導航:首頁 > 編程語言 > python推理機

python推理機

發布時間:2023-05-09 13:30:30

A. 如何正確學習數據科學中的 python

作者 | skura

來源 | AI開發者

大多數有抱負的數據科學家是通過學習為開發人員開設的編程課程開始認識 python 的,他們也開始解決類似 leetcode 網站上的 python 編程難題。他們認為在開始使用 python 分析數據之前,必須熟悉編程概念。

資深數據分析師 Manu Jeevan 認為,這是一個巨大的錯誤,因為數據科學家使用 python 來對數據進行檢索、清洗、可視化和構建模型,而不是開發軟體應用程序。實際上,為了完成這些任務,你必須將大部分時間集中在學習 python 中的模塊和庫上。他認為,學習數據科學的正確姿勢應該如下文,AI 開發者進行了編譯整理。

請按照下面這個步驟來學習數據科學的 python。

配置編程環境

Jupyter Notebook 是開發和展示數據科學項目的強大編程環境。

在電腦上安裝 Jupyter Notebook 最簡單的方法是通過 Anaconda 進行安裝。Anaconda 是數據科學中使用最廣泛的 python 工具,它預裝了所有最流行的庫。

你可以瀏覽標題為「A Beginner』s Guide to Installing Jupyter Notebook Using Anaconda Distribution」的博客文章(https://medium.com/better-programming/beginners-quick-guide-for-handling-issues-launching-jupyter-notebook-for-python-using-anaconda-8be3d57a209b),了解如何安裝 Anaconda。安裝 Anaconda 時,請選擇最新的 python 3 版本。

安裝完 Anaconda 後,請閱讀 Code Academy 的這篇文章(https://www.codecademy.com/articles/how-to-use-jupyter-notebooks),了解如何使用 Jupyter Notebook。

只學習 python 的基礎知識

Code Academy 有一門關於 python 的優秀課程,大約需要 20 個小時才能完成。你不必升級到 pro 版本,因為你的目標只是熟悉 python 編程語言的基礎知識。課程地址:https://www.codecademy.com/learn/learn-python-3

NumPy 和 Pandas,學習的絕佳資源

在處理計算量大的演算法和大量數據時,python 速度較慢。你可能會問,既然如此那為什麼 python 是數據科學最流行的編程語言?

答案是,在 python 中,很容易以 C 或 Fortran 擴展的形式將數字處理任務轉移到底層。這正是 NumPy 和 Pandas 所做的事情。

首先,你應該學會 NumPy。它是用 python 進行科學計算的最基本的模塊。NumPy 支持高度優化的多維數組,這是大多數機器學習演算法最基本的數據結構。

接下來,你應該學習 Pandas。數據科學家花費大部分時間清洗數據,這也被稱為數據整。

Pandas 是操作數據最流行的 python 庫。Pandas 是 NumPy 的延伸。Pandas 的底層代碼廣泛使用 NumPy 庫。Pandas 的主要數據結構稱為數據幀。

Pandas 的創造者 Wes McKinney 寫了一本很棒的書,叫做《Python for Data Analysis》(https://www.amazon.com/Python-Data-Analysis-Wrangling-IPython-ebook/dp/B075X4LT6K)。在書中的第 4、5、7、8 和 10 章可以學習 Pandas 和 NumPy。這些章節涵蓋了最常用的 NumPy 和 Pandas 特性來處理數據。

學習使用 Matplotlib 可視化數據

Matplotlib 是用於創建基本可視化圖形的基本 python 包。你必須學習如何使用 Matplotlib 創建一些最常見的圖表,如折線圖、條形圖、散點圖、柱狀圖和方框圖。

另一個建立在 Matplotlib 之上並與 Pandas 緊密結合的好的繪圖庫是 Seaborn。在這個階段,我建議你快速學習如何在 Matplotlib 中創建基本圖表,而不是專注於 Seaborn。

我寫了一個關於如何使用 Matplotlib 開發基本圖的教程,該教程由四個部分組成。

第一部分:Matplotlib 繪制基本圖(http://nbviewer.ipython.org/gist/manujeevanprakash/138c66c44533391a5af1) 第二部分:如何控制圖形的樣式和顏色,如標記、線條粗細、線條圖案和使用顏色映射(https://nbviewer.jupyter.org/gist/manujeevanprakash/7dc56e7906ee83e0bbe6) 第三部分:注釋、控制軸范圍、縱橫比和坐標系(https://nbviewer.jupyter.org/gist/manujeevanprakash/7cdf7d659cd69d0c22b2) 第四部分:處理復雜圖形(https://nbviewer.jupyter.org/gist/manujeevanprakash/7d8a9860f8e43f6237cc)

你可以通過這些教程來掌握 Matplotlib 的基本知識。

簡而言之,你不必花太多時間學習 Matplotlib,因為現在公司已經開始採用 Tableau 和 Qlik 等工具來創建互動式可視化。

如何使用 SQL 和 python

數據有組織地駐留在資料庫中。因此,你需要知道如何使用 SQL 檢索數據,並使用 python 在 Jupyter Notebook 中執行分析。

數據科學家使用 SQL 和 Pandas 來操縱數據。有一些數據操作任務使用 SQL 就可以很容易地執行,並且有一些任務可以使用 Pandas 高效地完成。我個人喜歡使用 SQL 來檢索數據並在 Pandas 中進行操作。

如今,公司使用 Mode Analytics 和 Databricks 等分析平台來輕松地使用 python 和 SQL。

所以,你應該知道如何一起有效地使用 SQL 和 python。要了解這一點,你可以在計算機上安裝 SQLite 資料庫,並在其中存儲一個 CSV 文件,然後使用 python 和 SQL 對其進行分析。

這里有一篇精彩的博客文章,向你展示了如何做到這一點:Programming with Databases in Python using SQLite(https://medium.com/analytics-vidhya/programming-with-databases-in-python-using-sqlite-4cecbef51ab9)。

在瀏覽上述博客文章之前,你應該了解 SQL 的基礎知識。Mode Analytics 上有一個很好的關於 SQL 的教程:Introction to SQL(https://medium.com/analytics-vidhya/programming-with-databases-in-python-using-sqlite-4cecbef51ab9)。通過他們的基本 SQL 部分,了解 SQL 的基本知識,每個數據科學家都應該知道如何使用 SQL 有效地檢索數據。

學習和 python 相關的基本統計學知識

多數有抱負的數據科學家在不學習統計學的基礎知識的情況下,就直接跳到機器學習知識的學習中。

不要犯這個錯誤,因為統計學是數據科學的支柱。而且,很多數據科學家學習統計學只是學習理論概念,而不是學習實踐概念。

我的意思是,通過實踐概念,你應該知道什麼樣的問題可以用統計學來解決,了解使用統計數據可以解決哪些挑戰。

以下是你應該了解的一些基本統計概念:

抽樣、頻率分布、平均值、中位數、模式、變異性度量、概率基礎、顯著性檢驗、標准差、z 評分、置信區間和假設檢驗(包括 A/B 檢驗)

要學習這些知識,有一本很好的書可以看看:《Practical Statistics for Data Scientists: 50 Essential Concepts》(https://www.amazon.com/Practical-Statistics-Data-Scientists-Essential/dp/9352135652)。不幸的是,本書中的代碼示例是用 R 編寫的,但是很多人包括我自己在內使用的是 Python。

我建議你閱讀本書的前四章。閱讀本書的前 4 章,了解我前面提到的基本統計概念,你可以忽略代碼示例,只了解這些概念。本書的其餘章節主要集中在機器學習上。我將在下一部分討論如何學習機器學習。

大多數人建議使用 Think Stats (https://www.amazon.com/Think-Stats-Allen-B-Downey/dp/1449307116)來學習 python 的統計知識,但這本書的作者教授了自己的自定義函數,而不是使用標準的 python 庫來進行統計知識講解。因此,我不推薦這本書。

接下來,你的目標是實現在 Python 中學習的基本概念。StatsModels 是一個流行的 python 庫,用於在 python 中構建統計模型。StatsModels 網站提供了關於如何使用 Python 實現統計概念的優秀教程。

或者,你也可以觀看 Ga?l Varoquaux 的視頻。他向你展示了如何使用 Pandas 和統計模型進行推理和探索性統計。

使用 Scikit-Learn 進行機器學習

Scikit-Learn 是 Python 中最流行的機器學習庫之一。你的目標是學習如何使用 Scikit Learn 實現一些最常見的機器學習演算法。

你應該像下面這樣做。

首先,觀看 Andrew Ng 在 Coursera 上的機器學習課程(https://www.coursera.org/learn/machine-learning)的第 1、2、 3、6,、7 和第 8 周視頻。我跳過了關於神經網路的部分,因為作為初學者,你必須關注最通用的機器學習技術。

完成後,閱讀「Hands-On Machine Learning with Scikit-Learn and TensorFlow」一書(https://www.amazon.com/Hands-Machine-Learning-Scikit-Learn-TensorFlow/dp/1491962291)。你只需瀏覽這本書的第一部分(大約 300 頁),它是最實用的機器學習書籍之一。

通過完成本書中的編碼練習,你將學習如何使用 python 實現你在 Andrew Ng 課程中學習到的理論概念。

結論

最後一步是做一個涵蓋上述所有步驟的數據科學項目。你可以找到你喜歡的數據集,然後提出有趣的業務問題,再通過分析來回答這些問題。但是,請不要選擇像泰坦尼克號這樣的通用數據集。你可以閱讀「19 places to find free data sets for your data science project」來查找合適的數據集(https://www.dataquest.io/blog/free-datasets-for-projects/)。

另一種方法是將數據科學應用到你感興趣的領域。例如,如果你想預測股票市場價格,那麼你可以從 Yahoo Finance (https://www.scrapehero.com/scrape-yahoo-finance-stock-market-data/)中獲取實時數據,並將其存儲在 SQL 資料庫中,然後使用機器學習來預測股票價格。

如果你希望從其它行業轉行到數據科學,我建議你完成一個利用你的領域專業知識的項目。關於這些,我在以前的博客文章"A Step-by-Step Guide to Transitioning your Career to Data Science – Part 1"(https://www.kdnuggets.com/2019/05/guide-transitioning-career-data-science-part-1.html) 和"A Step-by-Step Guide to Transitioning your Career to Data Science – Part 2"(https://www.kdnuggets.com/2019/06/guide-transitioning-career-data-science-part-2.html)中有提到過。

B. 學習人工智慧AI需要哪些知識

需要數學基礎:高等數學,線性代數,概率論數理統計和隨機過程,離散數學,數值分析。數學基礎知識蘊含著處理智能問題的基本思想與方法,也是理解復雜演算法的必備要素。今天的種種人工智慧技術歸根到底都建立在數學模型之上,要了解人工智慧,首先要掌握必備的數學基礎知識。線性代數將研究對象形式化,概率論描述統計規律。

需要演算法的積累:人工神經網路,支持向量機,遺傳演算法等等演算法;當然還有各個領域需要的演算法,比如要讓機器人自己在位置環境導航和建圖就需要研究SLAM;總之演算法很多需要時間的積累。

需要掌握至少一門編程語言,比如C語言,MATLAB之類。畢竟演算法的實現還是要編程的;如果深入到硬體的話,一些電類基礎課必不可少。

拓展資料:

人工智慧(Artificial Intelligence),英文縮寫為AI。它是研究、開發用於模擬、延伸和擴展人的智能的理論、方法、技術及應用系統的一門新的技術科學。

人工智慧是計算機科學的一個分支,它企圖了解智能的實質,並生產出一種新的能以人類智能相似的方式做出反應的智能機器,該領域的研究包括機器人、語言識別、圖像識別、自然語言處理和專家系統等。

人工智慧從誕生以來,理論和技術日益成熟,應用領域也不斷擴大,可以設想,未來人工智慧帶來的科技產品,將會是人類智慧的「容器」。人工智慧可以對人的意識、思維的信息過程的模擬。人工智慧不是人的智能,但能像人那樣思考、也可能超過人的智能。

人工智慧是一門極富挑戰性的科學,從事這項工作的人必須懂得計算機知識,心理學和哲學。人工智慧是包括十分廣泛的科學,它由不同的領域組成,如機器學習,計算機視覺等等,總的說來,人工智慧研究的一個主要目標是使機器能夠勝任一些通常需要人類智能才能完成的復雜工作。但不同的時代、不同的人對這種「復雜工作」的理解是不同的。2017年12月,人工智慧入選「2017年度中國媒體十大流行語」。

參考資料:網路—人工智慧:計算機科學的一個分支

C. 學習人工智慧有什麼要求嗎

人工智慧的定義可以分為兩部分,即「人工」和「智能」。「人工」比較好理解,爭議性也不大。有時我們會要考慮什麼是人力所能及製造的,或著人自身的智能程度有沒有高到可以創造人工智慧的地步,等等。但總的來說,「人工系統」就是通常意義下的人工系統。
關於什麼是「智能」,就問題多多了。這涉及到其它諸如意識(consciousness)、自我(self)、思維(mind)(包括無意識的思維(unconscious_mind)等等問題。人唯一了解的智能是人本身的智能,這是普遍認同的觀點。但是我們對我們自身智能的理解都非常有限,對構成人的智能的必要元素也了解有限,所以就很難定義什麼是「人工」製造的「智能」了。因此人工智慧的研究往往涉及對人的智能本身的研究。其它關於動物或其它人造系統的智能也普遍被認為是人工智慧相關的研究課題。
人工智慧目前在計算機領域內,得到了愈加廣泛的重視。並在機器人,經濟政治決策,控制系統,模擬系統中得到應用--機器視覺:指紋識別,人臉識別,視網膜識別,虹膜識別,掌紋識別,專家系統等。
人工智慧(Artificial Intelligence)是研究解釋和模擬人類智能、智能行為及其規律的一門學科。其主要任務是建立智能信息處理理論,進而設計可以展現某些近似於人類智能行為的計算系統。AI作為計算機科學的一個重要分支和計算機應用的一個廣闊的新領域,它同原子能技術,空間技術一起被稱為20世紀三大尖端科技。
人工智慧學科研究的主要內容包括:知識表示、自動推理和搜索方法、機器學習和知識獲取、知識處理系統、自然語言理解、計算機視覺、智能機器人、自動程序設計等方面。
知識表示是人工智慧的基本問題之一,推理和搜索都與表示方法密切相關。常用的知識表示方法有:邏輯表示法、產生式表示法、語義網路表示法和框架表示法等。
常識,自然為人們所關注,已提出多種方法,如非單調推理、定性推理就是從不同角度來表達常識和處理常識的。
問題求解中的自動推理是知識的使用過程,由於有多種知識表示方法,相應地有多種推理方法。推理過程一般可分為演繹推理和非演繹推理。謂詞邏輯是演繹推理的基礎。結構化表示下的繼承性能推理是非演繹性的。由於知識處理的需要,近幾年來提出了多種非演澤的推理方法,如連接機制推理、類比推理、基於示例的推理、反繹推理和受限推理等。
搜索是人工智慧的一種問題求解方法,搜索策略決定著問題求解的一個推理步驟中知識被使用的優先關系。可分為無信息導引的盲目搜索和利用經驗知識導引的啟發式搜索。啟發式知識常由啟發式函數來表示,啟發式知識利用得越充分,求解問題的搜索空間就越小。典型的啟發式搜索方法有A*、AO*演算法等。近幾年搜索方法研究開始注意那些具有百萬節點的超大規模的搜索問題。
機器學習是人工智慧的另一重要課題。機器學習是指在一定的知識表示意義下獲取新知識的過程,按照學習機制的不同,主要有歸納學習、分析學習、連接機制學習和遺傳學習等。
知識處理系統主要由知識庫和推理機組成。知識庫存儲系統所需要的知識,當知識量較大而又有多種表示方法時,知識的合理組織與管理是重要的。推理機在問題求解時,規定使用知識的基本方法和策略,推理過程中為記錄結果或通信需設資料庫或採用黑板機制。如果在知識庫中存儲的是某一領域(如醫療診斷)的專家知識,則這樣的知識系統稱為專家系統。為適應復雜問題的求解需要,單一的專家系統向多主體的分布式人工智慧系統發展,這時知識共享、主體間的協作、矛盾的出現和處理將是研究的關鍵問題。
需要數學基礎:高等數學,線性代數,概率論數理統計和隨機過程,離散數學,數值分析。
需要演算法的積累:人工神經網路,支持向量機,遺傳演算法等等演算法;當然還有各個領域需要的演算法,比如要讓機器人自己在位置環境導航和建圖就需要研究SLAM;總之演算法很多需要時間的積累。
需要掌握至少一門編程語言,畢竟演算法的實現還是要編程的;如果深入到硬體的話,一些電類基礎課必不可少。

D. Python 數據分析與數據挖掘是啥

python數據挖掘(data mining,簡稱DM),是指從大量的數據中,通過統計學、人工智慧、機器學習等方法,挖掘出未知的、且有價值的信息和知識的過程。數據分析通常是直接從資料庫取出已有信息,進行一些統計、可視化、文字結論等,最後可能生成一份研究報告性質的東西,以此來輔助決策。數據挖掘不是簡單的認為推測就可以,它往往需要針對大量數據,進行大規模運算,才能得到一些統計學規律。

這里可以使用CDA一站式數據分析平台,融合了數據源適配、ETL數據處理、數據建模、數據分析、數據填報、工作流、門戶、移動應用等核心功能。其中數據分析模塊支持報表分析、敏捷看板、即席報告、幻燈片、酷屏、數據填報、數據挖掘等多種分析手段對數據進行分析、展現、應用。幫助企業發現潛在的信息,挖掘數據的潛在價值。

如果你對於Python學數據挖掘感興趣的話,推薦CDA數據分析師的課程。課程內容兼顧培養解決數據挖掘流程問題的橫向能力以及解決數據挖掘演算法問題的縱向能力。真正理解商業思維,項目思維,能夠遇到問題解決問題;要求學生在使用演算法解決微觀根因分析、預測分析的問題上,根據業務場景來綜合判斷,洞察數據規律,使用正確的數據清洗與特徵工程方法,綜合使用統計分析方法、統計模型、運籌學、機器學習、文本挖掘演算法,而非單一的機器學習演算法。點擊預約免費試聽課。

E. python學習

人工智慧這個概念很大的,涉及邏輯推理、機器學習。從應用的角度,自然語言處理也是人工智慧的一個子領域。學習python,跟是否要學習人工智慧關系不大。

學習python,最基本的就是要掌握list(相當於c++中的vector,但list是廣義鏈表,比vector靈活)、dict(相當於c++中的map)、正則表達式(import re)、sort函數(個人是搞自然語言處理的,感覺這個函數使用頻度很高)、函數的聲明與定義。在此基礎上,可以涉及一些模塊、類的概念(在寫中小規模程序時,這兩個不是使用頻度很高的概念)。
學習python,藉助書籍系統學習是必須的:1)如果你的編程功底足夠好的話,可以看快餐教程——http://wenku..com/view/c98aaafdc8d376eeaeaa31ba.html,當年學習python時,導師跟我講只要兩小時就可以學會,但我學了兩天,究其原因,就是編程功底不符合導師的預期;2)如果想深入學習——http://wenku..com/view/368ef2d6195f312b3169a597.html,我主張看英文資料,也就是要掌握學習中的第一手資料;3)此外,在《python簡明教程》也推薦了大量書籍,都很不錯,且大多可以免費獲得,可以參考一下。

學習python,很重要的一個方法是要學會看文檔,以linux環境為例,在終端下鍵入「python」回車;鍵入「help(list)」,就會顯示list所有函數的用法;如果你想查str類下的find函數,可以鍵入「help(str.find)」。記住:這里顯示的內容是最原汁原味的python教程,但只具有參考手冊的性質,在系統學習之後,才可以熟練應用。

F. Python中文分詞的原理你知道嗎

中文分詞,即 Chinese Word Segmentation,即將一個漢字序列進行切分,得到一個個單獨的詞。表面上看,分詞其實就是那麼回事,但分詞效果好不好對信息檢索、實驗結果還是有很大影響的,同時分詞的背後其實是涉及各種各樣的演算法的。

中文分詞與英文分詞有很大的不同,對英文而言,一個單詞就是一個詞,而漢語是以字為基本的書寫單位,詞語之間沒有明顯的區分標記,需要人為切分。根據其特點,可以把分詞演算法分為四大類:

基於規則的分詞方法

基於統計的分詞方法

基於語義的分詞方法

基於理解的分詞方法

下面我們對這幾種方法分別進行總結。

基於規則的分詞方法

這種方法又叫作機械分詞方法、基於字典的分詞方法,它是按照一定的策略將待分析的漢字串與一個「充分大的」機器詞典中的詞條進行匹配。若在詞典中找到某個字元串,則匹配成功。該方法有三個要素,即分詞詞典、文本掃描順序和匹配原則。文本的掃描順序有正向掃描、逆向掃描和雙向掃描。匹配原則主要有最大匹配、最小匹配、逐詞匹配和最佳匹配。

最大匹配法(MM)。基本思想是:假設自動分詞詞典中的最長詞條所含漢字的個數為 i,則取被處理材料當前字元串序列中的前 i 個字元作為匹配欄位,查找分詞詞典,若詞典中有這樣一個 i 字詞,則匹配成功,匹配欄位作為一個詞被切分出來;若詞典中找不到這樣的一個 i 字詞,則匹配失敗,匹配欄位去掉最後一個漢字,剩下的字元作為新的匹配欄位,再進行匹配,如此進行下去,直到匹配成功為止。統計結果表明,該方法的錯誤率 為 1/169。

逆向最大匹配法(RMM)。該方法的分詞過程與 MM 法相同,不同的是從句子(或文章)末尾開始處理,每次匹配不成功時去掉的是前面的一個漢字。統計結果表明,該方法的錯誤率為 1/245。

逐詞遍歷法。把詞典中的詞按照由長到短遞減的順序逐字搜索整個待處理的材料,一直到把全部的詞切分出來為止。不論分詞詞典多大,被處理的材料多麼小,都得把這個分詞詞典匹配一遍。

設立切分標志法。切分標志有自然和非自然之分。自然切分標志是指文章中出現的非文字元號,如標點符號等;非自然標志是利用詞綴和不構成詞的詞(包 括單音詞、復音節詞以及象聲詞等)。設立切分標志法首先收集眾多的切分標志,分詞時先找出切分標志,把句子切分為一些較短的欄位,再用 MM、RMM 或其它的方法進行細加工。這種方法並非真正意義上的分詞方法,只是自動分詞的一種前處理方式而已,它要額外消耗時間掃描切分標志,增加存儲空間存放那些非 自然切分標志。

最佳匹配法(OM)。此法分為正向的最佳匹配法和逆向的最佳匹配法,其出發點是:在詞典中按詞頻的大小順序排列詞條,以求縮短對分詞詞典的檢索時 間,達到最佳效果,從而降低分詞的時間復雜度,加快分詞速度。實質上,這種方法也不是一種純粹意義上的分詞方法,它只是一種對分詞詞典的組織方式。OM 法的分詞詞典每條詞的前面必須有指明長度的數據項,所以其空間復雜度有所增加,對提高分詞精度沒有影響,分詞處理的時間復雜度有所降低。

此種方法優點是簡單,易於實現。但缺點有很多:匹配速度慢;存在交集型和組合型歧義切分問題;詞本身沒有一個標準的定義,沒有統一標準的詞集;不同詞典產生的歧義也不同;缺乏自學習的智能性。

基於統計的分詞方法

該方法的主要思想:詞是穩定的組合,因此在上下文中,相鄰的字同時出現的次數越多,就越有可能構成一個詞。因此字與字相鄰出現的概率或頻率能較好地反映成詞的可信度。可以對訓練文本中相鄰出現的各個字的組合的頻度進行統計,計算它們之間的互現信息。互現信息體現了漢字之間結合關系的緊密程度。當緊密程 度高於某一個閾值時,便可以認為此字組可能構成了一個詞。該方法又稱為無字典分詞。

該方法所應用的主要的統計模型有:N 元文法模型(N-gram)、隱馬爾可夫模型(Hiden Markov Model,HMM)、最大熵模型(ME)、條件隨機場模型(Conditional Random Fields,CRF)等。

在實際應用中此類分詞演算法一般是將其與基於詞典的分詞方法結合起來,既發揮匹配分詞切分速度快、效率高的特點,又利用了無詞典分詞結合上下文識別生詞、自動消除歧義的優點。

基於語義的分詞方法

語義分詞法引入了語義分析,對自然語言自身的語言信息進行更多的處理,如擴充轉移網路法、知識分詞語義分析法、鄰接約束法、綜合匹配法、後綴分詞法、特徵詞庫法、矩陣約束法、語法分析法等。

擴充轉移網路法

該方法以有限狀態機概念為基礎。有限狀態機只能識別正則語言,對有限狀態機作的第一次擴充使其具有遞歸能力,形成遞歸轉移網路 (RTN)。在RTN 中,弧線上的標志不僅可以是終極符(語言中的單詞)或非終極符(詞類),還可以調用另外的子網路名字分非終極符(如字或字串的成詞條件)。這樣,計算機在 運行某個子網路時,就可以調用另外的子網路,還可以遞歸調用。詞法擴充轉移網路的使用, 使分詞處理和語言理解的句法處理階段交互成為可能,並且有效地解決了漢語分詞的歧義。

矩陣約束法

其基本思想是:先建立一個語法約束矩陣和一個語義約束矩陣, 其中元素分別表明具有某詞性的詞和具有另一詞性的詞相鄰是否符合語法規則, 屬於某語義類的詞和屬於另一詞義類的詞相鄰是否符合邏輯,機器在切分時以之約束分詞結果。

基於理解的分詞方法

基於理解的分詞方法是通過讓計算機模擬人對句子的理解,達到識別詞的效果。其基本思想就是在分詞的同時進行句法、語義分析,利用句法信息和語義信息來處理歧義現象。它通常包括三個部分:分詞子系統、句法語義子系統、總控部分。在總控部分的協調下,分詞子系統可以獲得有關詞、句子等的句法和語義信息來對分詞歧義進行判斷,即它模擬了人對句子的理解過程。這種分詞方法需要使用大量的語言知識和信息。目前基於理解的分詞方法主要有專家系統分詞法和神經網路分詞法等。

專家系統分詞法

從專家系統角度把分詞的知識(包括常識性分詞知識與消除歧義切分的啟發性知識即歧義切分規則)從實現分詞過程的推理機中獨立出來,使知識庫的維護與推理機的實現互不幹擾,從而使知識庫易於維護和管理。它還具有發現交集歧義欄位和多義組合歧義欄位的能力和一定的自學習功能。

神經網路分詞法

該方法是模擬人腦並行,分布處理和建立數值計算模型工作的。它將分詞知識所分散隱式的方法存入神經網路內部,通過自學習和訓練修改內部權值,以達到正確的分詞結果,最後給出神經網路自動分詞結果,如使用 LSTM、GRU 等神經網路模型等。

神經網路專家系統集成式分詞法

該方法首先啟動神經網路進行分詞,當神經網路對新出現的詞不能給出准確切分時,激活專家系統進行分析判斷,依據知識庫進行推理,得出初步分析,並啟動學習機制對神經網路進行訓練。該方法可以較充分發揮神經網路與專家系統二者優勢,進一步提高分詞效率。

以上便是對分詞演算法的基本介紹。

閱讀全文

與python推理機相關的資料

熱點內容
紅米k40加密門禁卡 瀏覽:845
什麼樣的源碼好看 瀏覽:156
手機主伺服器有什麼用 瀏覽:610
程序編寫命令 瀏覽:597
android發送心跳包 瀏覽:385
指標源碼和原理 瀏覽:700
汽車空調壓縮吸盤 瀏覽:208
崽崽因app版本不同不能邀請怎麼辦 瀏覽:686
poa演算法得到的解為全局最優解 瀏覽:926
python符號表達式 瀏覽:34
威馳壓縮機繼電器 瀏覽:871
華為手機怎麼設置移動數據app 瀏覽:959
空調壓縮機哪的廠家多 瀏覽:390
手指速演算法24加7怎麼算 瀏覽:139
如何用python寫vlookup函數 瀏覽:798
社保加密狗廠商 瀏覽:216
php編譯運行說法 瀏覽:957
程序員說喂 瀏覽:258
抖音直播雲伺服器 瀏覽:629
一加7pro文件夾data 瀏覽:426