導航:首頁 > 編程語言 > win10人臉識別python

win10人臉識別python

發布時間:2023-05-04 22:29:35

① win10的人臉識別在哪

此功能僅適用於具備紅外線(IR)網路攝像頭的電腦,如果您在Windows Hello中沒看到臉部登陸選項或是顯示為此選項無法使老枝指用,表示您的電腦沒有紅外線攝像頭。

在Windows 10內點擊開始-設置-賬戶-登錄選項,進入Windows Hello。
選擇PIN-添加-輸入本地賬戶或微軟賬戶密碼進行驗證並點擊確定。

② 如何實現人臉識別及其原理

如何實現人臉識別及其原理

只要開人臉識別功能就行了 人臉識別其實很簡單,相機處理器對拍到的物體進行長寬比例的分析,分析出的數值接近人臉的比例就會自動鎖定,其實就是數學上的計算和比例,也許大家認為人臉差別很大,其實都是遵循著固定的比率的,只要不是畸形,不管胖瘦臉部的比例都是人臉特伍行有的那個值,所以即使是素描畫,相機一樣認為他是人臉,只要他的比例是對的

winform如何實現人臉識別

=IF(OR(P9=""),"",Q9&"."&R9&""&LEFT(S9,2)&"")
意思是當P9為空,就顯示空,否則顯示Q9為整數部份,&"."為加上一個小數點,小數部份為R9和S9的前兩位陣列成.這個公式里的OR和後&""是多餘的,寫成這樣就行=IF(P9="","",Q9&"."&R9&""&LEFT(S9,2))
Q9=30 R9=32 S9=1.3255在後面的單元格顯示30.3201,如果是當S9整數小於2位,就在前面添0,大於2位就顯示幾位整,那麼輸入
=Q9&"."&R9&IF(LEN(ROUNDDOWN(S9,0))<2,0&ROUNDDOWN(S9,0),ROUNDDOWN(S9,0))

如何實現人臉表情識別

適合啊,我同學做的就跟你一點差別,她是人臉識別,沒有表情。

蘋果iPhoneX支援人臉識別是如何實現的?

據說,蘋果新品手機可以「在一百萬張臉中識別出你的肥臉」,還可以通過人臉識別解鎖手機,以及訂制動態3D Animojis 表情。
蘋果iPhoneX人臉識別是怎麼實現的呢?
這是一個復雜的技術問題......人臉識別主要包括人臉檢測、特徵提取、人臉分類三個過程。
簡單地說,就是通過人臉檢測,對五官進行一些關鍵點的定位,然後提取計算機能夠識別的人臉特徵,最後進行一個相似度的比對,從而得到一個人臉識別的結果,也就是判斷「刷臉」的是不是你本人。
讓人最為激動還是蘋果在取消home鍵後,替代Touch ID的Face ID功能。有了人臉識別技術加持,抬手秒解鎖iPhone的過程真的是更簡單也更迅速。
不僅如此,蘋果人臉識別解鎖的安全性、可靠性也非常高。運用3D結構光技術,iPhone X 能夠快速對「人臉3D建模」。即使使用者改變發型,戴上眼鏡帽子,或者在晚上,iPhone X都能成功解鎖。
人臉識別技術這么牛,那它是萬此橘蘆能的嗎?只要是人臉都可以識別、辨認出來么?其實,在進行人臉識別的時候,也存在一些難題,比如人的姿態、光照、遮擋等都會對人臉識別造成影響。

如何實現人的面部識別?

首先是面部捕捉。它根據人的頭部的部位進行判定,首先確定頭部,然後判斷眼睛和嘴巴等頭部特徵,通過特徵庫的比對,確認是面部,完成面部捕捉,ai可以這樣做。 不過個人以為這個技術並不好用,特別是在有不止一個人的場景上,比如大合照,對焦點經常亂跑,所以偶的相機基本還是放在中央對焦上,畢竟cpu再聰明,還是人腦更靠譜。。。

mate9pro,可以實現人臉識別嗎

Mate9 Pro會支援人臉解鎖/識別功能,正在努力適配中。版本具體的更新資訊,請您關注花粉論壇官方通知。感謝您對華為產品的一貫支援。

如何用python實現簡單人臉識別

你可以使用opencv庫提供的人臉識別模組,這樣子會比較快

Win10怎樣用Kinect實現人臉識別功能

具體操作方法:
1、首先你需要一個連線Windows10電腦和Kinect的介面卡;
2、然後還需要給系統做一個小手術以獲取Kinect Beta驅動更新:
- 按Win+R開森帶啟執行,輸入regedit回車開啟登錄檔編輯器;
- 導航至HKLMSofareMicrosoft
- 建立子鍵DriverFlightingPartner
3、在Partner子鍵中新建名為「TargetRing」的專案,將其值設定為「Drivers」。
不需要重啟電腦,之後你就可以在Windows Update或裝置管理器中更新Kinect Beta驅動了。
以上就是Windows10用Kinect實現人臉識別功能的方法了,這樣一來只要給連線一個Kinect就可以使用Windows10人臉識別功能,而不用更換電腦了。

人臉識別技術是怎樣實現人臉精準檢測?

是的,比如雲脈人臉識別中的人臉檢測技術就是採用三維定向,對人臉三維朝向,做精準到「度」的判斷,以及對人臉特徵點進行「畫素級」定位,輕松判斷眼睛開合狀態,還可通過技術對現有人臉識別做技術上的補充和完善,進而達到識別的創新性和嚴謹性。

Win10系統怎麼使用Kinect實現人臉識別

操作方法:
1、首先你需要一個連線Windows10電腦和Kinect的介面卡;
2、然後還需要給系統做一個小手術以獲取Kinect Beta驅動更新:
- 按Win+R開啟執行,輸入regedit回車開啟登錄檔編輯器;
- 導航至HKLMSofareMicrosoft
- 建立子鍵DriverFlightingPartner
3、在Partner子鍵中新建名為「TargetRing」的專案,將其值設定為「Drivers」。
不需要重啟電腦,之後你就可以在Windows Update或裝置管理器中更新Kinect Beta驅動了。
以上就是Windows10用Kinect實現人臉識別功能的方法了,這樣一來只要給連線一個Kinect就可以使用Windows10人臉識別功能,而不用更換電腦了。

③ 誰用過python中的第三方庫face recognition

簡介
該庫可以通過python或者命令行即可實現人臉識別的功能。使用dlib深度學習人臉識別技術構建,在戶外臉部檢測資料庫基準(Labeled Faces in the Wild)上的准確率為99.38%。
在github上有相關的鏈接和API文檔。

在下方為提供的一些相關源碼或是文檔。當前庫的版本是v0.2.0,點擊docs可以查看API文檔,我們可以查看一些函數相關的說明等。

安裝配置
安裝配置很簡單,按照github上的說明一步一步來就可以了。
根據你的python版本輸入指令:
pip install face_recognition11

或者
pip3 install face_recognition11

正常來說,安裝過程中會出錯,會在安裝dlib時出錯,可能報錯也可能會卡在那不動。因為pip在編譯dlib時會出錯,所以我們需要手動編譯dlib再進行安裝。

按照它給出的解決辦法:
1、先下載下來dlib的源碼。
git clone

2、編譯dlib。
cd dlib
mkdir build
cd build
cmake .. -DDLIB_USE_CUDA=0 -DUSE_AVX_INSTRUCTIONS=1
cmake --build1234512345

3、編譯並安裝python的拓展包。
cd ..
python3 setup.py install --yes USE_AVX_INSTRUCTIONS --no DLIB_USE_CUDA1212

注意:這個安裝步驟是默認認為沒有GPU的,所以不支持cuda。
在自己手動編譯了dlib後,我們可以在python中import dlib了。
之後再重新安裝,就可以配置成功了。
根據你的python版本輸入指令:
pip install face_recognition11

或者
pip3 install face_recognition11

安裝成功之後,我們可以在python中正常import face_recognition了。

編寫人臉識別程序
編寫py文件:
# -*- coding: utf-8 -*-
#

# 檢測人臉
import face_recognition
import cv2

# 讀取圖片並識別人臉
img = face_recognition.load_image_file("silicon_valley.jpg")
face_locations = face_recognition.face_locations(img)
print face_locations

# 調用opencv函數顯示圖片
img = cv2.imread("silicon_valley.jpg")
cv2.namedWindow("原圖")
cv2.imshow("原圖", img)

# 遍歷每個人臉,並標注
faceNum = len(face_locations)
for i in range(0, faceNum):
top = face_locations[i][0]
right = face_locations[i][1]
bottom = face_locations[i][2]
left = face_locations[i][3]

start = (left, top)
end = (right, bottom)

color = (55,255,155)
thickness = 3
cv2.rectangle(img, start, end, color, thickness)

# 顯示識別結果
cv2.namedWindow("識別")
cv2.imshow("識別", img)

cv2.waitKey(0)
cv2.destroyAllWindows()

注意:這里使用了python-OpenCV,一定要配置好了opencv才能運行成功。
運行結果:
程序會讀取當前目錄下指定的圖片,然後識別其中的人臉,並標注每個人臉。
(使用圖片來自美劇矽谷)

編寫人臉比對程序
首先,我在目錄下放了幾張圖片:

這里用到的是一張喬布斯的照片和一張奧巴馬的照片,和一張未知的照片。
編寫程序:
# 識別圖片中的人臉
import face_recognition
jobs_image = face_recognition.load_image_file("jobs.jpg");
obama_image = face_recognition.load_image_file("obama.jpg");
unknown_image = face_recognition.load_image_file("unknown.jpg");

jobs_encoding = face_recognition.face_encodings(jobs_image)[0]
obama_encoding = face_recognition.face_encodings(obama_image)[0]
unknown_encoding = face_recognition.face_encodings(unknown_image)[0]

results = face_recognition.compare_faces([jobs_encoding, obama_encoding], unknown_encoding )
labels = ['jobs', 'obama']

print('results:'+str(results))

for i in range(0, len(results)):
if results[i] == True:
print('The person is:'+labels[i])

運行結果:

識別出未知的那張照片是喬布斯的。
攝像頭實時識別
代碼:
# -*- coding: utf-8 -*-
import face_recognition
import cv2

video_capture = cv2.VideoCapture(1)

obama_img = face_recognition.load_image_file("obama.jpg")
obama_face_encoding = face_recognition.face_encodings(obama_img)[0]

face_locations = []
face_encodings = []
face_names = []
process_this_frame = True

while True:
ret, frame = video_capture.read()

small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)

if process_this_frame:
face_locations = face_recognition.face_locations(small_frame)
face_encodings = face_recognition.face_encodings(small_frame, face_locations)

face_names = []
for face_encoding in face_encodings:
match = face_recognition.compare_faces([obama_face_encoding], face_encoding)

if match[0]:
name = "Barack"
else:
name = "unknown"

face_names.append(name)

process_this_frame = not process_this_frame

for (top, right, bottom, left), name in zip(face_locations, face_names):
top *= 4
right *= 4
bottom *= 4
left *= 4

cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)

cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), 2)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(frame, name, (left+6, bottom-6), font, 1.0, (255, 255, 255), 1)

cv2.imshow('Video', frame)

if cv2.waitKey(1) & 0xFF == ord('q'):
break

video_capture.release()
cv2.destroyAllWindows()5455

識別結果:
我直接在手機上網路了幾張圖試試,程序識別出了奧巴馬。

這個庫很cool啊!

④ Win10使用人臉識別的方法 Win10如何人

在Windows 10內點擊開始-設置-賬戶-登錄選項,進入Windows Hello。
選擇PIN-添加-輸入本地賬戶或微軟賬戶密歷銷碼進行驗證並點擊確定。

⑤ 如何線上部署用python基於dlib寫的人臉識別演算法

python使用dlib進行人臉檢測與人臉關鍵點標記

Dlib簡介:

首先給大家介紹一下Dlib

我使用的版本是dlib-18.17,大家也可以在我這里下載:

之後進入python_examples下使用bat文件進行編譯,編譯需要先安裝libboost-python-dev和cmake

cd to dlib-18.17/python_examples

./compile_dlib_python_mole.bat 123

之後會得到一個dlib.so,復制到dist-packages目錄下即可使用

這里大家也可以直接用我編譯好的.so庫,但是也必須安裝libboost才可以,不然python是不能調用so庫的,下載地址:

將.so復制到dist-packages目錄下

sudo cp dlib.so /usr/local/lib/python2.7/dist-packages/1

最新的dlib18.18好像就沒有這個bat文件了,取而代之的是一個setup文件,那麼安裝起來應該就沒有這么麻煩了,大家可以去直接安裝18.18,也可以直接下載復制我的.so庫,這兩種方法應該都不麻煩~

有時候還會需要下面這兩個庫,建議大家一並安裝一下

9.安裝skimage

sudo apt-get install python-skimage1

10.安裝imtools

sudo easy_install imtools1

Dlib face landmarks Demo

環境配置結束之後,我們首先看一下dlib提供的示常式序

1.人臉檢測

dlib-18.17/python_examples/face_detector.py 源程序:

#!/usr/bin/python# The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt## This example program shows how to find frontal human faces in an image. In# particular, it shows how you can take a list of images from the command# line and display each on the screen with red boxes overlaid on each human# face.## The examples/faces folder contains some jpg images of people. You can run# this program on them and see the detections by executing the# following command:# ./face_detector.py ../examples/faces/*.jpg## This face detector is made using the now classic Histogram of Oriented# Gradients (HOG) feature combined with a linear classifier, an image# pyramid, and sliding window detection scheme. This type of object detector# is fairly general and capable of detecting many types of semi-rigid objects# in addition to human faces. Therefore, if you are interested in making# your own object detectors then read the train_object_detector.py example# program. ### COMPILING THE DLIB PYTHON INTERFACE# Dlib comes with a compiled python interface for python 2.7 on MS Windows. If# you are using another python version or operating system then you need to# compile the dlib python interface before you can use this file. To do this,# run compile_dlib_python_mole.bat. This should work on any operating# system so long as you have CMake and boost-python installed.# On Ubuntu, this can be done easily by running the command:# sudo apt-get install libboost-python-dev cmake## Also note that this example requires scikit-image which can be installed# via the command:# pip install -U scikit-image# Or downloaded from . import sys

import dlib

from skimage import io

detector = dlib.get_frontal_face_detector()

win = dlib.image_window()

print("a");for f in sys.argv[1:]:

print("a");

print("Processing file: {}".format(f))
img = io.imread(f)
# The 1 in the second argument indicates that we should upsample the image
# 1 time. This will make everything bigger and allow us to detect more
# faces.
dets = detector(img, 1)
print("Number of faces detected: {}".format(len(dets))) for i, d in enumerate(dets):
print("Detection {}: Left: {} Top: {} Right: {} Bottom: {}".format(
i, d.left(), d.top(), d.right(), d.bottom()))

win.clear_overlay()
win.set_image(img)
win.add_overlay(dets)
dlib.hit_enter_to_continue()# Finally, if you really want to you can ask the detector to tell you the score# for each detection. The score is bigger for more confident detections.# Also, the idx tells you which of the face sub-detectors matched. This can be# used to broadly identify faces in different orientations.if (len(sys.argv[1:]) > 0):
img = io.imread(sys.argv[1])
dets, scores, idx = detector.run(img, 1) for i, d in enumerate(dets):
print("Detection {}, score: {}, face_type:{}".format(
d, scores[i], idx[i]))5767778798081

我把源代碼精簡了一下,加了一下注釋: face_detector0.1.py

# -*- coding: utf-8 -*-import sys

import dlib

from skimage import io#使用dlib自帶的frontal_face_detector作為我們的特徵提取器detector = dlib.get_frontal_face_detector()#使用dlib提供的圖片窗口win = dlib.image_window()#sys.argv[]是用來獲取命令行參數的,sys.argv[0]表示代碼本身文件路徑,所以參數從1開始向後依次獲取圖片路徑for f in sys.argv[1:]: #輸出目前處理的圖片地址
print("Processing file: {}".format(f)) #使用skimage的io讀取圖片
img = io.imread(f) #使用detector進行人臉檢測 dets為返回的結果
dets = detector(img, 1) #dets的元素個數即為臉的個數
print("Number of faces detected: {}".format(len(dets))) #使用enumerate 函數遍歷序列中的元素以及它們的下標
#下標i即為人臉序號
#left:人臉左邊距離圖片左邊界的距離 ;right:人臉右邊距離圖片左邊界的距離
#top:人臉上邊距離圖片上邊界的距離 ;bottom:人臉下邊距離圖片上邊界的距離
for i, d in enumerate(dets):
print("dets{}".format(d))
print("Detection {}: Left: {} Top: {} Right: {} Bottom: {}"
.format( i, d.left(), d.top(), d.right(), d.bottom())) #也可以獲取比較全面的信息,如獲取人臉與detector的匹配程度
dets, scores, idx = detector.run(img, 1)
for i, d in enumerate(dets):
print("Detection {}, dets{},score: {}, face_type:{}".format( i, d, scores[i], idx[i]))

#繪制圖片(dlib的ui庫可以直接繪制dets)
win.set_image(img)
win.add_overlay(dets) #等待點擊
dlib.hit_enter_to_continue()041424344454647484950

分別測試了一個人臉的和多個人臉的,以下是運行結果:

運行的時候把圖片文件路徑加到後面就好了

python face_detector0.1.py ./data/3.jpg12

一張臉的:

兩張臉的:

這里可以看出側臉與detector的匹配度要比正臉小的很多

2.人臉關鍵點提取

人臉檢測我們使用了dlib自帶的人臉檢測器(detector),關鍵點提取需要一個特徵提取器(predictor),為了構建特徵提取器,預訓練模型必不可少。

除了自行進行訓練外,還可以使用官方提供的一個模型。該模型可從dlib sourceforge庫下載:

arks.dat.bz2

也可以從我的連接下載:

這個庫支持68個關鍵點的提取,一般來說也夠用了,如果需要更多的特徵點就要自己去訓練了。

dlib-18.17/python_examples/face_landmark_detection.py 源程序:

#!/usr/bin/python# The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt## This example program shows how to find frontal human faces in an image and# estimate their pose. The pose takes the form of 68 landmarks. These are# points on the face such as the corners of the mouth, along the eyebrows, on# the eyes, and so forth.## This face detector is made using the classic Histogram of Oriented# Gradients (HOG) feature combined with a linear

⑥ Win10系統怎麼使用Kinect實現人臉識別功能

如果用戶想要在Win10系統中使用微軟生物識帶激別功能茄御,那麼除了要安裝Windows10以外,我們還需要安裝支持人臉識別的硬體。不過有的電腦上沒有這樣的設備,這樣的情況我們又該怎麼辦呢?不過我們還可以用Kinect實現人臉識別功能,這里就給大傢具體介紹一下吧! 微軟已經准備了一款Beta測試版驅動顫行岩,讓適用於Windows的Kinectv2以及適用於XboxOne的Kinect也可用於Windows10的面部識別功能。 具體操作方法: 1、首先你需要一個連接Windows10電腦和Kinect的適配器; 2、然後還需要給系統做一個小手術以獲取KinectBeta驅動更新: -按Win+R打開運行,輸入regedit回車打開注冊表編輯器; -導航至HKLM\Software\Microsoft\ -創建子鍵\DriverFlighting\Partner\ 3、在\Partner子鍵中新建名為「TargetRing」的項目,將其值設置為「Drivers」。 不需要重啟電腦,之後你就可以在WindowsUpdate或設備管理器中更新KinectBeta驅動了。 Windows10用Kinect實現人臉識別功能的方法就介紹完了,這樣一來只要連接一個Kinect就可以使用Windows10人臉識別功能,而且還不用更換電腦。

⑦ 如何用pca做人臉識別 python實現

基於特徵臉(PCA)的人臉識別方法
特徵臉方法是基於KL變換的人臉識別方法,KL變換是圖像壓縮的一種最優正交變換。高敗神維的圖像空間經過KL變換後得到一組新的正交基,保留其中重要的正交基,由這些基可以張成低維線性空間。如果假設人臉在這些低維線性空間的投影具有可分性,就可以將這些投影用作識別的特徵矢量,這就是特徵臉方法喊枯陸的基本思想。這些方法需要較多的訓練樣本,而且完全是基於圖像灰度的統計特性的。目前有一些改進型的特徵臉方法。


比如人臉灰度照片40x40=1600個像素點,用每個像素的灰度值組成的矩陣代表這個人的人臉。那麼這個人人臉就要1600 個特徵。拿一堆這樣的樣本過來做pca,抽取得到的只是在統計意義下能代表某個樣本的幾個特徵。


人臉識別可以採用神經網 絡深度學習的思路,國內的ColorReco在這邊有比較多的鄭頃案例。

⑧ 基於python如何建立人臉庫

您好,基於Python建立人臉庫的方法如下:
1. 安裝Python和相關包:首先,您需要安裝Python和相關的包,如OpenCV、NumPy等,以便使用Python來處理圖像和視頻。
2. 獲取人臉數據:您需此盯要獲取足夠多的人臉數據,以便訓練模型。
3. 提取特徵:使用Python中的OpenCV庫,您可以提取人臉圖像中的特徵,以便進行識別。
4. 訓練模型:使用提取的特徵,您可以訓練一個機器學習森敗和模型,以便識別不同的人臉。
5. 測試模型:最後,您可以使用測試數據來測試模型的准確性,以確保它能夠准確地識別不同枯旁的人臉。

⑨ 關於python人臉識別的問題

應該是沒有找到分類器編碼文件,把 haarcascade_frontalface_default.xml, haarcascade_eye.xml文件放到項目根目錄下,再用cv.CascadeClassifier(path1), cv.CascadeClassifier(path2)兩個API導入,另python下windows的文件路徑要用 \\ 或者 /

閱讀全文

與win10人臉識別python相關的資料

熱點內容
微信聊天界面源碼 瀏覽:22
seo競價推廣點擊價格演算法公式 瀏覽:315
框架結構可以加密嗎 瀏覽:218
python編譯器怎麼清除 瀏覽:73
linux全局socks代理 瀏覽:611
php微信抽獎 瀏覽:771
壓縮演算法嵌入式移植 瀏覽:531
php新手小例子 瀏覽:233
按照醫生的演算法一周是幾天 瀏覽:805
三次b樣條曲線演算法 瀏覽:924
java7特性 瀏覽:555
愛山東app小學報名怎麼知道報沒報上 瀏覽:458
android獲取wifi信號 瀏覽:133
娜拉美妝app怎麼使用 瀏覽:760
有了源碼要買伺服器嗎 瀏覽:365
app怎麼查看自己的存款利息 瀏覽:515
碧藍安卓與b站有什麼區別 瀏覽:342
php靜態塊 瀏覽:719
ftpmget命令 瀏覽:475
源碼時代怎樣 瀏覽:415