㈠ 關於c#中UDP編程
//這是一個源碼你看看
using System;
using System.Net;
using System.Net.Sockets;
using System.Text;
using System.Threading;
using System.Windows.Forms;
namespace UDPClient
{
public partial class frmUdp : Form
{
private UdpClient sendUdpClient;
private UdpClient receiveUpdClient;
public frmUdp()
{
InitializeComponent();
IPAddress[] ips = Dns.GetHostAddresses("");
tbxlocalip.Text = ips[3].ToString();
int port = 51883;
tbxlocalPort.Text = port.ToString();
tbxSendtoIp.Text = ips[3].ToString();
tbxSendtoport.Text = port.ToString();
}
// 接受消息
private void btnReceive_Click(object sender, EventArgs e)
{
// 創建接收套接字
IPAddress localIp = IPAddress.Parse(tbxlocalip.Text);
IPEndPoint localIpEndPoint = new IPEndPoint(localIp, int.Parse(tbxlocalPort.Text));
receiveUpdClient = new UdpClient(localIpEndPoint);
Thread receiveThread = new Thread(ReceiveMessage);
receiveThread.Start();
}
// 接收消息方法
private void ReceiveMessage()
{
IPEndPoint remoteIpEndPoint = new IPEndPoint(IPAddress.Any, 0);
while (true)
{
try
{
// 關閉receiveUdpClient時此時會產生異常
byte[] receiveBytes = receiveUpdClient.Receive(ref remoteIpEndPoint);
string message = Encoding.Unicode.GetString(receiveBytes);
// 顯示消息內容
ShowMessageforView(lstbxMessageView, string.Format("{0}[{1}]", remoteIpEndPoint, message));
}
catch
{
break;
}
}
}
// 利用委託回調機制實現界面上消息內容顯示
delegate void ShowMessageforViewCallBack(ListBox listbox, string text);
private void ShowMessageforView(ListBox listbox, string text)
{
if (listbox.InvokeRequired)
{
ShowMessageforViewCallBack showMessageforViewCallback = ShowMessageforView;
listbox.Invoke(showMessageforViewCallback, new object[] { listbox, text });
}
else
{
lstbxMessageView.Items.Add(text);
lstbxMessageView.SelectedIndex = lstbxMessageView.Items.Count - 1;
lstbxMessageView.ClearSelected();
}
}
private void btnSend_Click(object sender, EventArgs e)
{
if (tbxMessageSend.Text == string.Empty)
{
MessageBox.Show("發送內容不能為空","提示");
return;
}
// 選擇發送模式
if (chkbxAnonymous.Checked == true)
{
// 匿名模式(套接字綁定的埠由系統隨機分配)
sendUdpClient = new UdpClient(0);
}
else
{
// 實名模式(套接字綁定到本地指定的埠)
IPAddress localIp = IPAddress.Parse(tbxlocalip.Text);
IPEndPoint localIpEndPoint = new IPEndPoint(localIp, int.Parse(tbxlocalPort.Text));
sendUdpClient = new UdpClient(localIpEndPoint);
}
Thread sendThread = new Thread(SendMessage);
sendThread.Start(tbxMessageSend.Text);
}
// 發送消息方法
private void SendMessage(object obj)
{
string message = (string)obj;
byte[] sendbytes = Encoding.Unicode.GetBytes(message);
IPAddress remoteIp = IPAddress.Parse(tbxSendtoIp.Text);
IPEndPoint remoteIpEndPoint = new IPEndPoint(remoteIp, int.Parse(tbxSendtoport.Text));
sendUdpClient.Send(sendbytes, sendbytes.Length, remoteIpEndPoint);
sendUdpClient.Close();
// 清空發送消息框
ResetMessageText(tbxMessageSend);
}
// 採用了回調機制
// 使用委託實現跨線程界面的操作方式
delegate void ResetMessageCallback(TextBox textbox);
private void ResetMessageText(TextBox textbox)
{
// Control.InvokeRequired屬性代表
// 如果控制項的處理與調用線程在不同線程上創建的,則為true,否則為false
if (textbox.InvokeRequired)
{
ResetMessageCallback resetMessagecallback = ResetMessageText;
textbox.Invoke(resetMessagecallback, new object[] { textbox });
}
else
{
textbox.Clear();
textbox.Focus();
}
}
// 停止接收
private void btnStop_Click(object sender, EventArgs e)
{
receiveUpdClient.Close();
}
// 清空接受消息框
private void btnClear_Click(object sender, EventArgs e)
{
this.lstbxMessageView.Items.Clear();
}
}
}
㈡ Python 之 Socket編程(TCP/UDP)
socket(family,type[,protocal]) 使用給定的地址族、套接字類型、協議編號(默認為0)來創建套接字。
有效的埠號: 0~ 65535
但是小於1024的埠號基本上都預留給了操作系統
POSIX兼容系統(如Linux、Mac OS X等),在/etc/services文件中找到這些預留埠與的列表
面向連接的通信提供序列化、可靠的和不重復的數據交付,而沒有記錄邊界。意味著每條消息都可以拆分多個片段,並且每個消息片段都能到達目的地,然後將它們按順序組合在一起,最後將完整的信息傳遞給等待的應用程序。
實現方式(TCP):
傳輸控制協議(TCP), 創建TCP必須使用SOCK_STREAM作為套接字類型
因為這些套接字(AF_INET)的網路版本使用網際網路協議(IP)來搜尋網路中的IP,
所以整個系統通常結合這兩種協議(TCP/IP)來進行網路間數據通信。
數據報類型的套接字, 即在通信開始之前並不需要建議連接,當然也無法保證它的順序性、可靠性或重復性
實現方式(UDP)
用戶數據包協議(UDP), 創建UDP必須使用SOCK_DGRAM (datagram)作為套接字類型
它也使用網際網路來尋找網路中主機,所以是UDP和IP的組合名字UDP/IP
注意點:
1)TCP發送數據時,已建立好TCP連接,所以不需要指定地址。UDP是面向無連接的,每次發送要指定是發給誰。
2)服務端與客戶端不能直接發送列表,元組,字典。需要字元串化repr(data)。
TCP的優點: 可靠,穩定 TCP的可靠體現在TCP在傳遞數據之前,會有三次握手來建立連接,而且在數據傳遞時,有確認、窗口、重傳、擁塞控制機制,在數據傳完後,還會斷開連接用來節約系統資源。
TCP的缺點: 慢,效率低,佔用系統資源高,易被攻擊 TCP在傳遞數據之前,要先建連接,這會消耗時間,而且在數據傳遞時,確認機制、重傳機制、擁塞控制機制等都會消耗大量的時間,而且要在每台設備上維護所有的傳輸連接,事實上,每個連接都會佔用系統的CPU、內存等硬體資源。 而且,因為TCP有確認機制、三次握手機制,這些也導致TCP容易被人利用,實現DOS、DDOS、CC等攻擊。
什麼時候應該使用TCP : 當對網路通訊質量有要求的時候,比如:整個數據要准確無誤的傳遞給對方,這往往用於一些要求可靠的應用,比如HTTP、HTTPS、FTP等傳輸文件的協議,POP、SMTP等郵件傳輸的協議。 在日常生活中,常見使用TCP協議的應用如下: 瀏覽器,用的HTTP FlashFXP,用的FTP Outlook,用的POP、SMTP Putty,用的Telnet、SSH QQ文件傳輸.
UDP的優點: 快,比TCP稍安全 UDP沒有TCP的握手、確認、窗口、重傳、擁塞控制等機制,UDP是一個無狀態的傳輸協議,所以它在傳遞數據時非常快。沒有TCP的這些機制,UDP較TCP被攻擊者利用的漏洞就要少一些。但UDP也是無法避免攻擊的,比如:UDP Flood攻擊……
UDP的缺點: 不可靠,不穩定 因為UDP沒有TCP那些可靠的機制,在數據傳遞時,如果網路質量不好,就會很容易丟包。
什麼時候應該使用UDP: 當對網路通訊質量要求不高的時候,要求網路通訊速度能盡量的快,這時就可以使用UDP。 比如,日常生活中,常見使用UDP協議的應用如下: QQ語音 QQ視頻 TFTP ……
㈢ java語言應用中實現UDP協議編程的方法
//州高亂發送端SocketSendFile.java
import java.io.*;
import java.net.*;
public class SocketSendFile {
public static final int SER_PORT=666;
public static final int CLI_PORT=8484;
public static final String SER_IP="192.168.0.35";
public static int bufSize = 1024;
public static byte] mess = new bytebufSize];
//建立Socket引用
public static DatagramSocket dp;
public static void main(String] args) throws Exception {
dp = new DatagramSocket(SER_PORT);
//調用構造函數SocketSendFile,並傳遞參數args0](所要傳輸念沖的文件名)
SocketSendFile(args0]);
}
public static void SocketSendFile(String file2) throws Exception {
//冊檔定義一個計數器
int pos =0;
//設置寫入流
FileInputStream fis = new FileInputStream(file2);
BufferedInputStream bis = new BufferedInputStream(fis);
DataInputStream dis = new DataInputStream(bis);
int i;
do {
i = dis.read();
int j=0;
while (j<1024 & i != -1) {
messpos++] = (byte) i;
i=dis.read();
j++;
}
dp.send(new DatagramPacket(mess,pos,InetAddress.getByName(SER_IP),CLI_PORT));
}
while (i != -1);
fis.close();
}
}
//接收端SocketReceiveFile.java
import java.net.*;
import java.io.*;
public class SocketReceiveFile {
public static int bufSize=1024;
public static byte] mess=new bytebufSize];
public static DatagramSocket dp;
public static final int SER_PORT=8484;
public static void main(String] args) throws Exception {
dp = new DatagramSocket(SER_PORT);
SocketReceiveFile(args0]);
}
public static void SocketReceiveFile(String file1) throws Exception {
FileOutputStream fos = new FileOutputStream(file1);
BufferedOutputStream bos = new BufferedOutputStream(fos);
DataOutputStream dos = new DataOutputStream(bos);
int i;
DatagramPacket p = new DatagramPacket(mess,mess.length);
while(true) {
boolean j=false;
while (p.getData().length != 0) {
dos.write(p.getData());
dp.receive(p);
j=true;
}
// System.out.println(new String(p.getData(),0,p.getLength()));
if (j)
System.out.println("文件傳送完畢.");
}
// fos.close();
}
}
㈣ C++的UDP編程,設置廣播地址為255.255.255.255,廣播不出去
看起來不像是代碼有錯而更像這兩台機器的設置有問題。幾個問題:
1、從別的機器上發出碧兆的廣播,這兩台機器能收到嗎?
2、從這兩台機器向255.255.255.255發廣播,如果在它們上面運行wireshark,能抓到UDP包嗎?
3、這兩台機器的銷源網卡沒有被設成promiscuous mode吧?
4、把這兩台機器的網卡和其悔斗租他工作的機器的網卡換了看看什麼結果?
5、如果你的機器跑windows 7,可以在這兩台機器和其他機器上用windows network and connection center裡面自帶的network map看看各台機器之間是怎樣連接的。
㈤ C語言 UDP socket 簡單客戶端 編程,急
提一下,你那個地址不好用,換成了127.0.0.1,埠可以用,完全按照要求寫的,編譯沒錯誤,調試通過:
gcc server.c -o server
gcc client.c -o client
打開2個控制台:一個運行 ./server 另一個運行 ./client
server.c:
========================================
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <errno.h>
#define BUFFERSIZE 1024
typedef struct sockaddr SA;
int main(void)
{
char buf[BUFFERSIZE];
struct sockaddr_in addr_s;
struct sockaddr_in addr_c;
int sockfd;
socklen_t length;
int i;
if((sockfd = socket(AF_INET,SOCK_DGRAM,0)) == -1)
{
perror("socket fail");
return -1;
}
memset(&addr_s,0,sizeof(addr_s));
addr_s.sin_family = AF_INET;
addr_s.sin_addr.s_addr = inet_addr("127.0.0.1");
addr_s.sin_port = htons(31180);
if(bind(sockfd,(SA *)&addr_s,sizeof(addr_s)) == -1)
{
perror("bind fail");
return -1;
}
length = sizeof(addr_c);
memset(buf,'\0',sizeof(buf));
if(recvfrom(sockfd,buf,sizeof(buf),0
,(SA *)&addr_c,&length) == -1)
{
perror("recvfrom fail");
}
printf("recvfrom client:%s\n",buf);
sendto(sockfd,buf,sizeof(buf),0,(SA *)&addr_c,sizeof(addr_c));
close(sockfd);
}
====================================
client.c:
====================================
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <errno.h>
#define BUFFERSIZE 1024
typedef struct sockaddr SA;
int main(void)
{
int sockfd;
char buf[BUFFERSIZE];
struct sockaddr_in addr_s;
if((sockfd = socket(AF_INET,SOCK_DGRAM,0)) == -1)
{
perror("socket fail");
return -1;
}
memset(&addr_s,0,sizeof(addr_s));
addr_s.sin_family = AF_INET;
addr_s.sin_addr.s_addr = inet_addr("127.0.0.1");
addr_s.sin_port = htons(31180);
memset(buf,'\0',sizeof(buf));
sprintf(buf,"abcde");
if(sendto(sockfd,buf,sizeof(buf)
,0,(SA *)&addr_s,sizeof(addr_s)) < 0)
{
perror("sendto fail");
}
memset(buf,'\0',sizeof(buf));
recvfrom(sockfd,buf,sizeof(buf),0,NULL,NULL);
printf("recvfrom server:%s\n",buf);
close(sockfd);
}
㈥ UDP編程的時候,一次發送多少bytes好
這個沒有唯一答案,相對於不同的系統,不同的要求,其得到的答案是不一樣的,我這早讓纖里僅對
像ICQ一類的發送聊天消息的情況作分析,對於其他情況,你或許也能得到一點幫助:
首先,我們知道,TCP/IP通常被認為是一個四層協議系統,包括鏈路層,網路層,運輸層,應用層.
UDP屬於運輸層,下面我們由下至上一步一步來看:
乙太網(Ethernet)數據幀的長度必須在46-1500位元組之間,這是由乙太網的物理特性決定的.
這個1500位元組被稱為鏈路層的MTU(最陸仿大傳輸單元).
但這並不是指鏈路層的長度被限制在1500位元組,其實這這個MTU指的是鏈路層的數據區.
並不包括鏈路層的首部和尾部的18個位元組.
所以,事實上,這個1500位元組就是網路層IP數據報的長度限制.
因為IP數據報的首部為20位元組,所以IP數據報的數據區長度最大為1480位元組.
而這個1480位元組就是用來放TCP傳來的TCP報文段或UDP傳來的UDP數據報的.
又因為UDP數據報的首部8位元組,所以UDP數據報的數據區最大長度為1472位元組.
這個1472位元組就是我們可以使用的字滑老節數。:)
㈦ 如何用C++Builder控制項實現UDP通信
打開C++Builder編程軟體,新建一個項目,新建一個窗口,在工具欄上找到UDPSocket控制項,如圖
在圖中,選擇【Internet】頁面,出面控制項列表,選擇【UDPSocket】控制項,在倒數第三個,圖中都時行了標注,在新窗口中,按住滑鼠左鍵,拖出控制項,如圖
選中該控制項,在屬性列表中設置其屬性,如圖
設置LocalHost(為客戶端的IP地址)、RemoteHost(伺服器端的IP地址)、RemotePort(伺服器端的通信埠)的值。雙擊窗口中的UDPSocket控制項,出現如圖界面
彈出代碼編寫界面後,編寫UDPSocket控制項連接代衡虧畝碼:
//咐森---------------------------------------------------------------------------
void __fastcall TForm7::UdpSocket1Connect(TObject *Sender)
{
Label2->Caption="連接中...";
AnsiString s="abcdef";
Char *Buffer;
Buffer[0]=0x11; // 數據塊長度
Buffer[1]=0x11; // 重置命令
Buffer[2]=0x11; // 當前版本號
Buffer[3]=0x11; //重置結果,應答時有效
Buffer[4]='\0';
//發送數據
//UdpSocket1->SendBuf(Buffer,sizeof(Buffer));
UdpSocket1->Sendln(s,"");
Label2->Caption="發送連接報文...";
}
代碼編寫完成後,添加觸發按鈕,在窗口中添加【確定】和【退出】按鈕,如圖
分別雙擊【確定】和【退出】按鈕,跳轉到代碼編寫界面。點擊【確定】按鈕,觸發UDP連接事件,代碼如下:
//發送設置報文
//UdpSocket1->Active=true;
Label2->Caption="開始發送報文...";
UdpSocket1->Open();
【退空讓出】按鈕的事件如圖
都設置完成後,打開網路調試助手,設置好配置條件,連接,如圖
步驟閱讀
設置完成後,運行程序,可以在網路調試助手界面上顯示程序發過來的數據。
㈧ golang udp編程
用戶數據報協議(User Datagram Protocol,縮寫為UDP),又稱用戶數據報文協議,是一個簡單的面向數據報(package-oriented)的傳輸層協議態稿,正式規范為RFC 768。
UDP只提供數據的不可靠傳遞,它一旦把應用程序發給網路層的數據發送出去,就不保留數據備份(所以UDP有時候也被認為帆升孝是不可靠的數據報協笑叢議)。
UDP在IP數據報的頭部僅僅加入了復用和數據校驗。
由於缺乏可靠性且屬於非連接導向協議,UDP應用一般必須允許一定量的丟包、出錯和復制粘貼。
1 在接收udp包時,如果接收包時給定的buffer太小的話,就要自己解決粘包問題。
2 udp包的發送和接收不保證一定成功,不保證按正確順序抵達。
3 如果不允許丟包的情況出現的話,要有重發機制來保證,如:反饋機制確認。
服務端
客戶端
㈨ java UDP編程無法接受數據,求指點!!!
ds.receive(dp);
放到while循環里,檢查到有了數配指鬧據就跳逗碧出培罩來,根據buffer有沒有被填充
㈩ 在javasocket網路編程中,開發基於udp協議的程序使用的套接字有哪些
Socket套接字,是由系統提供用於網路通信的技術(操作系統給應用程序提供的一組API叫做Socket API),是基於TCP/IP協議的網路通信的基本操作單元。基於Socket套接字的網路程序開發就是網路編程。
socket可以視為是應用層和傳輸層之間的通信橋梁;
傳輸層的核心協議有兩種:TCP,UDP;socket API也有對應的兩組,由於TCP和UDP協議差別很大,因此,這兩組API差別也挺大。
分類:
Socket套接字主要針對傳輸層協議劃分為如下三類:
流套接字:使用傳輸層TCP協議
TCP,即Transmission Control Protocol(傳輸控制協議),傳輸層協議;
TCP的特點:
有連接:像打電話,得先接通,才能交互數據;
可靠傳輸:傳輸過程中,發送方知道接收方有沒有收到數據.(打電話就是可靠傳輸);
面向位元組流:以位元組為單位進行傳輸.(非常類似於文件操作中的位元組流);
全雙工:一條鏈路,雙向通信;
有接收緩沖區,也有發送緩沖區。
大小不限
對於位元組流來說,可以簡單的理解為,傳輸數據是基於IO流,流式數據的特徵就是在IO流沒有關閉的情況下,是無邊界的數據,可以多次發送,也可以分開多次接收。
數據報套接字:使用傳輸層UDP協議
UDP,即User Datagram Protocol(用戶數據報協議),傳輸層協議。
UDP的特點:
無連接:像發微信,不需要接通,直接就能發數據;
不可靠傳輸:傳輸過程中,發送方不知道接收方有沒有收到數據.(發微信就是不可靠傳輸);
面向數據報:以數據報為單位進行傳輸(一個數據報都會明確大小)一次發送/接收必須是一個完整的數據報,不能是半個,也不能是一個半;
全雙工:一條鏈路,雙向通信;
有接收緩沖區,無發送緩沖區;
大小受限:一次最多傳輸64k;
對於數據報來說,可以簡單的理解為,傳輸數據是一塊一塊的,發送一塊數據假如100個位元組,必須一次發送,接收也必須一次接收100個位元組,而不能分100次,每次接收1個位元組。
原始套接字
原始套接字用於自定義傳輸層協議,用於讀寫內核沒有處理的IP協議數據。
二、UDP數據報套接字編程
UDPSocket中,主要涉及到兩類:DatagramSocket、DatagramPacket;
DatagramSocket API
DatagramSocket 創建了一個UDP版本的Socket對象,用於發送和接收UDP數據報,代表著操作系統中的一個socket文件,(操作系統實現的功能–>)代表著網卡硬體設備的抽象體現。
DatagramSocket 構造方法:
方法簽名 方法說明
DatagramSocket() 創建一個UDP數據報套接字的Socket,綁定到本機任意一個隨機埠(一般用於客戶端)
DatagramSocket(int port) 創建一個UDP數據報套接字的Socket,綁定到本機指定的埠(一般用於服務端)
DatagramSocket 方法:
方法簽名 方法說明
void receive(DatagramPacket p) 從此套接字接收數據報(如果沒有接收到數據報,該方法會阻塞等待)
void send(DatagramPacket p) 從此套接字發送數據報包(不會阻塞等待,直接發送)
void close() 關閉此數據報套接字
DatagramPacket API
代表了一個UDP數據報,是UDP Socket發送和接收的數據報,每次發送/接收數據報,都是在傳輸一個DatagramPacket對象。
DatagramPacket 構造方法:
方法簽名 方法說明
DatagramPacket(byte[] buf, int length) 構造一個DatagramPacket以用來接收數據報,接收的數據保存在位元組數組(第一個參數buf)中,接收指定長度(第二個參數length)
DatagramPacket(byte[] buf, int offset, int length,SocketAddress address) 構造一個DatagramPacket以用來發送數據報,發送的數據為位元組數組(第一個參數buf)中,從0到指定長度(第二個參數length)。address指定目的主機的IP和埠號
DatagramPacket 方法:
方法簽名 方法說明
InetAddress getAddress() 從接收的數據報中,獲取發送端主機IP地址;或從發送的數據報中,獲取接收端主機IP地址
int getPort() 從接收的數據報中,獲取發送端主機的埠號;或從發送的數據報中,獲取接收端主機埠號
byte[] getData() 獲取數據報中的數據
構造UDP發送的數據報時,需要傳入 SocketAddress ,該對象可以使用 InetSocketAddress 來創建。
InetSocketAddress API
InetSocketAddress ( SocketAddress 的子類 )構造方法:
方法簽名 方法說明
InetSocketAddress(InetAddress addr, int port) 創建一個Socket地址,包含IP地址和埠號
示例1:寫一個簡單的客戶端服務程序,回顯服務(EchoSever)
在這里插入圖片描述
構建Socket對象有很多失敗的可能:
埠號已經被佔用,同一個主機的兩個程序不能有相同的埠號(這就好比兩個人不能擁有相同的電話號碼);
此處,多個進程不能綁定同一個埠號,但是一個進程可以綁定多個埠,(這就好比一個人可以擁有多個手機號),一個進程可以創建多個Socket對象,每個Socket都綁定自己的埠。
每個進程能夠打開的文件個數是有上限的,如果進程之間已經打開了很多文件,就可能導致此時的Socket文件不能順利打開;
在這里插入圖片描述
這個長度不一定是1024,假設這里的UDP數據最長是1024,實際的數據可能不夠1024.
在這里插入圖片描述
這里的參數不再是一個空的位元組數組了,response是剛才根據請求計算的得到的響應,是非空的,DatagramPacket 裡面的數據就是String response的數據。
response.getBytes().length:這里拿到的是位元組數組的長度(位元組的個數),而response.length得到的是字元的長度。
五元組
一次通信是由5個核心信息描述的:源IP、 源埠、 目的IP、 目的埠、 協議類型。
站在客戶端角度:
源IP:本機IP;
源埠:系統分配的埠;
目的IP:伺服器的IP;
目的埠:伺服器的埠;
協議類型:TCP;
站在伺服器的角度:
源IP:伺服器程序本機的IP;
源埠:伺服器綁定的埠(此處手動指定了9090);
目的IP:包含在收到的數據報中(客戶端的IP);
目的埠:包含在收到的數據報中(客戶端的埠);
協議類型:UDP;