① python數據挖掘從哪些
一. 基於Python的數據挖掘 基本架構
1. matplotlib, 圖形化
2. pandas,數據挖掘的關鍵, 提供各種挖掘分析的演算法
3. numpy, 提供基本的統計
scipy, 提供各種數學公式
4. python common lib,python基本框架
二. 環境搭建
1. 安裝python
2. 安裝pip
pandas依賴的pip版本,最低是8.0.0。如果pip是8以下的版本,如7.2.1,需要升級pip.
命令是「python -m pip install -U pip」,這是windows版本。
Linux是」pip install -U pip「
通過命令「pip --version」, 可以查看pip版本號
3. 安裝pandas
命令「pip install pandas", 這是windows版本。
Linux平台可用
sudo apt-get install python-pandas
4. 安裝matplotlib
pip install matplotlib
三. 數據類型
pypython common type
string list tuple dict set
6鍾學列
list, tuple, string, unicode string, buffer object, xrange
pandas type
ndarray, series dateFrame
ndarray, 數組類型,新增原因:
list, tuple是基於指針+對象設計的。即list,tuple存儲的是void*指針,指針指向具體對象的數據。
因為是void*指針,所以二者可以存儲各種數據類型,即數據類型可以不統一。
雖然存儲豐富,但如果數據量過大時,即處理大數據時,有弊端。
1. 存儲空間大,浪費內存。因為存兩部分,指針+數據
2. 讀取慢,通過index,找到指針;基於指針,找到數據
所以在大數據處理時,新增ndarray,數字類型,類似C++ 數組。存儲相同,讀取、修改快捷。
別名:array, 有利於節省內存、提高CPU的計算時間,有豐富的處理函數
series,變長字典,
類似一維數組的對象;有數據和索引組成
新增原因:
dict是無序的,它的key和value存在映射關系。但key和value之間是不獨立的,存儲在一起。
如果需要對一項進行操作,會影響到另外一項。所以有了series, series的key和value是獨立的,獨立存儲。
series的key是定長有序的。通過series.key獲取整個索引, 通過series.values獲取所有values.
series的key,可以通過series.index.name,設置唯一的名稱。
series整體也可以設置唯一名稱,通過series.name
DataFrame:
1. 一個表格型的數據結構
2. 含有一組有序的列(類似於index)
3. 可以認為是,共享一個index的Series集合
data1={'name':['java', 'c', 'python'], 'year': [2,2,3]}
frame = pd.DataFrame(data1)
------------------------------------------------
四. 基本的數據分析流程:
1. 數據的獲取
2. 數據准備--規格化,建立各種索引index
3. 數據的顯示、描述,用於調試
如df.index, df.values, df.head(n), df.tail(n) df.describe
4. 數據的選擇
index獲取, 切片獲取, 行、列獲取, 矩形區域獲取
index獲取,df.row1 或者 df['row1']
行列,df.loc[行list, 列list], 如df.loc[0:1,['co1','col2'] ]
通過二位索引,取二維左上角,df.iloc[0,0],也可以列表 df.iloc[0:2,0:2],取前2行。
5. 簡單的統計與處理
統計平均值、最大值等
6. Grouping 分組
df.groupby(df.row1)
7. Merge合並
append追加,
contact連接, 包含append功能,也可以兩個不同的二維數據結構合並
join連接, SQL連接,基於相同欄位連接,如 sql的where, a.row1 = b.row1
------------------------------------------------
五. 高級的數據處理與可視化:
1. 聚類分析
聚類是數據挖掘描述性任務和預測性任務的一個重要組成部分,它以相似性為基礎,
把相似的對象通過靜態分類,分成不同的組別和子集。
在python中,有很多第三方庫提供了聚類演算法。
聚類演算法有很多, 其中K-均值演算法,因為其簡單、快捷的特點,被廣泛使用。
基本原理是,
1. 查找某數據集的中心,
2. 使用均方差,計算距離。使得每一個數據點都收斂在一個組內;各個組是完全隔離的
案例:
>>> from pylab import *
>>> from scipy.cluster.vq import *
>>>
>>> list1=[88,64,96,85]
>>> list2=[92,99,95,94]
>>> list3=[91,87,99,95]
>>> list4 = [78,99,97,81]
>>> list5=[88,78,98,84]
>>> list6=[100,95,100,92]
>>> tempdate = (list1, list2, list3, list4, list5, list6)
>>>
>>> tempdate
([88, 64, 96, 85], [92, 99, 95, 94], [91, 87, 99, 95], [78, 99, 97, 81], [88, 78
, 98, 84], [100, 95, 100, 92])
>>> date = vstack(tempdate)
>>>
>>> date
array([[ 88, 64, 96, 85],
[ 92, 99, 95, 94],
[ 91, 87, 99, 95],
[ 78, 99, 97, 81],
[ 88, 78, 98, 84],
[100, 95, 100, 92]])
>>> centroids,abc=kmeans(date,2) #查找聚類中心,第二個參數是設置分N類,如5類,則為5
>>> centroids # 基於每列查找的中心點,可能是平均值
array([[88, 71, 97, 84],
[90, 95, 97, 90]])
>>>
>>> result,cde=vq(date,centroids) #對數據集,基於聚類中心進行分類
>>> result
array([0, 1, 1, 1, 0, 1])
2. 繪圖基礎
python描繪庫,包含兩部分,
繪圖api, matplotlib提供各種描繪介面。
集成庫,pylab(包含numpy和matplotlib中的常用方法),描繪更快捷、方便。
import numpy as np
import matplotlib.pyplot as plt
t = np.arange(0,10)
plt.plot(t, t+2)
plt.plot(t,t, 'o', t,t+2, t,t**2, 'o') #(x,y)一組,默認是折線;『o'是散點,
plt.bar(t,t**2) # 柱狀圖
plt.show()
--------------------
import pylab as pl
t = np.arange(0,10)
plt.plot(t, t+2)
plt.show()
3. matplotlib圖像屬性控制
色彩、樣式
名稱: 圖、橫、縱軸,
plt.title('philip\'s python plot')
plt.xlabel('date')
plt.ylabel('value')
其他: pl.figure(figsize=(8,6),dpi=100)
pl.plot(x,y, color='red', linewidth=3, lable='line1')
pl.legend(loc='upper left')
子圖
pl.subplot(211) # 整體圖片,可以分為二維部分;
#第一個是圖的行,第二個是列;第三個是index, 從左上開始0遍歷 當前行,再下一行。
#如果是2位數,如11,需要『,』
axes(left, bottom, width, height) # 參數取值范圍是(0,1), left,是到左邊的距離,bottom是到下面的距離
4. pandas作圖
Series、DataFrame支持直接描繪,封裝了調用matplotlib的介面,如
series.close.plot()
df.close.plot() #具體參數類似matplotlib普通介面
屬性控制
類似matplotlib普通介面,修改各種圖片的類型,柱形圖、折線等
--------common-----------------
list, tuple, dict
--------numpy-----------------
ndarray, Series, DataFrame
② Python 數據分析與數據挖掘是啥
python數據挖掘(data mining,簡稱DM),是指從大量的數據中,通過統計學、人工智慧、機器學習等方法,挖掘出未知的、且有價值的信息和知識的過程。數據分析通常是直接從資料庫取出已有信息,進行一些統計、可視化、文字結論等,最後可能生成一份研究報告性質的東西,以此來輔助決策。數據挖掘不是簡單的認為推測就可以,它往往需要針對大量數據,進行大規模運算,才能得到一些統計學規律。
這里可以使用CDA一站式數據分析平台,融合了數據源適配、ETL數據處理、數據建模、數據分析、數據填報、工作流、門戶、移動應用等核心功能。其中數據分析模塊支持報表分析、敏捷看板、即席報告、幻燈片、酷屏、數據填報、數據挖掘等多種分析手段對數據進行分析、展現、應用。幫助企業發現潛在的信息,挖掘數據的潛在價值。
如果你對於Python學數據挖掘感興趣的話,推薦CDA數據分析師的課程。課程內容兼顧培養解決數據挖掘流程問題的橫向能力以及解決數據挖掘演算法問題的縱向能力。真正理解商業思維,項目思維,能夠遇到問題解決問題;要求學生在使用演算法解決微觀根因分析、預測分析的問題上,根據業務場景來綜合判斷,洞察數據規律,使用正確的數據清洗與特徵工程方法,綜合使用統計分析方法、統計模型、運籌學、機器學習、文本挖掘演算法,而非單一的機器學習演算法。點擊預約免費試聽課。
③ 教你如何用python6個步驟搞定金融數據挖掘預處理
數據預處理沒有標準的流程,通常針對不同的任務和數據集屬性的不同而不同。下面就一起看下常用六大步完成數據預處理。
Step 1:導入相關模塊
Step 2:獲取數據
特徵構造
Step 3:處理缺失值
Step 4:分類數據編碼
創建虛擬變數
Step 5:劃分訓練集和測試集
Step 6:特徵標准化
數據變換十大秘訣
數據變換[1]是將數據集的每個元素乘以常數;也就是說,將每個數變換為,其中,和都是實數。數據變換將可能改變數據的分布以及數據點的位置。
數據標准化[2](有時稱為 z-score 或 standar score)是已重新縮放為平均值為零且標准偏差為1的變數。對於標准化變數,每種情況下的值在標准化變數上的值都表明它與原始變數的均值(或原始變數的標准偏差)的差值。
歸一化數據 是將數據縮放到0到1范圍內。
Binarizing Data
二值化[3]是將任何實體的數據特徵轉換為二值化的向量以使分類器演算法更高效的過程。在一個簡單的示例中,將圖像的灰度從0-255光譜轉換為0-
1 光譜就是二值化。
Mean Removal
去均值法 是將均值從每一列或特徵中移除,使其以零為中心的過程。
One Hot Encoding
獨熱編碼[4]是將分類變數轉換為可以提供給ML演算法以更好地進行預測的形式的過程。
Label Encoding
標簽編碼 適用於具有分類變數並將數據轉換為數字的數據。
fit
transform
詞向量 用於帶有標簽和數字的數據。此外,詞向量可用於提取數據。
獲取特徵名稱
Polynomial Features
多項式特徵 用於生成多項式特徵和交互特徵。它還生成了一個新的特徵矩陣數據,該數據是由所有次數小於或等於指定次數的特徵的多項式組合組成的。
截距項
填補 (如用均值填補缺失值),它用列或特性數據中的平均值替換缺失的值
④ Python有哪些常見的,好用的爬蟲框架
目前實現爬蟲技術的編程環境有很多種,Java、Python、C++等都可以用來寫爬蟲。但很多人選擇Python來寫爬蟲,原因是Python確實很適合做爬蟲,豐富的第三方庫十分強大,簡單幾行代碼便可實現你想要的功能。更重要的,Python也是數據挖掘和分析的好能手。那麼,今天IPIDEA就帶大家來了解Python爬蟲一般用什麼框架比較好。
Beautiful Soup:整合了一些常用爬蟲需求。它是一個可以從HTML或XML文件中提取數據的Python庫。它能夠通過你喜歡的轉換器實現慣用的文檔導航,查找,修改文檔的式.Beautiful Soup會幫你節省數小時甚至數天的工作時間。Beautiful Soup的缺點是不能載入JS。
selenium:這是一個調用瀏覽器的driver,通過這個庫你可以直接調用瀏覽器完成某些操作,比如輸入驗證碼。Selenium是自動化測試工具,它支持各種瀏覽器,包括 Chrome,Safari,Firefox等主流界面式瀏覽器,如果在這些瀏覽器裡面安裝一個 Selenium 的插件,可以方便地實現Web界面的測試. Selenium支持瀏覽器驅動。Selenium支持多種語言開發,比如 Java,C,Ruby等等,PhantomJS 用來渲染解析JS,Selenium 用來驅動以及與Python的對接,Python進行後期的處理。
Scrapy:Scrapy是一個為了爬取網站數據,提取結構性數據而編寫的應用框架。 可以應用在包括數據挖掘,信息處理或存儲歷史數據等一系列的程序中。它是很強大的爬蟲框架,可以滿足簡單的頁面爬取,比如可以明確獲知url pattern的情況。用這個框架可以輕松爬下來如亞馬遜商品信息之類的數據。但是對於稍微復雜一點的頁面,如weibo的頁面信息,這個框架就滿足不了需求了。它的特性有:HTML, XML源數據 選擇及提取 的內置支持;提供了一系列在spider之間共享的可復用的過濾器(即 Item Loaders),對智能處理爬取數據提供了內置支持。
Portia:是一個開源可視化爬蟲工具,可讓使用者在不需要任何編程知識的情況下爬取網站!簡單地注釋自己感興趣的頁面,Portia將創建一個蜘蛛來從類似的頁面提取數據。簡單來講,它是基於scrapy內核;可視化爬取內容,不需要任何開發專業知識;動態匹配相同模板的內容。
cola:是一個分布式的爬蟲框架,對於用戶來說,只需編寫幾個特定的函數,而無需關注分布式運行的細節。任務會自動分配到多台機器上,整個過程對用戶是透明的。項目整體設計有點糟,模塊間耦合度較高。
PySpider:一個國人編寫的強大的網路爬蟲系統並帶有強大的WebUI。採用Python語言編寫,分布式架構,支持多種資料庫後端,強大的WebUI支持腳本編輯器,任務監視器,項目管理器以及結果查看器。Python腳本控制,可以用任何你喜歡的html解析包。
⑤ 數據挖掘方向,Python中還需要學習哪些內容
對於數據挖掘:Python不是重點
重點槐尺是亂孫機器學習和資料庫系統
Python基礎知識扎實就好。參考劉江的鉛陪高Python教程
⑥ Python和數據挖掘有什麼關系
Python是工具
數據挖掘是研究方向
數據挖掘有很多經典演算法,這些演算法有的有現成Python包,你可以用Python調用這些包處理自己的數據實現數據挖掘。
⑦ python爬蟲框架哪個好用
爬蟲框架中比較好用的是 Scrapy 和PySpider。pyspider上手更簡單,操作更加簡便,因為它增加了 WEB 界面,寫爬蟲迅速,集成了phantomjs,可以用來抓取js渲染的頁面。Scrapy自定義程度高,比 PySpider更底層一些,適碧宴合學習研究,需要學習的相關知識多,不過自己拿來研究分布式和多線程等等是非常合適的。
PySpider
PySpider是binux做的一個爬蟲架構的纖慧握開源化實現。主要的功能需求是:
抓取、更新調度多站點的特定的頁面
需要對頁面進行結構化信息提取
靈活可擴展,穩定可監控
pyspider的設計基礎是:以python腳本驅動的抓取環模型爬蟲
通過python腳本進行結構化信息的提取,follow鏈接調度抓取控制,實現最大的靈活性
通過web化的腳本編寫、調試環境。web展現調度狀態
抓取環模型成熟穩定,模塊間相互獨立,通過毀慶消息隊列連接,從單進程到多機分布式靈活拓展
pyspider的架構主要分為 scheler(調度器), fetcher(抓取器), processor(腳本執行):
各個組件間使用消息隊列連接,除了scheler是單點的,fetcher 和 processor 都是可以多實例分布式部署的。 scheler 負責整體的調度控制
任務由 scheler 發起調度,fetcher 抓取網頁內容, processor 執行預先編寫的python腳本,輸出結果或產生新的提鏈任務(發往 scheler),形成閉環。
每個腳本可以靈活使用各種python庫對頁面進行解析,使用框架API控制下一步抓取動作,通過設置回調控制解析動作。
⑧ python的爬蟲框架有哪些
爬蟲框架需要URL、頁面下載器、爬蟲調度器、網頁解析器、數據處理
爬蟲框架要處理很多的URL,我們需要設計一個隊列存儲所有要處理的 URL,這種先進先出的數據結構非常符合這個需求。 將所有要下載的URL存儲在待處理隊列中,每次下載會取出一個,隊列中就會少一個。我們知道有些URL的下載會有反爬蟲策略,所以針對這些請求需要做一些特殊的設置,進而可以對URL進行封裝抽出 Request。
頁面下載器如果沒有,用戶就要編寫網路請求的處理代碼,這無疑對每個 URL 都是相同的動作。 所以在框架設計中我們直接加入它就好了,至於使用什麼庫來進行下載都是可以的,你可以用 httpclient 也可以用okhttp在本文中我們使用一個超輕量級的網路請求庫 oh-my-request (沒錯,就是在下搞的)。優秀的框架設計會將這個下載組件置為可替換,提供默認的即可。
爬蟲調度器,調度器和我們在開發 web 應用中的控制器是一個類似的概念,它用於在下載器、解析器之間做流轉處理。 解析器可以解析到更多的 URL 發送給調度器,調度器再次的傳輸給下載器,這樣就會讓各個組件有條不紊的進行工作。
網頁解析器我們知道當一個頁面下載完成後就是一段 HTML 的 DOM 字元串表示,但還需要提取出真正需要的數據以前的做法是通過String的API 或者正則表達式的方式在DOM 中搜尋,這樣是很麻煩的,框架 應該提供一種合理、常用、方便的方式來幫助用戶完成提取數據這件事兒。常用的手段是通過xpath或者css選擇器從DOM中進行提取,而且學習這項技能在幾乎所有的爬蟲框架中都是適用的。
數據處理,普通的爬蟲程序中是把網頁解析器和數據處理器合在一起的,解析到數據後馬上處理。 在一個標准化的爬蟲程序中,他們應該是各司其職的,我們先通過解析器將需要的數據解析出來,可能是封裝成對象。然後傳遞給數據處理器,處理器接收到數據後可能是存儲到資料庫,也可能通過介面發送給老王。
⑨ python機器學習,數據挖掘
需要掌握:
1、python語言的基本結構與語法與數前中據類型,模塊、基本用法,熟悉函數,類設計,包的使用野模及基本的編程方法;理解python數據挖掘與分析技術在當代各種大數據相關產品中的應用,並掌握該領域最關鍵技術的原理以及技術應用過程;能開發出一些實際的應用項目並初步勝任Python的數據挖掘和機器學習工作;
2、掌握網慧脊山絡信息獲取及文本挖掘的基本知識及深度應用,熟練運用使用Python獲取網路數據並獨立開發常見的爬蟲項目,熟練的進行文本分析處理。
⑩ python 數據挖掘需要用哪些庫和工具
python 數據挖掘常用的庫太多了!主要分為以下幾大類:
第一數據獲取:request,BeautifulSoup
第二基本數學庫:numpy
第三 資料庫出路 pymongo
第四 圖形可視化 matplotlib
第五 樹分析基本的庫 pandas
數據挖掘一般是指從大量的數據中通過演算法搜索隱藏於其中信息的過程。數據挖掘本質上像是機器學習和人工智慧的基礎,它的主要目的是從各種各樣的數據來源中,提取出超集的信息,然後將這些信息合並讓你發現你從來沒有想到過的模式和內在關系。這就意味著,數據挖掘不是一種用來證明假說的方法,而是用來構建各種各樣的假說的方法。
想要了解更多有關python 數據挖掘的信息,可以了解一下CDA數據分析師的課程。CDA數據分析師證書的含金量是很高的,簡單從兩個方面分析一下:首先是企業對於CDA的認可,經管之家CDA LEVEL Ⅲ數據科學家認證證書,屬於行業頂尖的人才認證,已獲得IBM大數據大學,中國電信,蘇寧,德勤,獵聘,CDMS等企業的認可。CDA證書逐漸獲得各企業用人單位認可與引進,如中國電信、中國移動、德勤,蘇寧,中國銀行,重慶統計局等。點擊預約免費試聽課。