導航:首頁 > 編程語言 > python重試裝飾器

python重試裝飾器

發布時間:2023-05-11 07:46:32

⑴ 如何理解python裝飾器

內褲可以用來遮羞,但是到了冬天它沒法為我們防風禦寒,聰明的人們發明了長褲,有了長褲後寶寶再也不冷了,裝飾器就像我們這里說的長褲,在不影響內褲作用的前提下,給我們的身子提供了保暖的功效。

再回到我們的主題

裝飾器本質上是一個Python函數,它可以讓其他函數在不需要做任何代碼變動的前提下增加額外功能,裝飾器的返回值也是一個函數對象。它經常用於有切面需求的場景,比如:插入日誌、性能測試、事務處理、緩存、許可權校驗等場盯螞畢景。裝飾器是解決這類問題的絕佳設計,有了裝飾器,我們就可以抽離出大量與函數功能本身無關的雷同代碼並繼續重用。概括的講,裝飾器的作用就是為已經存在的對象添加額外的功能。

先來看一個簡單例子:
def foo():
print('i am foo')

現在有一個新的需求,希望可以記錄下函數的執行日誌,於是在代碼中添加日誌代碼:
def foo():
print('i am foo')
logging.info("foo is running")

bar()、bar2()也有類似的需求,怎麼做?再寫一個logging在bar函數里?這樣就造成大量雷同的代碼,為了減少重復寫代碼,我們可以這樣做,重新定義一個函數:專門處理日誌 ,日誌處理完之後再執行真正的業務代碼
def use_logging(func):
logging.warn("%s is running" % func.__name__)
func()

def bar():
print('i am bar')

use_logging(bar)

邏輯上不難理解, 但是這樣的話,我們每次都要將一個函數作為參數傳遞給use_logging函數。而且這種方式已經破壞了原有的代碼邏輯結構,之前執行物纖業務邏輯時,執行運行bar(),但是現在不得不改成use_logging(bar)。那麼有沒有更好的方式的呢?當然有,答案就是裝飾器。

簡單裝飾器

def use_logging(func):

def wrapper(*args, **kwargs):
logging.warn("%s is running" % func.__name__)
return func(*args, **kwargs)
return wrapper

def bar():
print('i am bar')

bar = use_logging(bar)
bar()

函數use_logging就是裝飾器,它把執行真正業務方法的func包裹在函數裡面,看起來像bar被use_logging裝飾了。在這個例子中,函數進入和退出時 ,被稱為一個橫切面(Aspect),這種編程方式被稱為面向切面的編程(Aspect-Oriented Programming)。
@符號是裝飾器的語法糖,在定義函數的時候使用,避免再一次賦值操作

def use_logging(func):

def wrapper(*args, **kwargs):
logging.warn("%s is running" % func.__name__)
return func(*args)
return wrapper

@use_logging
def foo():
print("i am foo")

@use_logging
def bar():
print("i am bar")

bar()

如上所示,這樣我們就可以省去bar = use_logging(bar)這一句了,直接調用bar()即可得到想要的結果。如果我們有其他的類似函數,我們可以繼續調用裝飾器來修飾函數,而不用重復修改函數或者增加新的封裝。這樣,我們就提高了程序的可重復利用性,並增加了程序的可讀性。

裝飾器在Python使用如此方便都要歸因於Python的函數能像凱芹普通的對象一樣能作為參數傳遞給其他函數,可以被賦值給其他變數,可以作為返回值,可以被定義在另外一個函數內。

帶參數的裝飾器
裝飾器還有更大的靈活性,例如帶參數的裝飾器:在上面的裝飾器調用中,比如@use_logging,該裝飾器唯一的參數就是執行業務的函數。裝飾器的語法允許我們在調用時,提供其它參數,比如@decorator(a)。這樣,就為裝飾器的編寫和使用提供了更大的靈活性。
def use_logging(level):
def decorator(func):
def wrapper(*args, **kwargs):
if level == "warn":
logging.warn("%s is running" % func.__name__)
return func(*args)
return wrapper

return decorator

@use_logging(level="warn")
def foo(name='foo'):
print("i am %s" % name)

foo()

上面的use_logging是允許帶參數的裝飾器。它實際上是對原有裝飾器的一個函數封裝,並返回一個裝飾器。我們可以將它理解為一個含有參數的閉包。當我 們使用@use_logging(level="warn")調用的時候,Python能夠發現這一層的封裝,並把參數傳遞到裝飾器的環境中。

類裝飾器
再來看看類裝飾器,相比函數裝飾器,類裝飾器具有靈活度大、高內聚、封裝性等優點。使用類裝飾器還可以依靠類內部的\_\_call\_\_方法,當使用 @ 形式將裝飾器附加到函數上時,就會調用此方法。

class Foo(object):
def __init__(self, func):
self._func = func

def __call__(self):
print ('class decorator runing')
self._func()
print ('class decorator ending')

@Foo
def bar():
print ('bar')

bar()

functools.wraps
使用裝飾器極大地復用了代碼,但是他有一個缺點就是原函數的元信息不見了,比如函數的docstring、__name__、參數列表,先看例子:
裝飾器
def logged(func):
def with_logging(*args, **kwargs):
print func.__name__ + " was called"
return func(*args, **kwargs)
return with_logging

函數
@logged
def f(x):
"""does some math"""
return x + x * x

該函數完成等價於:

def f(x):
"""does some math"""
return x + x * x
f = logged(f)

不難發現,函數f被with_logging取代了,當然它的docstring,__name__就是變成了with_logging函數的信息了。
print f.__name__ # prints 'with_logging'
print f.__doc__ # prints None

這個問題就比較嚴重的,好在我們有functools.wraps,wraps本身也是一個裝飾器,它能把原函數的元信息拷貝到裝飾器函數中,這使得裝飾器函數也有和原函數一樣的元信息了。
from functools import wraps
def logged(func):
@wraps(func)
def with_logging(*args, **kwargs):
print func.__name__ + " was called"
return func(*args, **kwargs)
return with_logging

@logged
def f(x):
"""does some math"""
return x + x * x

print f.__name__ # prints 'f'
print f.__doc__ # prints 'does some math'

內置裝飾器
@staticmathod、@classmethod、@property
裝飾器的順序

@a
@b
@c
def f ():

等效於

f = a(b(c(f)))

編輯於 2016-08-09

8 條評論

感謝
分享

收藏



沒有幫助


舉報



作者保留權利

收起

4
贊同

反對,不會顯示你的姓名

許多人選擇編程是因為他們喜歡把時間花在…

4 人贊同

先理解一下閉包的概念吧,之前回答過一個有關閉包和裝飾器的問題,可以參考一下:Python 里函數里返回一個函數內部定義的函數? - 知乎用戶的回答

顯示全部

先理解一下閉包的概念吧,之前回答過一個有關閉包和裝飾器的問題,可以參考一下:
Python 里函數里返回一個函數內部定義的函數? - 知乎用戶的回答

發布於 2014-12-09

2 條評論

感謝
分享

收藏



沒有幫助


舉報



作者保留權利

1
贊同

反對,不會顯示你的姓名

⑵ python介面自動化-pytest-重試測試

編寫自緩螞或動化過程中,經常會遇到服務不穩定情況,只執行一次結果可能說明不了問題,這個時候引入重試機制,能大幅提高用例成功率,但是也會增加執行時間。

-裝飾器擾伍物毀-作用域-function

-裝飾器-作用域-class

⑶ Python使用裝飾器進行django開發實例代碼的方法


本文研究的主要是Python使用裝飾器進行django開發的相關內容,具體如下。
裝飾器可以給一個函數,方法或類進行加工,添加額外的功能。
在這篇中使用裝飾器給頁面添加session而不讓直接訪問index,納昌改和show。在洞判views.py中
?
1
234
5
def
index(request):
return
HttpResponse(index)
def
show(request):
return
HttpResponse(show)
這迅譽樣可以直接訪問index和show,如果只允許登陸過的用戶訪問index和show,那麼就需修改代碼
?
12345678910
def
index(request):
if
request.session.get(username):
return
HttpResponse(index)
else
⑷ python裝飾器是什麼意思

裝飾器是程序開發中經常會用到的一個功能,用好了裝飾器,開發效率如虎添翼,所以這也是Python面試中必問的問題,但對於好多小白來講,這個功能 有點繞,自學時直接繞過去了,然後面試問到了就掛了,因為裝飾器是程序開發的基礎知識,這個都 不會,別跟人家說你會Python, 看了下面的文章,保證你學會裝飾器。

1、先明白這段代碼

####第一波####

deffoo():

print'foo'

foo#表示是函數

foo()#表示執行foo函數

####第二波####

deffoo():

print'foo'

foo=lambdax:x+1

foo()#執行下面的lambda表達式,而不再是原來的foo函數,因為函數foo被重新定義了

2、需求來了

初創公司有N個業務部門,1個基礎平台部門,基礎平台負責提供底層的功能,如:資料庫操作、redis調用、監控API等功能。業務部門使用基礎功能時,只需調用基礎平台提供的功能即可。如下:

###############基礎平台提供的功能如下###############

deff1():

print'f1'

deff2():

print'f2'

deff3():

print'f3'

deff4():

print'f4'

###############業務部門A調用基礎平台提供的功能###############

f1()

f2()

f3()

f4()

###############業務部門B調用基礎平台提供的功能###############

f1()

f2()

f3()

f4()

目前公司有條不紊的進行著,但是,以前基礎平台的開發人員在寫代碼時候沒有關注驗證相關的問題,即:基礎平台的提供的功能可以被任何人使用。現在需要對基礎平台的所有功能進行重構,為平台提供的所有功能添加驗證機制,即:執行功能前,先進行驗證。

老大把工作交給 Low B,他是這么做的:

跟每個業務部門交涉,每個業務部門自己寫代碼,調用基礎平台的功能之前先驗證。誒,這樣一來基礎平台就不需要做任何修改了。

當天Low B 被開除了…

老大把工作交給 Low BB,他是這么做的:

###############基礎平台提供的功能如下###############

deff1():

#驗證1

#驗證2

#驗證3

print'f1'

deff2():

#驗證1

#驗證2

#驗證3

print'f2'

deff3():

#驗證1

#驗證2

#驗證3

print'f3'

deff4():

#驗證1

#驗證2

#驗證3

print'f4'

###############業務部門不變###############

###業務部門A調用基礎平台提供的功能###

f1()

f2()

f3()

f4()

###業務部門B調用基礎平台提供的功能###

f1()

f2()

f3()

f4()

過了一周 Low BB 被開除了…

老大把工作交給 Low BBB,他是這么做的:

只對基礎平台的代碼進行重構,其他業務部門無需做任何修改

###############基礎平台提供的功能如下###############

defcheck_login():

#驗證1

#驗證2

#驗證3

pass

deff1():

check_login()

print'f1'

deff2():

check_login()

print'f2'

deff3():

check_login()

print'f3'

deff4():

check_login()

print'f4'

老大看了下Low BBB 的實現,嘴角漏出了一絲的欣慰的笑,語重心長的跟Low BBB聊了個天:

老大說:

寫代碼要遵循開發封閉原則,雖然在這個原則是用的面向對象開發,但是也適用於函數式編程,簡單來說,它規定已經實現的功能代碼不允許被修改,但可以被擴展,即:

  • 封閉:已實現的功能代碼塊

  • 開放:對擴展開發

  • 如果將開放封閉原則應用在上述需求中,那麼就不允許在函數 f1 、f2、f3、f4的內部進行修改代碼,老闆就給了Low BBB一個實現方案:

    defw1(func):

    definner():

    #驗證1

    #驗證2

    #驗證3

    returnfunc()

    returninner

    @w1

    deff1():

    print'f1'

    @w1

    deff2():

    print'f2'

    @w1

    deff3():

    print'f3'

    @w1

    deff4():

    print'f4'

  • 對於上述代碼,也是僅僅對基礎平台的代碼進行修改,就可以實現在其他人調用函數 f1 f2 f3 f4 之前都進行【驗證】操作,並且其他業務部門無需做任何操作。

    Low BBB心驚膽戰的問了下,這段代碼的內部執行原理是什麼呢?

    老大正要生氣,突然Low BBB的手機掉到地上,恰恰屏保就是Low BBB的女友照片,老大一看一緊一抖,喜笑顏開,交定了Low BBB這個朋友。詳細的開始講解了:

    單獨以f1為例:

    defw1(func):

    definner():

    #驗證1

    #驗證2

    #驗證3

    returnfunc()

    returninner

    @w1

    deff1():

    print'f1'

  • 當寫完這段代碼後(函數未被執行、未被執行、未被執行),python解釋器就會從上到下解釋代碼,步驟如下:

  • def w1(func): ==>將w1函數載入到內存

  • @w1

  • 沒錯,從表面上看解釋器僅僅會解釋這兩句代碼,因為函數在沒有被調用之前其內部代碼不會被執行。

    從表面上看解釋器著實會執行這兩句,但是 @w1 這一句代碼里卻有大文章,@函數名是python的一種語法糖。

    如上例@w1內部會執行一下操作:

  • 執行w1函數,並將 @w1 下面的函數作為w1函數的參數,即:@w1 等價於 w1(f1)
    所以,內部就會去執行:
    def inner:
    #驗證
    return f1() # func是參數,此時 func 等於 f1
    return inner # 返回的 inner,inner代表的是函數,非執行函數
    其實就是將原來的 f1 函數塞進另外一個函數中

  • 將執行完的 w1 函數返回值賦值給@w1下面的函數的函數名
    w1函數的返回值是:
    def inner:
    #驗證
    return 原來f1() # 此處的 f1 表示原來的f1函數
    然後,將此返回值再重新賦值給 f1,即:
    新f1 =def inner:
    #驗證
    return 原來f1()
    所以,以後業務部門想要執行 f1 函數時,就會執行 新f1 函數,在 新f1 函數內部先執行驗證,再執行原來的f1函數,然後將 原來f1 函數的返回值 返回給了業務調用者。
    如此一來, 即執行了驗證的功能,又執行了原來f1函數的內容,並將原f1函數返回值 返回給業務調用著

  • Low BBB 你明白了嗎?要是沒明白的話,我晚上去你家幫你解決吧!!!

    先把上述流程看懂,之後還會繼續更新…

    3、問答時間

    問題:被裝飾的函數如果有參數呢?

  • #一個參數

    defw1(func):

    definner(arg):

    #驗證1

    #驗證2

    #驗證3

    returnfunc(arg)

    returninner

    @w1

    deff1(arg):

    print'f1'

  • #兩個參數

    defw1(func):

    definner(arg1,arg2):

    #驗證1

    #驗證2

    #驗證3

    returnfunc(arg1,arg2)

    returninner

    @w1

    deff1(arg1,arg2):

    print'f1'

  • #三個參數

    defw1(func):

    definner(arg1,arg2,arg3):

    #驗證1

    #驗證2

    #驗證3

    returnfunc(arg1,arg2,arg3)

    returninner

    @w1

    deff1(arg1,arg2,arg3):

    print'f1'

  • 問題:可以裝飾具有處理n個參數的函數的裝飾器?

  • defw1(func):

    definner(*args,**kwargs):

    #驗證1

    #驗證2

    #驗證3

    returnfunc(*args,**kwargs)

    returninner

    @w1

    deff1(arg1,arg2,arg3):

    print'f1'

  • 問題:一個函數可以被多個裝飾器裝飾嗎?

    defw1(func):

    definner(*args,**kwargs):

    #驗證1

    #驗證2

    #驗證3

    returnfunc(*args,**kwargs)

    returninner

    defw2(func):

    definner(*args,**kwargs):

    #驗證1

    #驗證2

    #驗證3

    returnfunc(*args,**kwargs)

    returninner

    @w1

    @w2

    deff1(arg1,arg2,arg3):

    print'f1'

  • 問題:還有什麼更吊的裝飾器嗎?

    #!/usr/bin/envpython

    #coding:utf-8

    defBefore(request,kargs):

    print'before'

    defAfter(request,kargs):

    print'after'

    defFilter(before_func,after_func):

    defouter(main_func):

    defwrapper(request,kargs):

    before_result=before_func(request,kargs)

    if(before_result!=None):

    returnbefore_result;

    main_result=main_func(request,kargs)

    if(main_result!=None):

    returnmain_result;

    after_result=after_func(request,kargs)

    if(after_result!=None):

    returnafter_result;

    returnwrapper

    returnouter

    @Filter(Before,After)

    defIndex(request,kargs):

    print'index'

⑸ Python筆記:Python裝飾器

裝飾器是通過裝飾器函數修改原函數的一些功能而不需要修改原函數,在很多場景可以用到它,比如① 執行某個測試用例之前,判斷是否需要登錄或者執行某些特定操作;② 統計某個函數的執行時間;③ 判斷輸入合法性等。合理使用裝飾器可以極大地提高程序的可讀性以及運行效率。本文將介紹Python裝飾器的使用方法。

python裝飾器可以定義如下:

輸出:

python解釋器將test_decorator函數作為參數傳遞給my_decorator函數,並指向了內部函數 wrapper(),內部函數 wrapper() 又會調用原函數 test_decorator(),所以decorator()的執行會先列印'this is wrapper',然後列印'hello world', test_decorator()執行完成後,列印 'bye' ,*args和**kwargs,表示接受任意數量和類型的參數。

裝飾器 my_decorator() 把真正需要執行的函數 test_decorator() 包裹在其中,並且改變了它的行為,但是原函數 test_decorator() 不變。

一般使用如下形式使用裝飾器:

@my_decorator就相當於 decorator = my_decorator(test_decorator) 語句。

內置裝飾器@functools.wrap可用於保留原函數的元信息(將原函數的元信息,拷貝到對應的裝飾器函數里)。先來看看沒有使用functools的情況:

輸出:

從上面的輸出可以看出test_decorator() 函數被裝飾以後元信息被wrapper() 函數取代了,可以使用@functools.wrap裝飾器保留原函數的元信息:

輸出:

裝飾器可以接受自定義參數。比如定義一個參數來設置裝飾器內部函數的執行次數:

輸出:

Python 支持多個裝飾器嵌套:

裝飾的過程:

順序從里到外:

test_decorator('hello world') 執行順序和裝飾的過程相反。

輸出:

類也可以作為裝飾器,類裝飾器主要依賴__call__()方法,是python中所有能被調用的對象具有的內置方法(python魔術方法),每當調用一個類的實例時,__call__()就會被執行一次。

下面的類裝飾器實現統計函數執行次數:

輸出:

下面介紹兩種裝飾器使用場景

統計函數執行所花費的時間

輸出:

在使用某些web服務時,需要先判斷用戶是否登錄,如果沒有登錄就跳轉到登錄頁面或者提示用戶登錄:

--THE END--

⑹ 推薦 8 個炫酷的 Python 裝飾器

1、 lru_cache
這個裝飾器來自functools模塊。該模塊包含在標准庫中,非常易於使用。它還包含比這個裝飾器更酷的功能,但這個裝飾器是非常受人喜歡的。此裝飾器可用於使用緩存加速函數的連續運行。當然,這應該在使用時記住一些關於緩存的注意事項,但在通用使用情況下,大多數時候這個裝飾器都是值得使用的。
2、JIT
JIT是即時編譯的縮寫。通常每當我們在Python中運行一些代碼時,發生的第一件事就是編譯。這種編譯會產生一些開銷,因為類型被分配了內存,並存儲為未分配但已命名的別名,使用即時編譯,我們在執行時才進行編譯。
在很多方面,我們可以將其視為類似於並行計算的東西,其中Python解釋器同時處理兩件事以節省時間。Numba JTI編譯器因將這一概念提到Python中而聞名,可以非常輕松地調用此裝飾器,並立即提高代碼的性能。Numba包提供了JIT裝飾器,它使運行更密集的軟體變得更加容易,而不必進入C。
3、do_twice
do_twice裝飾器的功能與它的名字差不多。此裝飾器可用於通過一次調用運行兩次函數,對調試特別有用。它可以用於測量兩個不同迭代的功能。
4、count_calls
count_calls裝飾器可用於提供有關函數在軟體中使用多少次的信息。與do_twice一樣,對調試也特別有用。
5、dataclass
為了節省編寫類的時間,推薦使用dataclass裝飾器。這個裝飾器可用於快速編寫類中常見的標准方法,這些方法通常會在我們編寫的類中找到。
6、singleton
singleton是一個單例裝飾器。通常,單例裝飾器是由用戶自己編寫的,實際上並不是導入的。
7、use_unit
在科學計算中經常派上用場的一種裝飾器是use_unit裝飾器。此裝飾器可用於更改返回結果的表示單位。這對於那些不想在數據中添加度量單位但仍希望人們知道這些單位是什麼的人很有用。這個裝飾器可不是在任何模塊中真正有用,但它是非常常見的,對科學應用程序非常有用。

⑺ python自動測試Pytest中Fixture裝飾器

可以使用 pytest.fixture() 查看 fixture() 函數的源碼桐前和所需要的參數,同Fixture裝飾器需要的參數一樣。

說明:

使用Fixture裝飾器來實現部分用例的前後置。

比如:我們在測試一個操作流程時,有的測試用例需要登陸,有的測試用例執行不需要用戶登陸。

如果要直接使用 setup_function() 前置函數來實現,該文件中的所有用例執行前都需要進行用戶登陸。

如下示例:

我們可以使用Fixture裝飾器來實現部分用例的前後置,如下示例:

前面的示例,是在用例前加前置條件,相當於執行了 setup() 前置函數,既然有 setup() 前置函數那就會有 teardown() 後置函數,Fixture裡面的 teardown() 後置函數用 yield 來喚醒。

示例:

yield 是當用例執行完之後,會執行 yield 後面的代碼,但用例不能有 return 返回值。

addfinalizer 實現功能跟 yield 一樣,但是用例可以 return 參數,傳給後面用例。

示例1:

示例2:

示例3:

使用 yield 也可以返回數據。(這種方式好神奇)

上面例子是帶返回值並且還要實現 teardown() 後置函數的Fixture寫法。

這里就是單純的說明帶返回值的Fixture。

我們可以選擇讓Fixture返回我們需要的東西,如果Fixture需要配置一些數據,讀個文件,或者連接一個資料庫,那麼你可以讓Fixture返回這些數據或資源。

示例:

Fixture修飾的函數可以通過添加 params 參數來實現參數化州鏈。(實際工作中,不常用此方局跡清式)

request 代表Fixture的調用狀態, request.param 作為返回值供測試使用。

示例:

參數是一個元組列表格式的數據。

總結: params 參數支持的格式。

@pytest.mark.usefixtures("fixturename") 裝飾類也是一種調用Fixture的方式。

@pytest.mark.usefixtures("fixturename") 裝飾類可以裝飾模塊、類、函數、方法。

usefixtures 與傳 fixture 區別:

如果Fixture有返回值,則不能用 @pytest.mark.usefixtures("fixturename") 裝飾器修飾用例。

如果Fixture沒有返回值,用 @pytest.mark.usefixtures("fixturename") 裝飾器和 @pytest.fixture() 裝飾器作用一樣。

示例:

⑻ Python中異常重試的解決方案詳解

Python中異常重試的解決方案詳解
大家在做數據抓取的時候,經常遇到由於網路問題導致的程序保存,先前只是記錄了錯誤內容,並對錯誤內容進行後期處理。
原先的流程:
def crawl_page(url):
pass

def log_error(url):
pass

url = ""
try:
crawl_page(url)
except:
log_error(url)

改進後的流程:
attempts = 0
success = False
while attempts < 3 and not success:
try:
crawl_page(url)
success = True
except:
attempts += 1
if attempts == 3:
break

最近發現的新的解決方案:retrying

retrying是一個 Python的重試包,可以用來自動重試一些可能運行失敗的程序段。retrying提供一個裝飾器函數retry,被裝飾的函數就會在運行失敗的條件下重新執行,默認只要一直報錯就會不斷重試。
import random
from retrying import retry

@retry
def do_something_unreliable():
if random.randint(0, 10) > 1:
raise IOError("Broken sauce, everything is hosed!!!111one")
else:
return "Awesome sauce!"

print do_something_unreliable()

如果我們運行have_a_try函數,那麼直到random.randint返回5,它才會執行結束,否則會一直重新執行。

retry還可以接受一些參數,這個從源碼中Retrying類的初始化函數可以看到可選的參數:

stop_max_attempt_number:用來設定最大的嘗試次數,超過該次數就停止重試
stop_max_delay:比如設置成10000,那麼從被裝飾的函數開始執行的時間點開始,到函數成功運行結束或者失敗報錯中止的時間點,只要這段時間超過10秒,函數就不會再執行了
wait_fixed:設置在兩次retrying之間的停留時間
wait_random_min和wait_random_max:用隨機的方式產生兩次retrying之間的停留時間
wait_exponential_multiplier和wait_exponential_max:以指數的形式產生兩次retrying之間的停留時間,產生的值為2^previous_attempt_number * wait_exponential_multiplier,previous_attempt_number是前面已經retry的次數,如果產生的這個值超過了wait_exponential_max的大小,那麼之後兩個retrying之間的停留值都為wait_exponential_max。這個設計迎合了exponential backoff演算法,可以減輕阻塞的情況。
我們可以指定要在出現哪些異常的時候再去retry,這個要用retry_on_exception傳入一個函數對象:
def retry_if_io_error(exception):
return isinstance(exception, IOError)

@retry(retry_on_exception=retry_if_io_error)
def read_a_file():
with open("file", "r") as f:
return f.read()

在執行read_a_file函數的過程中,如果報出異常,那麼這個異常會以形參exception傳入retry_if_io_error函數中,如果exception是IOError那麼就進行retry,如果不是就停止運行並拋出異常。

我們還可以指定要在得到哪些結果的時候去retry,這個要用retry_on_result傳入一個函數對象:

def retry_if_result_none(result):
return result is None

@retry(retry_on_result=retry_if_result_none)
def get_result():
return None

在執行get_result成功後,會將函數的返回值通過形參result的形式傳入retry_if_result_none函數中,如果返回值是None那麼就進行retry,否則就結束並返回函數值。

⑼ python裝飾器使用

裝飾器是從英文decorator翻譯過來的,從字面上來看就是對某個東西進行修飾,增強被修飾物的功能,下面我們對裝飾器做下簡單介紹。

一、怎麼編寫裝飾器

裝飾器的實現很簡單,本質是一個可調用對象,可以是函數、方法、對象等,它既可以裝飾函數也可以裝飾類和方法,為了簡單說明問題,我們實現一個函數裝飾器,如下代碼:

有了這個裝飾器,我們就可以列印出什麼時候開始和結束調用函數,對於排查函數的調用鏈非常方便。

二、帶參數的裝飾器

上面的例子無論什麼時候調用sum都會輸出信息,如果我們需要按需輸出信息怎麼實現呢,這時就要用到帶參數的裝飾器了,如下代碼:

對sum使用裝飾器時沒有參數,這時debug為0,所以調用sum時不會輸出函數調用相關信息。

對multi使用裝飾器時有參數,這時debug為1,所以調用multi時會輸出函數調用相關信息。

三、函數名字問題

當我們列印被裝飾後的函數名字時,不知道大家有沒發現輸出的不是函數本身的名字,如下代碼會輸出『wrap』而不是『sum』:

有時這種表現並不是我們想要的,我們希望被裝飾後的函數名字還是函數本身,那要怎麼實現呢?很簡單,只需要引入functools.wraps即可,如下代碼就會輸出『sum』了:

看完後是不是覺得python裝飾器很簡單,只要了解它的本質,怎麼寫都行,有好多種玩法呢。

⑽ 什麼是Python裝飾器


所謂裝飾器就是把函數包裝一下,為函數添加一些附加功能,裝飾器就是一個函數,參數為被包裝的函數,返回包裝後的函數:你可以試下:

defd(fp):
def_d(*arg,**karg):
print"dosthbeforefp.."
r=fp(*arg,**karg)
print"dosthafterfp.."
returnr
return_d
@d
deff():
print"callf"
#上面使用@d來表示裝飾器和下面是一個意思
#f=d(f)
f()#調用f



與python重試裝飾器相關的資料

熱點內容
蘋果筆記本t2加密晶元怎麼打開 瀏覽:796
安卓如何把手機投屏至電視 瀏覽:737
方舟編譯器現在可提速哪些軟體 瀏覽:58
微信加密為什麼是黑屏 瀏覽:473
android去電狀態 瀏覽:602
蘋果13如何加密視頻 瀏覽:813
linuxweblogic緩存 瀏覽:67
雲伺服器不同地域 瀏覽:946
python鬧鍾怎麼打 瀏覽:686
虛擬主機伺服器有什麼區別 瀏覽:833
演算法與程序的奧秘章節檢測 瀏覽:377
找pdf 瀏覽:529
與伺服器連接斷開如何處理 瀏覽:833
伺服器維修預計十分鍾什麼意思 瀏覽:170
黑馬程序員主打教學是什麼 瀏覽:41
python九乘法表怎麼編寫 瀏覽:974
思維方式pdf 瀏覽:656
tcc社區app怎麼注冊 瀏覽:941
央視網下載加密 瀏覽:454
命令行訪問伺服器 瀏覽:36