Matplotlib,並高度依賴於它。
5、Bokeh
Bokeh是一個很好的可視化庫,其目的是互動式可視化,不過這個庫獨立於 Matplotlib,它通過現代瀏覽器以數據驅動文檔(D3.js)的風格呈現。
6、Scikits
Scikits 是 SciPy Stack 的附加軟體包,專為特定功能(如圖像處理和輔助機器學習)而設計。其中最突出的一個是 scikit-learn。該軟體包構建於 SciPy 之上,並大量使用其數學操作,是使用 Python 進行機器學習的實際上的行業標准。
7、Theano
Theano 是一個 Python 包,它定義了與 NumPy 類似的多維數組,以及數學運算和表達式。該庫是經過編譯的,使其在所有架構上能夠高效運行。這個庫最初由蒙特利爾大學機器學習組開發,主要是為了滿足機器學習的需求。
8、Keras
Keras是一個使用高層介面構建神經網路的開源庫,它是用 Python 編寫的。它簡單易懂,具有高級可擴展性。Keras 極其容易上手,而且可以進行快速的原型設計,足以用於嚴肅的建模。
9、Gensim
Gensim是一個用於 Python 的開源庫,實現了用於向量空間建模和主題建模的工具。Gensim 實現了諸如分層 Dirichlet 進程(HDP)、潛在語義分析(LSA)和潛在 Dirichlet 分配(LDA)等演算法,還有 tf-idf、隨機投影、word2vec 和 document2vec,以便於檢查一組文檔(通常稱為語料庫)中文本的重復模式。
10、Scrapy
Scrapy 是用於從網路檢索結構化數據的爬蟲程序的庫。它現在已經發展成了一個完整的框架,可以從 API 收集數據,也可以用作通用的爬蟲。該庫在介面設計上遵循著名的 Don』t Repeat Yourself 原則——提醒用戶編寫通用的可復用的代碼,因此可以用來開發和擴展大型爬蟲。

『玖』 探討最受歡迎的15頂級Python庫

1 TensorFlow(貢獻者:1757,貢獻:25756,Stars:116765)

「TensorFlow 是一個使用數據流圖進行數值計算的開源軟體庫。圖形節點表示數學運算,而圖形邊緣表示在它們之間流動的多維數據陣列(張量)。這種靈活的體系結構使用戶可以將計算部署到桌面、伺服器或移動設備中的一個或多個 CPU/GPU,而無需重寫代碼。 」

GitHub 地址:

https://github.com/tensorflow/tensorflow

2 pandas(貢獻者:1360,貢獻:18441,Stars :17388)

「pandas 是一個 Python 包,、供快速,靈活和富有表現力的數據結構,旨在讓」關系「或」標記「數據使用既簡單又直觀。它的目標是成為用 Python 進行實際,真實數據分析的基礎高級構建塊。」

GitHub 地址:

https://github.com/pandas-dev/pandas

3 scikit-learn(貢獻者:1218,貢獻者:23509,Stars :32326)

「scikit-learn 是一個基於 NumPy,SciPy 和 matplotlib 的機器學習 Python 模塊。它為數據挖掘和數據分析提供了簡單而有效的工具。SKLearn 所有人都可用,並可在各種環境中重復使用。

GitHub 地址:

https://github.com/scikit-learn/scikit-learn

4 PyTorch(貢獻者:861,貢獻:15362,Stars:22763)

「PyTorch 是一個 Python 包,提供兩個高級功能:

具有強大的 GPU 加速度的張量計算(如 NumPy)

基於磁帶的自動編程系統構建的深度神經網路

你可以重復使用自己喜歡的 Python 軟體包,如 NumPy,SciPy 和 Cython,以便在需要時擴展 PyTorch。」

GitHub 地址:

https://github.com/pytorch/pytorch

5 Matplotlib(貢獻者:778,貢獻:28094,Stars :8362)

「Matplotlib 是一個 Python 2D 繪圖庫,可以生成各種可用於出版品質的硬拷貝格式和跨平台互動式環境數據。Matplotlib 可用於 Python 腳本,Python 和 IPython shell(例如 MATLAB 或 Mathematica),Web 應用程序伺服器和各種圖形用戶界面工具包。」

GitHub 地址:

https://github.com/matplotlib/matplotlib

6 Keras(貢獻者:856,貢者:4936,Stars :36450)

「Keras 是一個高級神經網路 API,用 Python 編寫,能夠在 TensorFlow,CNTK 或 Theano 之上運行。它旨在實現快速實驗,能夠以最小的延遲把想法變成結果,這是進行研究的關鍵。」

GitHub 地址:

https://github.com/keras-team/keras

7 NumPy(貢獻者:714,貢獻:19399,Stars:9010)

「NumPy 是使用 Python 進行科學計算所需的基礎包。它提供了強大的 N 維數組對象,復雜的(廣播)功能,集成 C / C ++ 和 Fortran 代碼的工具以及有用的線性代數,傅里葉變換和隨機數功能。

GitHub 地址:

https://github.com/numpy/numpy

8 SciPy(貢獻者:676,貢獻:20180,Stars:5188)

「SciPy(發音為」Sigh Pie「)是數學、科學和工程方向的開源軟體,包含統計、優化、集成、線性代數、傅立葉變換、信號和圖像處理、ODE 求解器等模塊。」

GitHub 地址:

https://github.com/scipy/scipy

9 Apache MXNet(貢獻者:653,貢獻:9060,Stars:15812)

「Apache MXNet(孵化)是一個深度學習框架,旨在提高效率和靈活性,讓你可以混合符號和命令式編程,以最大限度地提高效率和生產力。 MXNet 的核心是一個動態依賴調度程序,可以動態地自動並行化符號和命令操作。」

GitHub 地址:

https://github.com/apache/incubator-mxnet

10 Theano(貢獻者:333,貢獻:28060,Stars :8614)

「Theano 是一個 Python 庫,讓你可以有效地定義、優化和評估涉及多維數組的數學表達式。它可以使用 GPU 並實現有效的符號區分。」

GitHub 地址:

https://github.com/Theano/Theano

11 Bokeh(貢獻者:334,貢獻:17395,Stars :8649)

「Bokeh 是一個用於 Python 的互動式可視化庫,可以在現代 Web 瀏覽器中實現美觀且有意義的數據視覺呈現。使用 Bokeh,你可以快速輕松地創建互動式圖表、儀錶板和數據應用程序。」

GitHub 地址:

https://github.com/bokeh/bokeh

12 XGBoost(貢獻者:335,貢獻:3557,Stars:14389)

「XGBoost 是一個優化的分布式梯度增強庫,旨在變得高效、強大、靈活和便攜。它在 Gradient Boosting 框架下實現機器學習演算法。XGBoost 提供了梯度提升決策樹(也稱為 GBDT,GBM),可以快速准確地解決許多數據科學問題,可以在主要的分布式環境(Hadoop,SGE,MPI)上運行相同的代碼,並可以解決數十億個示例之外的問題。」

GitHub 地址:

https://github.com/dmlc/xgboost

13 Gensim(貢獻者:301,貢獻:3687,Stars :8295)

「Gensim 是一個用於主題建模、文檔索引和大型語料庫相似性檢索的 Python 庫,目標受眾是自然語言處理(NLP)和信息檢索(IR)社區。」

GitHub 地址:

https://github.com/RaRe-Technologies/gensim

14 Scrapy(貢獻者:297,貢獻:6808,Stars :30507)

「Scrapy 是一種快速的高級 Web 爬行和 Web 抓取框架,用於抓取網站並從其頁面中提取結構化數據。它可用於從數據挖掘到監控和自動化測試的各種用途。」

GitHub 地址:

https://github.com/scrapy/scrapy

15 Caffe(貢獻者:270,貢獻:4152,Stars :26531)

「Caffe 是一個以表達、速度和模塊化為基礎的深度學習框架,由伯克利人工智慧研究(BAIR)/ 伯克利視覺與學習中心(BVLC)和社區貢獻者開發。」

GitHub 地址:

https://github.com/BVLC/caffe

以上就是2018年最受歡迎的15個庫了,不知有沒有你的菜喔!希望本文對所列出的庫對你有所幫助!

閱讀全文

與哪個python庫更受歡迎相關的資料

熱點內容
linuxsftp連接 瀏覽:934
光伏日發電量演算法 瀏覽:125
小肚皮app怎麼才有vip 瀏覽:616
php全形轉換半形 瀏覽:927
java字元序列 瀏覽:539
杭州編譯分布式存儲區塊鏈 瀏覽:575
材料壓縮曲線 瀏覽:247
linux命令排序 瀏覽:151
手機熱點加密為啥連接不上電腦 瀏覽:979
編譯器合並計算 瀏覽:959
android音頻曲線 瀏覽:343
linuxftp自動登錄 瀏覽:802
運行編譯後網頁 瀏覽:70
閱讀app怎麼使用 瀏覽:319
centos防火牆命令 瀏覽:432
命令行變更 瀏覽:332
linux設備和驅動 瀏覽:207
加密貨幣騙局破案 瀏覽:345
cc特徵碼加密 瀏覽:775
清空dns緩存命令 瀏覽:295