導航:首頁 > 編程語言 > java分治排序

java分治排序

發布時間:2023-05-07 09:13:24

java分治演算法的問題

這樣會簡閉槐族單點
public class arrayc
{
public static void main(String args[])
{

int i,max,min;
int a[]={58,25,65,23,56,58,98,154};
min=max=a[0];
System.out.println("轎弊elements in array a are");
for(i=0;i<a.length;i++)
{
System.out.print(a[i]+" "明逗);
if(a[i]>max)
max=a[i];
if(a[i]<min)
min=a[i];

}
System.out.println("\n the max value is"+max);
System.out.println("the min value is"+min);

}
}

㈡ java快速排序簡單代碼

.example-btn{color:#fff;background-color:#5cb85c;border-color:#4cae4c}.example-btn:hover{color:#fff;background-color:#47a447;border-color:#398439}.example-btn:active{background-image:none}div.example{width:98%;color:#000;background-color:#f6f4f0;background-color:#d0e69c;background-color:#dcecb5;background-color:#e5eecc;margin:0 0 5px 0;padding:5px;border:1px solid #d4d4d4;background-image:-webkit-linear-gradient(#fff,#e5eecc 100px);background-image:linear-gradient(#fff,#e5eecc 100px)}div.example_code{line-height:1.4em;width:98%;background-color:#fff;padding:5px;border:1px solid #d4d4d4;font-size:110%;font-family:Menlo,Monaco,Consolas,"Andale Mono","lucida console","Courier New",monospace;word-break:break-all;word-wrap:break-word}div.example_result{background-color:#fff;padding:4px;border:1px solid #d4d4d4;width:98%}div.code{width:98%;border:1px solid #d4d4d4;background-color:#f6f4f0;color:#444;padding:5px;margin:0}div.code div{font-size:110%}div.code div,div.code p,div.example_code p{font-family:"courier new"}pre{margin:15px auto;font:12px/20px Menlo,Monaco,Consolas,"Andale Mono","lucida console","Courier New",monospace;white-space:pre-wrap;word-break:break-all;word-wrap:break-word;border:1px solid #ddd;border-left-width:4px;padding:10px 15px} 排序演算法是《數據結構與演算法》中最基本的演算法之一。排序演算法可以分為內部排序和外部排序,內部排序是數據記錄在內存中進行排序,而外部排序是因排序的數據很大,一次不能容納全部的排序記錄,在排序過程中需要訪問外存。常見的內部排序演算法有:插入排序、希爾排序、選擇排序、冒泡排序、歸並排序、快速排序、堆排序、基數排序等。以下是快速排序演算法:

快速排序是由東尼·霍爾所發展的一種排序演算法。在平均狀況下,排序 n 個項目要 Ο(nlogn) 次比較。在最壞譽渣宏狀況下則需要 Ο(n2) 次比較,但這種狀況並不常見。事實上,快速排序梁灶通常明顯比其他 Ο(nlogn) 演算法更快,因為它的內部循環(inner loop)可以在大部分的架構上很有效率地被實現出來。

快速排序使用分治法(Divide and conquer)策略來把一個串列(list)分為兩個子串列(sub-lists)。

快速排序又是一種分而治之思想在排序演算法上的典型應用。本質上來看,快速排序應該算是在冒慶冊泡排序基礎上的遞歸分治法。

快速排序的名字起的是簡單粗暴,因為一聽到這個名字你就知道它存在的意義,就是快,而且效率高!它是處理大數據最快的排序演算法之一了。雖然 Worst Case 的時間復雜度達到了 O(n?),但是人家就是優秀,在大多數情況下都比平均時間復雜度為 O(n logn) 的排序演算法表現要更好,可是這是為什麼呢,我也不知道。好在我的強迫症又犯了,查了 N 多資料終於在《演算法藝術與信息學競賽》上找到了滿意的答案:

快速排序的最壞運行情況是 O(n?),比如說順序數列的快排。但它的平攤期望時間是 O(nlogn),且 O(nlogn) 記號中隱含的常數因子很小,比復雜度穩定等於 O(nlogn) 的歸並排序要小很多。所以,對絕大多數順序性較弱的隨機數列而言,快速排序總是優於歸並排序。
1. 演算法步驟
從數列中挑出一個元素,稱為 "基準"(pivot);

重新排序數列,所有元素比基準值小的擺放在基準前面,所有元素比基準值大的擺在基準的後面(相同的數可以到任一邊)。在這個分區退出之後,該基準就處於數列的中間位置。這個稱為分區(partition)操作;

遞歸地(recursive)把小於基準值元素的子數列和大於基準值元素的子數列排序;
2. 動圖演示
代碼實現 JavaScript 實例 function quickSort ( arr , left , right ) {
    var len = arr. length ,
        partitionIndex ,
        left = typeof left != 'number' ? 0 : left ,
        right = typeof right != 'number' ? len - 1 : right ;

    if ( left

㈢ java面試題 很急 謝謝

2, 歸並排序(merge sort)體現了分治的思想,即將一個待排序數組分為兩部分,對這兩個部分進行歸並排序,排序後,再對兩個已經排序好的數組進行合並。這種思想可以用遞歸方式很容易實現。歸並排序的時間復雜度為O(nlogn),空間復雜度為O(n)。

實現代碼如下:
#include <stdio.h>
#include "common.h"
void merge(int data[], int p, int q, int r)
{
int i, j, k, n1, n2;
n1 = q - p + 1;
n2 = r - q;
int L[n1];
int R[n2];
for(i = 0, k = p; i < n1; i++, k++)
L[i] = data[k];
for(i = 0, k = q + 1; i < n2; i++, k++)
R[i] = data[k];
for(k = p, i = 0, j = 0; i < n1 && j < n2; k++)
{
if(L[i] > R[j])
{
data[k] = L[i];
i++;
}
else
{
data[k] = R[j];
j++;
}
}
if(i < n1)
{
for(j = i; j < n1; j++, k++)
data[k] = L[j];
}
if(j < n2)
{
for(i = j; i < n2; i++, k++)
data[k] = R[i];
}
}
void merge_sort(int data[], int p, int r)
{
if(p < r)
{
int q = (p + r) / 2;
merge_sort(data, p, q);
merge_sort(data, q + 1, r);
merge(data, p, q, r);
}
}

void test_merge_sort()
{
int data[] = {44, 12, 145, -123, -1, 0, 121};
printf("-------------------------------merge sort----------------------------\n");
out_int_array(data, 7);
merge_sort(data, 0, 6);
out_int_array(data, 7);
}

int main()
{
test_merge_sort();
return 0;
}

4.對於有n個結點的線性表(e0,e1,…,en-1),將結點中某些數據項的值按遞增或遞減的次序,重新排列線性表結點的過程,稱為排序。排序時參照的數據項稱為排序碼,通常選擇結點的鍵值作為排序碼。

若線性表中排序碼相等的結點經某種排序方法進行排序後,仍能保持它們在排序之前的相對次序,稱這種排序方法是穩定的;否則,稱這種排序方法是不穩定的。

在排序過程中,線性表的全部結點都在內存,並在內存中調整它們在線性表中的存儲順序,稱為內排序。在排序過程中,線性表只有部分結點被調入內存,並藉助內存調整結點在外存中的存放順序的排序方法成為外排序。

下面通過一個表格簡單介紹幾種常見的內排序方法,以及比較一下它們之間的性能特點。

排序方法
簡介
平均時間
最壞情況
輔助存儲
是否穩定

簡單排序
選擇排序
反復從還未排好序的那部分線性表中選出鍵值最小的結點,並按從線性表中選出的順序排列結點,重新組成線性表。直至未排序的那部分為空,則重新形成的線性表是一個有序的線性表。
O( )
O( )
O(1)
不穩定

直接插入排序
假設線性表的前面I個結點序列e0,e1,…,en-1是已排序的。對結點在這有序結點ei序列中找插入位置,並將ei插入,而使i+1個結點序列e0,e1,…,ei也變成排序的。依次對i=1,2,…,n-1分別執行這樣的插入步驟,最終實現線性表的排序。
O( )
O( )
O(1)
穩定

冒泡排序
對當前還未排好序的范圍內的全部結點,自上而下對相鄰的兩個結點依次進行比較和調整,讓鍵值大的結點往下沉,鍵值小的結點往上冒。即,每當兩相鄰比較後發現它們的排列順序與排序要求相反時,就將它們互換。
O( )
O( )
O(1)
穩定

希爾排序
對直接插入排序一種改進,又稱「縮小增量排序」。先將整個待排序列分割成為若乾子序列分別進行直接插入排序,待整個序列中的記錄「基本有序」時,再對全體記錄進行一次直接插入排序。
kn ln n
O( )
O(logn)
不穩定

快速排序
對冒泡排序的一種本質的改進。通過一趟掃視後,使待排序序列的長度能大幅度的減少。在一趟掃視後,使某個結點移到中間的正確位置,並使在它左邊序列的結點的鍵值都比它的小,而它右邊序列的結點的鍵值都不比它的小。稱這樣一次掃視為「劃分」。每次劃分使一個長序列變成兩個新的較小子序列,對這兩個小的子序列分別作同樣的劃分,直至新的子序列的長度為1使才不再劃分。當所有子序列長度都為1時,序列已是排好序的了。
O(nlogn)
O( )
O(logn)
不穩定

堆排序
一種樹形選擇排序,是對直接選擇排序的有效改進。一個堆是這樣一棵順序存儲的二叉樹,它的所有父結點(e[i])的鍵值均不小於它的左子結點(e[2*i+1])和右子結點(e[2*i+2])的鍵值。初始時,若把待排序序列的n個結點看作是一棵順序存儲的二叉樹,調整它們的存儲順序,使之成為一個堆,這時堆的根結點鍵值是最大者。然後將根結點與堆的最後一個結點交換,並對少了一個結點後的n-1結點重新作調整,使之再次成為堆。這樣,在根結點得到結點序列鍵值次最大值。依次類推,直到只有兩個結點的堆,並對它們作交換,最後得到有序的n個結點序列。
O(nlogn)
O(nlogn)
O(1)
不穩定

歸並排序
將兩個或兩個以上的有序子表合並成一個新的有序表。對於兩個有序子表合並一個有序表的兩路合並排序來說,初始時,把含n個結點的待排序序列看作有n個長度都為1的有序子表所組成,將它們依次兩兩合並得到長度為2的若干有序子表,再對它們作兩兩合並……直到得到長度為n的有序表,排序即告完成。
O(nlogn)
O(nlogn)
O(n)
穩定

後面根據各種排序演算法,給出了C語言的實現,大家在復習的時候可以做下參考。

u 選擇排序

void ss_sort(int e[], int n)

{ int i, j, k, t;

for(i=0; i< n-1; i++) {

for(k=i, j=i+1; j<n; j++)

if(e[k]>e[j]) k=j;

if(k!=i) {

t=e[i]; e[i]=e[k]; e[k]=t;

}

}

}

u 直接插入排序

void si_sort(int e[], int n)

{ int i, j, t;

for(i=0; i< n; i++) {

for(t=e[i], j=i-1; j>=0&&t<e[j]; j--)

e[j+1]=e[j];

e[j+1]=t;

}

}

u 冒泡排序

void sb_sort(int e[], int n)

{ int j, p, h, t;

for(h=n-1; h>0; h=p) {

for(p=j=0; j<h; j++)

if(e[j]>e[j+1]) {

t=e[j]; e[j]=e[j+1]; e[j+1]=t;

p=j;

}

}

}

u 希爾排序

void shell(int e[], int n)

{ int j, k, h, y;

for(h=n/2; h>0; h=h/2)

for(j=h; j<n; j++) {

y=e[j];

for(k=j-h; k>0&&y<e[k]; k-=h)

e[k+h]=e[k];

e[k+h]=y;

}

}

u 堆排序

void sift(e, n, s)

int e[];

int n;

int s;

{ int t, k, j;

t=e[s];

k=s; j=2*k+1;

while(j<n) {

if(j<n-1&&e[j]<e[j+1])

j++;

if(t<e[j]) {

e[k]=e[j];

k=j;

j=2*k+1;

}else break;

}

e[k]=t;

}

void heapsorp (int e[], int n)

{ int i, k, t;

for(i=n/2-1; i>=0; i--)

sift(e, n, i);

for(k=n-1; k>=1; k--) {

t=e[0]; e[0]=e[k]; e[k]=t;

sift(e, k, 0);

}

}

u 快速排序

void r_quick(int e[], int low, int high)

{ int i, j, t;

if(low<high) {

i=low; j=high; t=e[low];

while(i<j) {

while (i<j&&e[j]>t) j--;

if(i<j) e[I++]=e[j];

while (i<j&&e[i]<=t) i++;

if(I<j) e[j--]=e[i];

}

e[i]=t;

r_quick(e,low,i-1);

r_quick(w,i+1,high);

}

}

另外,外排序是對大型文件的排序,待排序的記錄存儲在外存中,在排序過程中,內存只存儲文件的一部分記錄,整個排序過程需進行多次的內外存間的交換。

*** 查找

查找就是在按某種數據結構形式存儲的數據集合中,找出滿足指定條件的結點。

按查找的條件分類,有按結點的關鍵碼查找、關鍵碼以外的其他數據項查找或其他數據項的組合查找等。按查找數據在內存或外存,分內存查找和外存查找。按查找目的,查找如果只是為了確定指定條件的結點存在與否,成為靜態查找;查找是為確定結點的插入位置或為了刪除找到的結點,稱為動態查找。

這里簡單介紹幾種常見的查找方法。

u 順序存儲線性表的查找

這是最常見的查找方式。結點集合按線性表組織,採用順序存儲方式,結點只含關鍵碼,並且是整數。如果線性表無序,則採用順序查找,即從線性表的一端開始逐一查找。而如果線性表有序,則可以使用順序查找、二分法查找或插值查找。

u 分塊查找

分塊查找的過程分兩步,先用二分法在索引表中查索引項,確定要查的結點在哪一塊。然後,再在相應塊內順序查找。

u 鏈接存儲線性表的查找

對於鏈接存儲線性表的查找只能從鏈表的首結點開始順序查找。同樣對於無序的鏈表和有序的鏈表查找方法不同。

u 散列表的查找

散列表又稱雜湊表,是一種非常實用的查找技術。它的原理是在結點的存儲位置和它的關鍵碼間建立一個確定的關系,從而讓查找碼直接利用這個關系確定結點的位置。其技術的關鍵在於解決兩個問題。

I. 找一個好的散列函數

㈣ java編程題,對一組{23,55,-65,89,82,99,128}中的元素從小到大進行排序

你看這個鏈接,網頁鏈接

希望可以幫到你,望採納~

㈤ 數據結構 java開發中常用的排序演算法有哪些

排序演算法有很多,所以在特定情景中使用哪一種演算法很重要。為了選擇合適的演算法,可以按照建議的順序考慮以下標准:
(1)執行時間
(2)存儲空間
(3)編程工作
對於數據量較小的情形,(1)(2)差別不大,主要考慮(3);而對於數據量大的,(1)為首要。

主要排序法有:
一、冒泡(Bubble)排序——相鄰交換
二、選擇排序——每次最小/大排在相應的位置
三、插入排序——將下一個插入已排好的序列中
四、殼(Shell)排序——縮小增量
五、歸並排序
六、快速排序
七、堆排序
八、拓撲排序

一、冒泡(Bubble)排序

----------------------------------Code 從小到大排序n個數------------------------------------
void BubbleSortArray()
{
for(int i=1;i<n;i++)
{
for(int j=0;i<n-i;j++)
{
if(a[j]>a[j+1])//比較交換相鄰元素
{
int temp;
temp=a[j]; a[j]=a[j+1]; a[j+1]=temp;
}
}
}
}
-------------------------------------------------Code------------------------------------------------
效率 O(n²),適用於排序小列表。

二、選擇排序
----------------------------------Code 從小到大排序n個數--------------------------------
void SelectSortArray()
{
int min_index;
for(int i=0;i<n-1;i++)
{
min_index=i;
for(int j=i+1;j<n;j++)//每次掃描選擇最小項
if(arr[j]<arr[min_index]) min_index=j;
if(min_index!=i)//找到最小項交換,即將這一項移到列表中的正確位置
{
int temp;
temp=arr[i]; arr[i]=arr[min_index]; arr[min_index]=temp;
}
}
}
-------------------------------------------------Code-----------------------------------------
效率O(n²),適用於排序小的列表。

三、插入排序
--------------------------------------------Code 從小到大排序n個數-------------------------------------
void InsertSortArray()
{
for(int i=1;i<n;i++)//循環從第二個數組元素開始,因為arr[0]作為最初已排序部分
{
int temp=arr[i];//temp標記為未排序第一個元素
int j=i-1;
while (j>=0 && arr[j]>temp)/*將temp與已排序元素從小到大比較,尋找temp應插入的位置*/
{
arr[j+1]=arr[j];
j--;
}
arr[j+1]=temp;
}
}
------------------------------Code--------------------------------------------------------------
最佳效率O(n);最糟效率O(n²)與冒泡、選擇相同,適用於排序小列表
若列表基本有序,則插入排序比冒泡、選擇更有效率。

四、殼(Shell)排序——縮小增量排序
-------------------------------------Code 從小到大排序n個數-------------------------------------
void ShellSortArray()
{
for(int incr=3;incr<0;incr--)//增量遞減,以增量3,2,1為例
{
for(int L=0;L<(n-1)/incr;L++)//重復分成的每個子列表
{
for(int i=L+incr;i<n;i+=incr)//對每個子列表應用插入排序
{
int temp=arr[i];
int j=i-incr;
while(j>=0&&arr[j]>temp)
{
arr[j+incr]=arr[j];
j-=incr;
}
arr[j+incr]=temp;
}
}
}
}
--------------------------------------Code-------------------------------------------
適用於排序小列表。
效率估計O(nlog2^n)~O(n^1.5),取決於增量值的最初大小。建議使用質數作為增量值,因為如果增量值是2的冪,則在下一個通道中會再次比較相同的元素。
殼(Shell)排序改進了插入排序,減少了比較的次數。是不穩定的排序,因為排序過程中元素可能會前後跳躍。

五、歸並排序
----------------------------------------------Code 從小到大排序---------------------------------------
void MergeSort(int low,int high)
{
if(low>=high) return;//每個子列表中剩下一個元素時停止
else int mid=(low+high)/2;/*將列表劃分成相等的兩個子列表,若有奇數個元素,則在左邊子列表大於右側子列表*/
MergeSort(low,mid);//子列表進一步劃分
MergeSort(mid+1,high);
int [] B=new int [high-low+1];//新建一個數組,用於存放歸並的元素
for(int i=low,j=mid+1,k=low;i<=mid && j<=high;k++)/*兩個子列表進行排序歸並,直到兩個子列表中的一個結束*/
{
if (arr[i]<=arr[j];)
{
B[k]=arr[i];
I++;
}
else
{ B[k]=arr[j]; j++; }
}
for( ;j<=high;j++,k++)//如果第二個子列表中仍然有元素,則追加到新列表
B[k]=arr[j];
for( ;i<=mid;i++,k++)//如果在第一個子列表中仍然有元素,則追加到新列表中
B[k]=arr[i];
for(int z=0;z<high-low+1;z++)//將排序的數組B的 所有元素復制到原始數組arr中
arr[z]=B[z];
}
-----------------------------------------------------Code---------------------------------------------------
效率O(nlogn),歸並的最佳、平均和最糟用例效率之間沒有差異。
適用於排序大列表,基於分治法。

六、快速排序
------------------------------------Code--------------------------------------------
/*快速排序的演算法思想:選定一個樞紐元素,對待排序序列進行分割,分割之後的序列一個部分小於樞紐元素,一個部分大於樞紐元素,再對這兩個分割好的子序列進行上述的過程。*/ void swap(int a,int b){int t;t =a ;a =b ;b =t ;}
int Partition(int [] arr,int low,int high)
{
int pivot=arr[low];//採用子序列的第一個元素作為樞紐元素
while (low < high)
{
//從後往前栽後半部分中尋找第一個小於樞紐元素的元素
while (low < high && arr[high] >= pivot)
{
--high;
}
//將這個比樞紐元素小的元素交換到前半部分
swap(arr[low], arr[high]);
//從前往後在前半部分中尋找第一個大於樞紐元素的元素
while (low <high &&arr [low ]<=pivot )
{
++low ;
}
swap (arr [low ],arr [high ]);//將這個樞紐元素大的元素交換到後半部分
}
return low ;//返回樞紐元素所在的位置
}
void QuickSort(int [] a,int low,int high)
{
if (low <high )
{
int n=Partition (a ,low ,high );
QuickSort (a ,low ,n );
QuickSort (a ,n +1,high );
}
}
----------------------------------------Code-------------------------------------
平均效率O(nlogn),適用於排序大列表。
此演算法的總時間取決於樞紐值的位置;選擇第一個元素作為樞紐,可能導致O(n²)的最糟用例效率。若數基本有序,效率反而最差。選項中間值作為樞紐,效率是O(nlogn)。
基於分治法。

七、堆排序
最大堆:後者任一非終端節點的關鍵字均大於或等於它的左、右孩子的關鍵字,此時位於堆頂的節點的關鍵字是整個序列中最大的。
思想:
(1)令i=l,並令temp= kl ;
(2)計算i的左孩子j=2i+1;
(3)若j<=n-1,則轉(4),否則轉(6);
(4)比較kj和kj+1,若kj+1>kj,則令j=j+1,否則j不變;
(5)比較temp和kj,若kj>temp,則令ki等於kj,並令i=j,j=2i+1,並轉(3),否則轉(6)
(6)令ki等於temp,結束。
-----------------------------------------Code---------------------------
void HeapSort(SeqIAst R)

{ //對R[1..n]進行堆排序,不妨用R[0]做暫存單元 int I; BuildHeap(R); //將R[1-n]建成初始堆for(i=n;i>1;i--) //對當前無序區R[1..i]進行堆排序,共做n-1趟。{ R[0]=R[1]; R[1]=R[i]; R[i]=R[0]; //將堆頂和堆中最後一個記錄交換 Heapify(R,1,i-1); //將R[1..i-1]重新調整為堆,僅有R[1]可能違反堆性質 } } ---------------------------------------Code--------------------------------------

堆排序的時間,主要由建立初始堆和反復重建堆這兩部分的時間開銷構成,它們均是通過調用Heapify實現的。

堆排序的最壞時間復雜度為O(nlgn)。堆排序的平均性能較接近於最壞性能。 由於建初始堆所需的比較次數較多,所以堆排序不適宜於記錄數較少的文件。 堆排序是就地排序,輔助空間為O(1), 它是不穩定的排序方法。

堆排序與直接插入排序的區別:
直接選擇排序中,為了從R[1..n]中選出關鍵字最小的記錄,必須進行n-1次比較,然後在R[2..n]中選出關鍵字最小的記錄,又需要做n-2次比較。事實上,後面的n-2次比較中,有許多比較可能在前面的n-1次比較中已經做過,但由於前一趟排序時未保留這些比較結果,所以後一趟排序時又重復執行了這些比較操作。
堆排序可通過樹形結構保存部分比較結果,可減少比較次數。

八、拓撲排序
例 :學生選修課排課先後順序
拓撲排序:把有向圖中各頂點按照它們相互之間的優先關系排列成一個線性序列的過程。
方法:
在有向圖中選一個沒有前驅的頂點且輸出
從圖中刪除該頂點和所有以它為尾的弧
重復上述兩步,直至全部頂點均已輸出(拓撲排序成功),或者當圖中不存在無前驅的頂點(圖中有迴路)為止。
---------------------------------------Code--------------------------------------
void TopologicalSort()/*輸出拓撲排序函數。若G無迴路,則輸出G的頂點的一個拓撲序列並返回OK,否則返回ERROR*/
{
int indegree[M];
int i,k,j;
char n;
int count=0;
Stack thestack;
FindInDegree(G,indegree);//對各頂點求入度indegree[0....num]
InitStack(thestack);//初始化棧
for(i=0;i<G.num;i++)
Console.WriteLine("結點"+G.vertices[i].data+"的入度為"+indegree[i]);
for(i=0;i<G.num;i++)
{
if(indegree[i]==0)
Push(thestack.vertices[i]);
}
Console.Write("拓撲排序輸出順序為:");
while(thestack.Peek()!=null)
{
Pop(thestack.Peek());
j=locatevex(G,n);
if (j==-2)
{
Console.WriteLine("發生錯誤,程序結束。");
exit();
}
Console.Write(G.vertices[j].data);
count++;
for(p=G.vertices[j].firstarc;p!=NULL;p=p.nextarc)
{
k=p.adjvex;
if (!(--indegree[k]))
Push(G.vertices[k]);
}
}
if (count<G.num)
Cosole.WriteLine("該圖有環,出現錯誤,無法排序。");
else
Console.WriteLine("排序成功。");
}
----------------------------------------Code--------------------------------------
演算法的時間復雜度O(n+e)。

㈥ java里,幾種排序方法各有什麼優缺點

一、冒泡排序

已知一組無序數據a[1]、a[2]、……a[n],需將其按升序排列。首先比較 a[1]與a[2]的值,若a[1]大於a[2]則交換兩者的值,否則不變。再比較a[2]與a[3]的值,若a[2]大於a[3]則交換兩者的值,否則不變。再比較a[3]與a[4],以此類推,最後比較a[n-1]與a[n]的值。這樣處理一輪後,a[n]的值一定是這組數據中最大的。再對 a[1]~a[n-1]以相同方法處理一輪,則a[n-1]的值一定是a[1]~a[n-1]中最大的。再對a[1]~a[n-2]以相同方法處理一輪,以此類推。共處理n-1輪後a[1]、a[2]、……a[n]就以升序排列了。

優點:穩定;

缺點:慢,每次只能移動相鄰兩個數據。

二、選擇排序

冒泡排序的改進版。

每一趟從待排序的數據元素中選出最小(或最大)的一個元素,順序放在已排好序的數列的最後,直到全部待排序的數據元素排完。

選擇排序是不穩定的排序方法。

n個記錄的文件的直接選擇排序可經過n-1趟直接選擇排序得到有序結果:

①初始狀態:無序區為R[1..n],有序區為空。

②第1趟排序

在無序區R[1..n]中選出關鍵字最小的記錄R[k],將它與無序區的第1個記錄R[1]交換,使R[1..1]和R[2..n]分別變為記錄個數增加1個的新有序區和記錄個數減少1個的新無序區。

……

③第i趟排序

第i趟排序開始時,當前有序區和無序區分別為R[1..i-1]和R(1≤i≤n- 1)。該趟排序從當前無序區中選出關鍵字最小的記錄 R[k],將它與無序區的第1個記錄R交換,使R[1..i]和R分別變為記錄個數增加1個的新有序區和記錄個數減少1個的新無序區。

這樣,n個記錄的文件的直接選擇排序可經過n-1趟直接選擇排序得到有序結果。

優點:移動數據的次數已知(n-1次);

缺點:比較次數多。

三、插入排序

已知一組升序排列數據a[1]、a[2]、……a[n],一組無序數據b[1]、 b[2]、……b[m],需將二者合並成一個升序數列。首先比較b[1]與a[1]的值,若b[1]大於a[1],則跳過,比較b[1]與a[2]的值,若b[1]仍然大於a[2],則繼續跳過,直到b[1]小於a數組中某一數據a[x],則將a[x]~a[n]分別向後移動一位,將b[1]插入到原來 a[x]的位置這就完成了b[1]的插入。b[2]~b[m]用相同方法插入。(若無數組a,可將b[1]當作n=1的數組a)

優點:穩定,快;

缺點:比較次數不一定,比較次數越少,插入點後的數據移動越多,特別是當數據總量龐大的時候,但用鏈表可以解決這個問題。

三、縮小增量排序

由希爾在1959年提出,又稱希爾排序(shell排序)。

已知一組無序數據a[1]、a[2]、……a[n],需將其按升序排列。發現當n不大時,插入排序的效果很好。首先取一增量d(d<n),將a[1]、a[1+d]、a[1+2d]……列為第一組,a[2]、a[2+d]、 a[2+2d]……列為第二組……,a[d]、a[2d]、a[3d]……列為最後一組以次類推,在各組內用插入排序,然後取d'<d,重復上述操作,直到d=1。

優點:快,數據移動少;

缺點:不穩定,d的取值是多少,應取多少個不同的值,都無法確切知道,只能憑經驗來取。

四、快速排序

快速排序是目前已知的最快的排序方法。

已知一組無序數據a[1]、a[2]、……a[n],需將其按升序排列。首先任取數據 a[x]作為基準。比較a[x]與其它數據並排序,使a[x]排在數據的第k位,並且使a[1]~a[k-1]中的每一個數據<a[x],a[k+1]~a[n]中的每一個數據>a[x],然後採用分治的策略分別對a[1]~a[k-1]和a[k+1]~a[n] 兩組數據進行快速排序。

優點:極快,數據移動少;

缺點:不穩定。

五、箱排序

已知一組無序正整數數據a[1]、a[2]、……a[n],需將其按升序排列。首先定義一個數組x[m],且m>=a[1]、a[2]、……a[n],接著循環n次,每次x[a]++.

優點:快,效率達到O(1)

缺點:數據范圍必須為正整數並且比較小

六、歸並排序

歸並排序是多次將兩個或兩個以上的有序表合並成一個新的有序表。最簡單的歸並是直接將兩個有序的子表合並成一個有序的表。

歸並排序是穩定的排序.即相等的元素的順序不會改變.如輸入記錄 1(1) 3(2) 2(3) 2(4) 5(5) (括弧中是記錄的關鍵字)時輸出的 1(1) 2(3) 2(4) 3(2) 5(5) 中的2 和 2 是按輸入的順序.這對要排序數據包含多個信息而要按其中的某一個信息排序,要求其它信息盡量按輸入的順序排列時很重要.這也是它比快速排序優勢的地方.

㈦ java中的演算法,一共有多少種,哪幾種,怎麼分類。

就好比問,漢語中常用寫作方法有多少種,怎麼分類。

演算法按用途分,體現設計目的、有什麼特點
演算法按實現方式分,有遞歸、迭代、平行、序列、過程、確定、不確定等等
演算法按設計范型分,有分治、動態、貪心、線性、圖論、簡化等等

作為圖靈完備的語言,理論上」Java語言「可以實現所有演算法。
「Java的標准庫'中用了一些常用數據結構和相關演算法.

像apache common這樣的java庫中又提供了一些通用的演算法

㈧ 常見的排序演算法哪個效率最高

快速排序法。
Java的排序演算法有哪些?
java的排序大的分類可以分為兩種:內排序和外排序。在排序過程中,全部記錄存放在內存,則稱為內排序,如果排序過程中需要使用外存,則稱為外排序。下面講的排序都是屬於內排序:
1.插入排序:直接插入排序、二分法插入排序、希爾排序。
2.選擇排序:簡單選擇排序、堆排序。
3.交換排序:冒泡排序、快速排序。
4.歸並排序。
5.基數排序。
java中的演算法,一共有多少種,哪幾種,怎麼分類?
1、演算法按實現方式分,有遞歸、迭代、平行、序列、過程、確定、不確定等。
2、演算法按設計范型分,有分治、動態、貪心、線性、圖論、簡化等。

㈨ Java排序一共有幾種

日常操作中,常見的排序方法有:冒泡排序、快速排序、選擇排序、插入排序、希爾排序,甚至還有基數排序、雞尾酒排序、桶排序、鴿巢排序、歸並排序等。

各類排序方法代碼如圖:

㈩ JAVA程序經常用到「遞歸」,「遞歸」的基本思想是

遞歸的核心思想是分解。把一個很復雜的問題使用同一個策略將其分解為較簡單的問題,如果這個的問題仍然不能解決則再次分解,直到問題能被直接處理為止。
比如求 1+1/2+1/3+...+1/n的和,如果按照我們正常銀液搏的思維,就會使用一個循環,把所有的表示式的值加起來,這是最直接的辦法。如果使用遞歸的思維,過程就是這樣的,要求1+1/2+1/3+...+1/n的值,可以先求s1=1+1/2+1/3+...+1/(n-1)的值,再用s1加上1/n就是所求的值,而求s1的過程又可以使用上面的分解策略繼續分解,最終分解到求1+1/2的值,而這個問題簡單到我們可以直接解決,自此問題得到解決。
遞歸強調的分治的策略,再舉個例子,有一種排序演算法叫歸並排序,其思想是這樣的:要對一個無序的數組進行排序,可以將這個數組分解為2個小數組,然後對這兩個數組分別排序,再把排好序的兩個數組合並。而埋漏這一過程中只有「對兩個數組分別排序」不是我們能解決的,但是這個問題可以使用上面的策略進行再次的分解,最後這個問題就被分解到對鋒祥2個元素的數組進行排序,而這個問題簡單到我們可以直接處理。
上面提到的分解的策略,或者說演算法,抽象出來就是我們的函數,因為在這個過程中我們要不同的使用這個策略來不斷的分解問題,所以代碼上就體現為這個函數會不斷的調用自身。還有一點,並不是所有的遞歸都是可以實現的,或者說有意義的。如果在分解的過程中,問題最終不能分解到一個可以直接解決的問題,則這個過程是沒有意義,也就是無限的循環。
具體的代碼都不貼了,有興趣可以網路看看。

閱讀全文

與java分治排序相關的資料

熱點內容
紅米k40加密門禁卡 瀏覽:843
什麼樣的源碼好看 瀏覽:154
手機主伺服器有什麼用 瀏覽:610
程序編寫命令 瀏覽:597
android發送心跳包 瀏覽:385
指標源碼和原理 瀏覽:700
汽車空調壓縮吸盤 瀏覽:208
崽崽因app版本不同不能邀請怎麼辦 瀏覽:686
poa演算法得到的解為全局最優解 瀏覽:926
python符號表達式 瀏覽:34
威馳壓縮機繼電器 瀏覽:871
華為手機怎麼設置移動數據app 瀏覽:959
空調壓縮機哪的廠家多 瀏覽:390
手指速演算法24加7怎麼算 瀏覽:139
如何用python寫vlookup函數 瀏覽:798
社保加密狗廠商 瀏覽:216
php編譯運行說法 瀏覽:957
程序員說喂 瀏覽:258
抖音直播雲伺服器 瀏覽:629
一加7pro文件夾data 瀏覽:426