❶ 對於python 的科學計算有哪些提高運算速度的技
一:學會正確使用numpy scipy。 numpy scipy寫好的絕不自己寫,比如矩陣運算等操作,pylab的實現還算不錯。各種函數都有,盡量使用他們可以避免初學者大部分的速度不足問題。因為這些函數大部分都是預編譯好的。
根據我幾年前的測試,python的矩陣運算速度並不慢,(因為你運行的是動態鏈接庫裡面的函數而不是腳本)比mathematica快,和matlab持平。
大部分新手不擅長看文檔啥都自己造輪子是不好的。當然老手把效率寫的比開源庫高也不算啥新聞,畢竟有對特定程序的優化
二:減少for的使用,多使用向量化函數,np.vectorlize可以把函數變成對數組逐元素的操作,比for效率高幾個華萊士。
三:對內存友好,操作大矩陣的時候減少會引起整矩陣對此的操作
四:系統最慢的大部分時候是io,包括上面說的內存操作和頻繁的讀入讀出以及debug輸出。避免他們,在需要實時處理的時候引入類似於gpu的pipeline管線機制或者使用靈活的多線程編程可以起到奇效。
五:matplotlib的繪圖效率並不高明,在使用交互繪圖(plt.ion)的時候減少不必要的刷新率。
❷ 北大青鳥設計培訓:怎樣才能提高Python運行效率
python逐漸走入人們的視線,成為熱門編程語言,隨之而來,加入python培訓的准程序員大軍也成為社會熱點。
Python具有許多其他編程語言不具備的優勢,譬如能通過陸寬雀極少量代碼完成許多操作,以及多進程,能夠輕松支持多任務處理。
除了多種優勢外,python也有不好的地方,運行較慢,下面電腦培訓http://www.kmbdqn.cn/為大家介紹6個竅門,可以幫你提高python的運行效率。
1.在排序時使用鍵Python含有許多古老的排序規則,這些規則在你創建定製的排序方法時會佔用很多時間,而這些排序方法運行時也會拖延程序實際的運行速度。
最佳的排序方法其實是盡可能多地使用鍵和內置的sort()方法。
2.交叉編譯你的應用開發者有時會忘記計算機其實並不理解用來創建現代應用程序的編程語言。
計算機理解的是機器語言。
為了運行你的應用,你藉助一個應用將你所編的人類可讀的代碼轉換成機器可讀的代碼。
有時,你用一種諸如Python這樣的語言編寫應用,再以C++這樣的語言運行你的應用,這在運行的角度來說,是可行的。
關鍵在於,你想你的應用完成什麼事情,而你的主機系統能提供什麼樣的資源。
3.關鍵代碼使用外部功能包Python簡化了許多編程任務,但是對於一些時間敏感的任務,它的表現經常不盡人意。
使用C/C++或機器語言的外部功能包處理時間敏感任務,可以有效提高應用的運行效率。
這些功能包往往依附於特定的平台,因此你要根據自己所用的平台選擇合適的功能包。
簡而言之,這個竅門要你犧牲應用的可移植性以換取只有通過對底層主機的直接編程才能獲得的運行效率。
4.針對循環的優化每一種編程語言都強調最優化的循環方案。
當使用Python時,你可以借巧亂助豐富的技巧讓循環程序跑得更快。
然而,開發者們經常遺忘的一個技巧是:盡量避免在循環中訪問變數的屬性。
5.嘗試多種編碼方法每次創建應用時都使用同一種編碼方法幾乎無一例外會導致應用的運行效率不盡人意。
可以在程序分析時嘗試一些試驗性的辦法。
譬如說,在處理字典中的數據項早早時,你既可以使用安全的方法,先確保數據項已經存在再進行更新,也可以直接對數據項進行更新,把不存在的數據項作為特例分開處理。
6.使用較新的Python版本你要保證自己的代碼在新版本里還能運行。
你需要使用新的函數庫才能體驗新的Python版本,然後你需要在做出關鍵性的改動時檢查自己的應用。
只有當你完成必要的修正之後,你才能體會新版本的不同。
❸ 如何提高python的運行效率
竅門一:關鍵代碼使用外部功能包
Python簡化了許多編程任務,但是對於一些時間敏感的任務,它的表現經常不盡人意。使用C/C++或機器語言的外部功能包處理時間敏感任務,可以有效提高應用的運行效率。這些功能包往往依附於特定的平台,因此你要根據自己所用的平台選擇合適的功能包。簡而言之,這個竅門要你犧牲應用的可移植性以換取只有通過對底層主機的直接編程才能獲得的運行效率。以下是一些你可以選擇用來提升效率的功能包:
Cython
Pylnlne
PyPy
Pyrex
這些功能包的用處各有不同。比如說,使用C語言的數據類型,可以使涉及內存操作的任務更高效或者更直觀。Pyrex就能幫助Python延展出這樣的功能。Pylnline能使你在Python應用中直接使用C代碼。內聯代碼是獨立編譯的,但是它把所有編譯文件都保存在某處,並能充分利用C語言提供的高效率。
竅門二:在排序時使用鍵
Python含有許多古老的排序規則,這些規則在你創建定製的排序方法時會佔用很多時間,而這些排序方法運行時也會拖延程序實際的運行速度。最佳的排序方法其實是盡可能多地使用鍵和內置的sort()方法。譬如,拿下面的代碼來說:
import operator
somelist = [(1, 5,]
在每段例子里,list都是根據你選擇的用作關鍵參數的索引進行排序的。這個方法不僅對數值類型有效,還同樣適用於字元串類型。
竅門三:針對循環的優化
每一種編程語言都強調最優化的循環方案。當使用Python時,你可以藉助豐富的技巧讓循環程序跑得更快。然而,開發者們經常遺忘的一個技巧是:盡量避免在循環中訪問變數的屬性。譬如,拿下面的代碼來說:
lowerlist = ['this', 'is', 'lowercase']
upper = str.upper
upperlist = []
append = upperlist.append
for word in lowerlist:
append(upper(word))
print(upperlist)
#Output = ['THIS', 'IS', 'LOWERCASE']
每次你調用str.upper, Python都會計算這個式子的值。然而,如果你把這個求值賦值給一個變數,那麼求值的結果就能提前知道,Python程序就能運行得更快。因此,關鍵就是盡可能減小Python在循環中的工作量。因為Python解釋執行的特性,在上面的例子中會大大減慢它的速度。
(注意:優化循環的方法還有很多,這只是其中之一。比如,很多程序員會認為,列表推導式是提高循環速度的最佳方法。關鍵在於,優化循環方案是提高應用程序運行速度的上佳選擇。)
竅門四:使用較新的Python版本
如果你在網上搜索Python,你會發現數不盡的信息都是關於如何升級Python版本。通常,每個版本的Python都會包含優化內容,使其運行速度優於之前的版本。但是,限制因素在於,你最喜歡的函數庫有沒有同步更新支持新的Python版本。與其爭論函數庫是否應該更新,關鍵在於新的Python版本是否足夠高效來支持這一更新。
你要保證自己的代碼在新版本里還能運行。你需要使用新的函數庫才能體驗新的Python版本,然後你需要在做出關鍵性的改動時檢查自己的應用。只有當你完成必要的修正之後,你才能體會新版本的不同。
然而,如果你只是確保自己的應用在新版本中可以運行,你很可能會錯過新版本提供的新特性。一旦你決定更新,請分析你的應用在新版本下的表現,並檢查可能出問題的部分,然後優先針對這些部分應用新版本的特性。只有這樣,用戶才能在更新之初就覺察到應用性能的改觀。
竅門五:嘗試多種編碼方法
每次創建應用時都使用同一種編碼方法幾乎無一例外會導致應用的運行效率不盡人意。可以在程序分析時嘗試一些試驗性的辦法。譬如說,在處理字典中的數據項時,你既可以使用安全的方法,先確保數據項已經存在再進行更新,也可以直接對數據項進行更新,把不存在的數據項作為特例分開處理。請看下面第一段代碼:
n = 16
myDict = {}
for i in range(0, n):
char = 'abcd'[i%4]
if char not in myDict:
myDict[char] = 0
myDict[char] += 1
print(myDict)
當一開始myDict為空時,這段代碼會跑得比較快。然而,通常情況下,myDict填滿了數據,至少填有大部分數據,這時換另一種方法會更有效率。
n = 16
myDict = {}
for i in range(0, n):
char = 'abcd'[i%4]
try:
myDict[char] += 1
except KeyError:
myDict[char] = 1
print(myDict)
在兩種方法中輸出結果都是一樣的。區別在於輸出是如何獲得的。跳出常規的思維模式,創建新的編程技巧能使你的應用更有效率。
竅門六:交叉編譯你的應用
開發者有時會忘記計算機其實並不理解用來創建現代應用程序的編程語言。計算機理解的是機器語言。為了運行你的應用,你藉助一個應用將你所編的人類可讀的代碼轉換成機器可讀的代碼。有時,你用一種諸如Python這樣的語言編寫應用,再以C++這樣的語言運行你的應用,這在運行的角度來說,是可行的。關鍵在於,你想你的應用完成什麼事情,而你的主機系統能提供什麼樣的資源。
Nuitka是一款有趣的交叉編譯器,能將你的Python代碼轉化成C++代碼。這樣,你就可以在native模式下執行自己的應用,而無需依賴於解釋器程序。你會發現自己的應用運行效率有了較大的提高,但是這會因平台和任務的差異而有所不同。
(注意:Nuitka現在還處在測試階段,所以在實際應用中請多加註意。實際上,當下最好還是把它用於實驗。此外,關於交叉編譯是否為提高運行效率的最佳方法還存在討論的空間。開發者已經使用交叉編譯多年,用來提高應用的速度。記住,每一種解決辦法都有利有弊,在把它用於生產環境之前請仔細權衡。)
在使用交叉編譯器時,記得確保它支持你所用的Python版本。Nuitka支持Python2.6, 2.7, 3.2和3.3。為了讓解決方案生效,你需要一個Python解釋器和一個C++編譯器。Nuitka支持許多C++編譯器,其中包括Microsoft Visual Studio,MinGW 和 Clang/LLVM。
交叉編譯可能造成一些嚴重問題。比如,在使用Nuitka時,你會發現即便是一個小程序也會消耗巨大的驅動空間。因為Nuitka藉助一系列的動態鏈接庫(DDLs)來執行Python的功能。因此,如果你用的是一個資源很有限的系統,這種方法或許不太可行。
❹ python為啥運行效率不高
原因:1、python是動態語言;2、python是解釋執行,但是不支持JIT;3、python中一切都是對象,每個對象都需要維護引用計數,增加了額外的工作。4、python GIL;5、垃圾回收。
當我們提到一門編程語言的效率時:通常有兩層意思,第一是開發效率,這是對程序員而言,完成編碼所需要的時間;另一個是運行效率,這是對計算機而言,完成計算任務所需要的時間。編碼效率和運行效率往往是魚與熊掌的關系,是很難同時兼顧的。不同的語言會有不同的側重,python語言毫無疑問更在乎編碼效率,life is short,we use python。
雖然使用python的編程人員都應該接受其運行效率低的事實,但python在越多越來的領域都有廣泛應用,比如科學計算 、web伺服器等。程序員當然也希望python能夠運算得更快,希望python可以更強大。
首先,python相比其他語言具體有多慢,這個不同場景和測試用例,結果肯定是不一樣的。這個網址給出了不同語言在各種case下的性能對比,這一頁是python3和C++的對比,下面是兩個case:
從上圖可以看出,不同的case,python比C++慢了幾倍到幾十倍。
python運算效率低,具體是什麼原因呢,下列羅列一些:
第一:python是動態語言
一個變數所指向對象的類型在運行時才確定,編譯器做不了任何預測,也就無從優化。舉一個簡單的例子:r = a + b。a和b相加,但a和b的類型在運行時才知道,對於加法操作,不同的類型有不同的處理,所以每次運行的時候都會去判斷a和b的類型,然後執行對應的操作。而在靜態語言如C++中,編譯的時候就確定了運行時的代碼。
另外一個例子是屬性查找,關於具體的查找順序在《python屬性查找》中有詳細介紹。簡而言之,訪問對象的某個屬性是一個非常復雜的過程,而且通過同一個變數訪問到的python對象還都可能不一樣(參見Lazy property的例子)。而在C語言中,訪問屬性用對象的地址加上屬性的偏移就可以了。
第二:python是解釋執行,但是不支持JIT(just in time compiler)。雖然大名鼎鼎的google曾經嘗試Unladen Swallow 這個項目,但最終也折了。
第三:python中一切都是對象,每個對象都需要維護引用計數,增加了額外的工作。
第四:python GIL,GIL是Python最為詬病的一點,因為GIL,python中的多線程並不能真正的並發。如果是在IO bound的業務場景,這個問題並不大,但是在CPU BOUND的場景,這就很致命了。所以筆者在工作中使用python多線程的情況並不多,一般都是使用多進程(pre fork),或者在加上協程。即使在單線程,GIL也會帶來很大的性能影響,因為python每執行100個opcode(默認,可以通過sys.setcheckinterval()設置)就會嘗試線程的切換,具體的源代碼在ceval.c::PyEval_EvalFrameEx。
第五:垃圾回收,這個可能是所有具有垃圾回收的編程語言的通病。python採用標記和分代的垃圾回收策略,每次垃圾回收的時候都會中斷正在執行的程序,造成所謂的頓卡。infoq上有一篇文章,提到禁用Python的GC機制後,Instagram性能提升了10%。感興趣的讀者可以去細讀。
推薦課程:Python機器學習(Mooc禮欣、嵩天教授)
❺ 為什麼python內置的sort比自己寫的快速排序快100倍
主要原因,內置函數用C寫的。在Python語言內無論如何造不出內置函數的輪子。這也是通常C跟C++語言用戶更喜歡造基礎演算法的輪了的原因。因為C/C++用戶真有條件寫出匹敵標准庫的演算法,但很多高級語言不行,不是程序員技術差,是客觀條件就根本做不到。
你比如說java語言沒人造字元串的輪子,C++光一個字元串類就有無數多的實現。是因為C+用戶更喜歡寫字元串類嗎?顯然不是,一方面是因為Java語言內沒法造出匹敵Java內置標准庫演算法的輪子,而C++真的可以,另外一個比較慘的原因是C++標准庫的字元串功能太弱了,大多數高級語言的字元串類功能都比C+標准庫字元串類功能更強。
Cpp內置的排序是快排和堆排的結合,最壞時間復雜度為nlogn,而快排最壞是n2。至於python內部的排序,我認為是一個道理,不會簡簡單單是一個快排,舉個簡單例子,當你數據已經是有序的時候,再傳入快排肯定就不合適。那你設置排序函數的時候,是不是預先將他打亂,再進行快排會更好呢。當然具體不會這么簡單,只是我認為官方給的介面都是很精妙的,很值得學習。
一方面Python中sort函數是用C語言寫的,C++內部的sort是由快排,直接插入和堆排序混合的,當數據量比較大的時候先用的快排,當數據量小的時候用直接插入,因為當數據量變小時,快排中的每個部分基本有序,接近直接插入的最好情況的時間復雜度O(n),就比快排要好一點了。
另外一方面這個的底層實現就是歸並排序。,只是使用了Python無法編寫的底層實現,從而避免了Python本身附加的大量開銷,速度比我們自己寫的歸並排序要快很多,所以說我們一般排序都盡量使用sorted和sort。
❻ python的效率怎麼樣
運行效率慢,但開發效率快
如果演算法固定——就是一次開發就足夠了,而不斷處理不同的大量數據,建議還是C#等
如果演算法不固定,例如每次得到一批數據就要根據需要寫相應公式去處理的話,python在寫代碼省下的時間應該優於c#編譯後運行的時間
當然,如果你的數據即使c/c++也要花數小時才能運算得到結果沒野明的(天文數字),那就另當別論了
python數據分析脊中請搜索numpy+scipy相關內容,它們就是專門為了枯告科學計算而設計的模塊
❼ python的開發效率每天可以多少行
python的開發燃答效率每天可以100-150行代碼。對於一些熟練的拍段伏程序員來說每天100行代碼是正常的生產率,包括需襲攜求分析、設計、編碼、單元測試和系統測試。
❽ python的開發效率真的比java高嗎
Python由於具有豐富和強大的庫,它又叫做作膠水語言,能夠把用其他語言製作的各種模塊(尤其是C/C++)很輕松地聯結在一起。
常見的一種應用情形是,使用Python快速生成程序的原型(有時甚至是程序的最終界面),然後對其中有特別要求的部分,用更合適的語言改寫,比如3D游戲中的圖形渲染模塊,性能要求特別高,就可以用C/C++重寫,而後封裝為Python可以調用的擴展類庫。
Python是做伺服器開發與物聯網開發。信息安全,大數據處理,數據可視化機器學習,物聯網開發,各大軟體的api,桌面應用,都需要python。
Python往往被作為腳本語言來使用,但實際上一些大規模的軟體開發設計,如Zope、Mnet及BitTorrent,包括google也在廣泛地使用它,
Python其實也被稱為是一種高級動態編程語言,其原因在於,「腳本語言」往往泛指僅做簡單程序設計任務的語言,如shellscript、VBScipt,等,只能處理簡單任務的編程語言,並不能與Python相提並論。
java常常跟"企業"聯系在一起,因為其具備一些很好的語言特性,以及豐富的框架。
在企業應用中最被青睞,你總可以聽到關於J2EE、JSP、Hibernate之類的東西的討論。
同時,java在手機領域也有一席之地,在普遍智能化之前,很多手機就是以支持java應用作為賣點的,而智能手機爆發之後,java手機主場變成了android,作為安卓的標准編程語言而存在。
❾ 為什麼說Python速度雖然慢但它工作效率高啊!
因為某個語言速度快而選擇其為開發你應用的語言是不成熟優化的一種體現。是的,Python 比較慢,但其犧牲性能可以提升工作效率。
寫在前面
讓我們來討論一個我最近一直在思考的問題:Python 的性能。順便說一下,我是 Python 的忠實擁躉,我在各種情況下都會積極嘗試使用 Python 來解決問題。大家對 Python 最大的抱怨就是它的速度慢。有些人甚至因為 Python 的速度不如某個語言而拒絕使用它。本文中我將闡述,即便 Python 這么慢,為什麼還值得你對它進行嘗試。記住加企鵝扣444五一三089可以從基礎到開發mianfei學習python。
速度不再關鍵
之前,程序的運行時間相當長。CPU 資源和內存資源都十分珍貴,程序的運行時間在這種情況下是一個重要指標。計算機本身十分昂貴,當然還有隨之而來昂貴的電力消耗。優化這些資源就十分必要,因為在商業世界有一個永恆的規則:
優化你最昂貴的資源。
歷史上,程序最昂貴的資源是計算機的運行時間。這也就導致了對計算機科學的研究更專注於不同演算法的效率。然而在當下環境中,這已經不再適用,現在硅的價格已經十分便宜了。是真的非常便宜。運行時間不再是你最昂貴的資源。一個公司最昂貴的資源現在是其僱傭的員工的時間。也就是正在看這篇文章的你自己的時間。對現在的公司來說,完成項目比讓項目跑得更快更重要。這點非常重要,這里再次強調:
完成項目比讓項目跑得更快更重要。
你也許會說「我們公司對性能要求很高,我構建的網站應用需要所有的請求在 X 毫秒內返回。」或者「客戶認為我們的應用慢而放棄使用我們的應用。」在這里我不是說速度根本不重要,我只是想說明速度不再是最重要的指標,因為它不再是你最昂貴的資源。
速度!
速度是唯一重要的事情
在編程的世界中當你提到速度,一般是指程序的性能,也就是 CPU 周期。而當你的 CEO 提到速度,他通常指的是業務上的速度,其中最重要的是投入市場的時間。你的產品或網路應用有多快並不重要,應用採用哪種語言編寫的也不重要,甚至是使項目運行投入了多少資金都不重要。最終,唯一能夠讓你的公司存活下來的是產品投入市場的時間。
這里不是指初創公司觀念中的盈利時間,而更多是從想法轉換到實際消費者手中所花費的時間。在商業世界中能存活下來的唯一方法是比你的競爭對手更快地進行創新。如果你的競爭對手比你更早地發布產品,那麼你有再多的好點子也無濟於事。你必須成為市場的第一個進入者,或至少要趕上領先的節奏。一旦你掉隊了,那麼你就大勢已去。
在商業世界中能存活下來的唯一方法是比你競爭對手更快地進行創新。
❿ python能做什麼科學計算
python做科學計算的特點:1. 科學庫很全。(推薦學習:Python視頻教程)
科學庫:numpy,scipy。作圖:matplotpb。並行:mpi4py。調試:pdb。
2. 效率高。
如果你能學好numpy(array特性,f2py),那麼你代碼執行效率不會比fortran,C差太多。但如果你用不好array,那樣寫出來的程序效率就只能呵呵了。所以入門後,請一定花足夠多的時間去了解numpy的array類。
3. 易於調試。
pdb是我見過最好的調試工具,沒有之一。直接在程序斷點處給你一個截面,這只有文本解釋語言才能辦到。毫不誇張的說,你用python開發程序只要fortran的1/10時間。
4. 其他。
它豐富而且統一,不像C++的庫那麼雜(好比pnux的各種發行版),python學好numpy就可以做科學計算了。python的第三方庫很全,但是不雜。python基於類的語言特性讓它比起fortran等更加容易規模化開發。
數值分析中,龍格-庫塔法(Runge-Kutta methods)是用於非線性常微分方程的解的重要的一類隱式或顯式迭代法。這些技術由數學家卡爾·龍格和馬丁·威爾海姆·庫塔於1900年左右發明。
龍格-庫塔(Runge-Kutta)方法是一種在工程上應用廣泛的高精度單步演算法,其中包括著名的歐拉法,用於數值求解微分方程。由於此演算法精度高,採取措施對誤差進行抑制,所以其實現原理也較復雜。
高斯積分是在概率論和連續傅里葉變換等的統一化等計算中有廣泛的應用。在誤差函數的定義中它也出現。雖然誤差函數沒有初等函數,但是高斯積分可以通過微積分學的手段解析求解。高斯積分(Gaussian integral),有時也被稱為概率積分,是高斯函數的積分。它是依德國數學家兼物理學家卡爾·弗里德里希·高斯之姓氏所命名。
洛倫茨吸引子及其導出的方程組是由愛德華·諾頓·洛倫茨於1963年發表,最初是發表在《大氣科學雜志》(Journal of the Atmospheric Sciences)雜志的論文《Deterministic Nonperiodic Flow》中提出的,是由大氣方程中出現的對流卷方程簡化得到的。
這一洛倫茨模型不只對非線性數學有重要性,對於氣候和天氣預報來說也有著重要的含義。行星和恆星大氣可能會表現出多種不同的准周期狀態,這些准周期狀態雖然是完全確定的,但卻容易發生突變,看起來似乎是隨機變化的,而模型對此現象有明確的表述。
更多Python相關技術文章,請訪問Python教程欄目進行學習!以上就是小編分享的關於python能做什麼科學計算的詳細內容希望對大家有所幫助,更多有關python教程請關注環球青藤其它相關文章!