『壹』 使用python畫出一個三維的函數圖像,數據來自於一個Excel表格
raw_input獲取的輸入是字元串,不能直接用np.array,需要用split進行切分,然後強制轉化成數值類型,才能用plot函數
我把你的代碼稍微修改了一下,可能不太漂亮,不過能運行了
x=[1,2,3]
a
=
raw_input('function>>>')
a
=
a.split('
')#依空格對字元串a進行切分,如果是用逗號分隔,則改成a.split(',')
b
=
[]
for
i
in
range(len(a)):#把切分好的字元強制轉化成int類型,如果是小數,將int改為float
b.append(int(a[i]))
plt.plot(x,
b,
label='x',
color="green",
linewidth=1)
『貳』 如何使用Python的Pandas庫繪制折線圖
我們經常會使用Python的Pandas繪制各種數據圖形,那麼如何使用它繪制折線圖呢?下面我給大家分享一下。
Pycharm
首先我們需要打開Excel軟體准備需要的數據,這里多准備幾列數據,一列就是一條折線,如下圖所示
然後我們打開Pycharm軟體,新建Python文件,導入Pandas庫,接著將Excel中的數據讀取進數據集緩存,如下圖所示
接下來我們利用plot方法繪制折線圖,如下圖所示,這里只添加了一列標題
運行文件以後我們就可以看到折線圖顯示出來了,但是比較的簡單,下面我們逐漸的豐富它
然後在plot方法中將excel裡面的多列標題都添加進來,如下圖所示
這次在運行文件的時候我們就可以看到折線圖上有多條線了,如下圖所示
接下來我們在為折線圖設置標題,X,Y坐標軸的內容,如下圖所示
然後通過plot方法下面的area方法對折線圖的空白區域進行疊加填充,如下圖所示
最後我們運行完善好後的文件,就可以看到如下圖所示的折線圖了,到此我們的折線圖繪制也就完成了
『叄』 python畫折線圖,麻煩幫忙看看
提示是說2017-01-01不能轉化為float數據,因為沒有你的數據,提供一個簡單的例子(兩條折線)
import matplotlib.pyplot as plt
x = [1,2,3]
y = [5,7,4]
x2 = [1,2,3]
y2 = [10,14,12]
plt.plot(x, y, label='First Line')
plt.plot(x2, y2, label='Second Line')
plt.xlabel('Plot Number')
plt.ylabel('Important var')
plt.title('Interesting Graph\nCheck it out')
plt.legend()
plt.savefig("test.png")
『肆』 求助python繪制三維曲線
直接用matplotlib模塊相對來說非常簡單。
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.gca(projection='3d')
x = np.linspace(0, 1, 100)
y = np.sin(x * 2 * np.pi) / 2 + 0.5
ax.plot(x, y, zs=0, zdir='z', label='zs=0, zdir=z')
colors = ('r', 'g', 'b', 'k')
for c in colors:
x = np.random.sample(20)
y = np.random.sample(20)
ax.scatter(x, y, 0, zdir='y', c=c)
ax.legend()
ax.set_xlim3d(0, 1)
ax.set_ylim3d(0, 1)
ax.set_zlim3d(0, 1)
plt.show()
『伍』 如何用python繪制各種圖形
1.環境
系統:windows10
python版本:python3.6.1
使用的庫:matplotlib,numpy
2.numpy庫產生隨機數幾種方法
import numpy as np
numpy.random
rand(d0,d1,...,dn)
In [2]: x=np.random.rand(2,5)
In [3]: x
Out[3]:
array([[ 0.84286554, 0.50007593, 0.66500549, 0.97387807, 0.03993009],
[ 0.46391661, 0.50717355, 0.21527461, 0.92692517, 0.2567891 ]])
randn(d0,d1,...,dn)查詢結果為標准正態分布
In [4]: x=np.random.randn(2,5)
In [5]: x
Out[5]:
array([[-0.77195196, 0.26651203, -0.35045793, -0.0210377 , 0.89749635],
[-0.20229338, 1.44852833, -0.10858996, -1.65034606, -0.39793635]])
randint(low,high,size)
生成low到high之間(半開區間 [low, high)),size個數據
In [6]: x=np.random.randint(1,8,4)
In [7]: x
Out[7]: array([4, 4, 2, 7])
random_integers(low,high,size)
生成low到high之間(閉區間 [low, high)),size個數據
In [10]: x=np.random.random_integers(2,10,5)
In [11]: x
Out[11]: array([7, 4, 5, 4, 2])
3.散點圖
x x軸
y y軸
s 圓點面積
c 顏色
marker 圓點形狀
alpha 圓點透明度#其他圖也類似這種配置
N=50# height=np.random.randint(150,180,20)# weight=np.random.randint(80,150,20)
x=np.random.randn(N)
y=np.random.randn(N)
plt.scatter(x,y,s=50,c='r',marker='o',alpha=0.5)
plt.show()
8.箱型圖
import matplotlib.pyplot as pltimport numpy as npdata=np.random.normal(loc=0,scale=1,size=1000)#sym 點的形狀,whis虛線的長度plt.boxplot(data,sym="o",whis=1.5)plt.show()
#sym 點的形狀,whis虛線的長度
『陸』 python畫折線圖
#encoding=utf-8
importmatplotlib.pyplotasplt
frompylabimport*#支持中文
mpl.rcParams['font.sans-serif']=['SimHei']
names=['5','10','15','20','25']
x=range(len(names))
y=[0.855,0.84,0.835,0.815,0.81]
y1=[0.86,0.85,0.853,0.849,0.83]
#plt.plot(x,y,'ro-')
#plt.plot(x,y1,'bo-')
#pl.xlim(-1,11)#限定橫軸的范圍
#pl.ylim(-1,110)#限定縱軸的范圍
plt.plot(x,y,marker='o',mec='r',mfc='w',label=u'y=x^2曲線圖')
plt.plot(x,y1,marker='*',ms=10,label=u'y=x^3曲線圖')
plt.legend()#讓圖例生效
plt.xticks(x,names,rotation=45)
plt.margins(0)
plt.subplots_adjust(bottom=0.15)
plt.xlabel(u"time(s)鄰居")#X軸標簽
plt.ylabel("RMSE")#Y軸標簽
plt.title("Asimpleplot")#標題
plt.show()
『柒』 使用Python畫出一個三維的函數圖像,數據來自於一個Excel表格
可以的。 python利用matplotlib這個庫,先定義一個空圖層,然後聲明x,y,z的值,x,y,z賦相應的列的值,最後建立標簽,標題即可。最後,excel安裝運行python的插件,運行python。
『捌』 python繪折線圖(數據很多)很難看
數據使用前要清洗,去除無效數據。
如果這些數據都是有效數據,只是你不想顯示那些過份異常的數據,那麼,就進行去噪處理。
去噪分兩步:檢測噪點,噪點修正。
對於整體連續,總體范圍大的數據集,最簡單的檢測噪點的辦法就是鄰值法,對於第n取相鄰的k個值:p[n-k,],p[n-k+1]...p[n-1]
對它們加權平均,得到標准點,上下浮動一定范圍,如果p[k]不在這個范圍內就是異常點
對應的噪點修正可以使用類似的過程,局部噪點回歸法。
這些一般來說都不是很實現的東西,對於數據集結構的不同,沒有必要做成通用的包,所以你只有自己實現。
『玖』 python可視化神器——pyecharts庫
無意中從今日頭條中看到的一篇文章,可以生成簡單的圖表。據說一些大數據開發們也是經常用類似的圖表庫,畢竟有現成的,改造下就行,誰會去自己造輪子呢。
pyecharts是什麼?
pyecharts 是一個用於生成 Echarts 圖表的類庫。Echarts 是網路開源的一個數據可視化 JS 庫。用 Echarts 生成的圖可視化效果非常棒, pyecharts 是為了與 Python 進行對接,方便在 Python 中直接使用數據生成圖 。使用pyecharts可以生成獨立的網頁,也可以在flask、django中集成使用。
安裝很簡單:pip install pyecharts
如需使用 Jupyter Notebook 來展示圖表,只需要調用自身實例即可,同時兼容 Python2 和 Python3 的 Jupyter Notebook 環境。所有圖表均可正常顯示,與瀏覽器一致的交互體驗,簡直不要太強大。
參考自pyecharts官方文檔: http://pyecharts.org
首先開始來繪制你的第一個圖表
使用 Jupyter Notebook 來展示圖表,只需要調用自身實例即可
add() 主要方法,用於添加圖表的數據和設置各種配置項
render() 默認將會在根目錄下生成一個 render.html 的文件,文件用瀏覽器打開。
使用主題
自 0.5.2+ 起,pyecharts 支持更換主體色系
使用 pyecharts-snapshot 插件
如果想直接將圖片保存為 png, pdf, gif 格式的文件,可以使用 pyecharts-snapshot。使用該插件請確保你的系統上已經安裝了 Nodejs 環境。
安裝 phantomjs $ npm install -g phantomjs-prebuilt
安裝 pyecharts-snapshot $ pip install pyecharts-snapshot
調用 render 方法 bar.render(path='snapshot.png') 文件結尾可以為 svg/jpeg/png/pdf/gif。請注意,svg 文件需要你在初始化 bar 的時候設置 renderer='svg'。
圖形繪制過程
基本上所有的圖表類型都是這樣繪制的:
chart_name = Type() 初始化具體類型圖表。
add() 添加數據及配置項。
render() 生成本地文件(html/svg/jpeg/png/pdf/gif)。
add() 數據一般為兩個列表(長度一致)。如果你的數據是字典或者是帶元組的字典。可利用 cast() 方法轉換。
多次顯示圖表
從 v0.4.0+ 開始,pyecharts 重構了渲染的內部邏輯,改善效率。推薦使用以下方式顯示多個圖表。如果使是 Numpy 或者 Pandas,可以參考這個示例
當然你也可以採用更加酷炫的方式,使用 Jupyter Notebook 來展示圖表,matplotlib 有的,pyecharts 也會有的
Note: 從 v0.1.9.2 版本開始,廢棄 render_notebook() 方法,現已採用更加 pythonic 的做法。直接調用本身實例就可以了。
比如這樣
還有這樣
如果使用的是自定義類,直接調用自定義類示例即可
圖表配置
圖形初始化
通用配置項
xyAxis:平面直角坐標系中的 x、y 軸。(Line、Bar、Scatter、EffectScatter、Kline)
dataZoom:dataZoom 組件 用於區域縮放,從而能自由關注細節的數據信息,或者概覽數據整體,或者去除離群點的影響。(Line、Bar、Scatter、EffectScatter、Kline、Boxplot)
legend:圖例組件。圖例組件展現了不同系列的標記(symbol),顏色和名字。可以通過點擊圖例控制哪些系列不顯示。
label:圖形上的文本標簽,可用於說明圖形的一些數據信息,比如值,名稱等。
lineStyle:帶線圖形的線的風格選項(Line、Polar、Radar、Graph、Parallel)
grid3D:3D笛卡爾坐標系組配置項,適用於 3D 圖形。(Bar3D, Line3D, Scatter3D)
axis3D:3D 笛卡爾坐標系 X,Y,Z 軸配置項,適用於 3D 圖形。(Bar3D, Line3D, Scatter3D)
visualMap:是視覺映射組件,用於進行『視覺編碼』,也就是將數據映射到視覺元素(視覺通道)
markLine&markPoint:圖形標記組件,用於標記指定的特殊數據,有標記線和標記點兩種。(Bar、Line、Kline)
tooltip:提示框組件,用於移動或點擊滑鼠時彈出數據內容
toolbox:右側實用工具箱
圖表詳細
Bar(柱狀圖/條形圖)
Bar3D(3D 柱狀圖)
Boxplot(箱形圖)
EffectScatter(帶有漣漪特效動畫的散點圖)
Funnel(漏斗圖)
Gauge(儀表盤)
Geo(地理坐標系)
GeoLines(地理坐標系線圖)
Graph(關系圖)
HeatMap(熱力圖)
Kline/Candlestick(K線圖)
Line(折線/面積圖)
Line3D(3D 折線圖)
Liquid(水球圖)
Map(地圖)
Parallel(平行坐標系)
Pie(餅圖)
Polar(極坐標系)
Radar(雷達圖)
Sankey(桑基圖)
Scatter(散點圖)
Scatter3D(3D 散點圖)
ThemeRiver(主題河流圖)
TreeMap(矩形樹圖)
WordCloud(詞雲圖)
用戶自定義
Grid 類:並行顯示多張圖
Overlap 類:結合不同類型圖表疊加畫在同張圖上
Page 類:同一網頁按順序展示多圖
Timeline 類:提供時間線輪播多張圖
統一風格
註:pyecharts v0.3.2以後,pyecharts 將不再自帶地圖 js 文件。如用戶需要用到地圖圖表,可自行安裝對應的地圖文件包。
地圖文件被分成了三個 Python 包,分別為:
全球國家地圖:
echarts-countries-pypkg
中國省級地圖:
echarts-china-provinces-pypkg
中國市級地圖:
echarts-china-cities-pypkg
直接使用python的pip安裝
但是這里大家一定要注意,安裝完地圖包以後一定要重啟jupyter notebook,不然是無法顯示地圖的。
顯示如下:
總得來說,這是一個非常強大的可視化庫,既可以集成在flask、Django開發中,也可以在做數據分析的時候單獨使用,實在是居家旅行的必備神器啊
『拾』 python多個折線圖合並到一個三維圖
四個。折線圖,是排列在工作表的脊橘列或行中的數據可以繪制到折線圖中,python四個折線櫻褲團圖合並到一個三維圖,通過各種形狀的圖形來展示數據。三維圖,是純跡可以直接通過看穿表面後看到裡面的立體圖案的一種神奇的圖片。