① 利用python實現數據分析
鏈接:
煉數成金:Python數據分析。Python是一種面向對象、直譯式計算機程序設計語言。也是一種功能強大而完善的通用型語言,已經具有十多年的發展歷史,成熟且穩定。Python 具有腳本語言中最豐富和強大的類庫,足以支持絕大多數日常應用。 Python語法簡捷而清晰,具有豐富和強大的類庫。它常被昵稱為膠水語言,它能夠很輕松的把用其他語言製作的各種模塊(尤其是C/C++)輕松地聯結在一起。
課程將從Python的基本使用方法開始,一步步講解,從ETL到各種數據分析方法的使用,並結合實例,讓學員能從中借鑒學習。
課程目錄:
Python基礎
Python的概覽——Python的基本介紹、安裝與基本語法、變數類型與運算符
了解Python流程式控制制——條件、循環語句與其他語句
常用函數——函數的定義與使用方法、主要內置函數的介紹
.....
② python數據分析與應用-Python數據分析與應用 pdf 內部全資料版
給大家帶來的一篇關於Python數據相關的電子書資源,介紹了關於Python方面的內容,本書是由人民郵電出版社出版,格式為PDF,資源大小281 MB,黃紅梅 張良均編寫,目前豆瓣、亞馬遜、當當、京東等電子書綜合評分為:7.8。
內容介紹
目錄
第1章Python數據分析概述1
任務1.1認識數據分析1
1.1.1掌握數據分析的概念2
1.1.2掌握數據分析的流程2
1.1.3了解數據分析應用場景4
任務1.2熟悉Python數據分析的工具5
1.2.1了解數據分析常用工具6
1.2.2了解Python數據分析的優勢7
1.2.3了解Python數據分析常用類庫7
任務1.3安裝Python的Anaconda發行版9
1.3.1了解Python的Anaconda發行版9
1.3.2在Windows系統中安裝Anaconda9
1.3.3在Linux系統中安裝Anaconda12
任務1.4掌握Jupyter Notebook常用功能14
1.4.1掌握Jupyter Notebook的基本功能14
1.4.2掌握Jupyter Notebook的高 級功能16
小結19
課後習題19
第2章NumPy數值計算基礎21
任務2.1掌握NumPy數組對象ndarray21
2.1.1創建數組對象21
2.1.2生成隨機數27
2.1.3通過索引訪問數組29
2.1.4變換數組的形態31
任務2.2掌握NumPy矩陣與通用函數34
2.2.1創建NumPy矩陣34
2.2.2掌握ufunc函數37
任務2.3利用NumPy進行統計分析41
2.3.1讀/寫文件41
2.3.2使用函數進行簡單的統計分析44
2.3.3任務實現48
小結50
實訓50
實訓1創建數組並進行運算50
實訓2創建一個國際象棋的棋盤50
課後習題51
第3章Matplotlib數據可視化基礎52
任務3.1掌握繪圖基礎語法與常用參數52
3.1.1掌握pyplot基礎語法53
3.1.2設置pyplot的動態rc參數56
任務3.2分析特徵間的關系59
3.2.1繪制散點圖59
3.2.2繪制折線圖62
3.2.3任務實現65
任務3.3分析特徵內部數據分布與分散狀況68
3.3.1繪制直方圖68
3.3.2繪制餅圖70
3.3.3繪制箱線圖71
3.3.4任務實現73
小結77
實訓78
實訓1分析1996 2015年人口數據特徵間的關系78
實訓2分析1996 2015年人口數據各個特徵的分布與分散狀況78
課後習題79
第4章pandas統計分析基礎80
任務4.1讀/寫不同數據源的數據80
4.1.1讀/寫資料庫數據80
4.1.2讀/寫文本文件83
4.1.3讀/寫Excel文件87
4.1.4任務實現88
任務4.2掌握DataFrame的常用操作89
4.2.1查看DataFrame的常用屬性89
4.2.2查改增刪DataFrame數據91
4.2.3描述分析DataFrame數據101
4.2.4任務實現104
任務4.3轉換與處理時間序列數據107
4.3.1轉換字元串時間為標准時間107
4.3.2提取時間序列數據信息109
4.3.3加減時間數據110
4.3.4任務實現111
任務4.4使用分組聚合進行組內計算113
4.4.1使用groupby方法拆分數據114
4.4.2使用agg方法聚合數據116
4.4.3使用apply方法聚合數據119
4.4.4使用transform方法聚合數據121
4.4.5任務實現121
任務4.5創建透視表與交叉表123
4.5.1使用pivot_table函數創建透視表123
4.5.2使用crosstab函數創建交叉表127
4.5.3任務實現128
小結130
實訓130
實訓1讀取並查看P2P網路貸款數據主表的基本信息130
實訓2提取用戶信息更新表和登錄信息表的時間信息130
實訓3使用分組聚合方法進一步分析用戶信息更新表和登錄信息表131
實訓4對用戶信息更新表和登錄信息表進行長寬表轉換131
課後習題131
第5章使用pandas進行數據預處理133
任務5.1合並數據133
5.1.1堆疊合並數據133
5.1.2主鍵合並數據136
5.1.3重疊合並數據139
5.1.4任務實現140
任務5.2清洗數據141
5.2.1檢測與處理重復值141
5.2.2檢測與處理缺失值146
5.2.3檢測與處理異常值149
5.2.4任務實現152
任務5.3標准化數據154
5.3.1離差標准化數據154
5.3.2標准差標准化數據155
5.3.3小數定標標准化數據156
5.3.4任務實現157
任務5.4轉換數據158
5.4.1啞變數處理類別型數據158
5.4.2離散化連續型數據160
5.4.3任務實現162
小結163
實訓164
實訓1插補用戶用電量數據缺失值164
實訓2合並線損、用電量趨勢與線路告警數據164
實訓3標准化建模專家樣本數據164
課後習題165
第6章使用scikit-learn構建模型167
任務6.1使用sklearn轉換器處理數據167
6.1.1載入datasets模塊中的數據集167
6.1.2將數據集劃分為訓練集和測試集170
6.1.3使用sklearn轉換器進行數據預處理與降維172
6.1.4任務實現174
任務6.2構建並評價聚類模型176
6.2.1使用sklearn估計器構建聚類模型176
6.2.2評價聚類模型179
6.2.3任務實現182
任務6.3構建並評價分類模型183
6.3.1使用sklearn估計器構建分類模型183
6.3.2評價分類模型186
6.3.3任務實現188
任務6.4構建並評價回歸模型190
6.4.1使用sklearn估計器構建線性回歸模型190
6.4.2評價回歸模型193
6.4.3任務實現194
小結196
實訓196
實訓1使用sklearn處理wine和wine_quality數據集196
實訓2構建基於wine數據集的K-Means聚類模型196
實訓3構建基於wine數據集的SVM分類模型197
實訓4構建基於wine_quality數據集的回歸模型197
課後習題198
第7章航空公司客戶價值分析199
任務7.1了解航空公司現狀與客戶價值分析199
7.1.1了解航空公司現狀200
7.1.2認識客戶價值分析201
7.1.3熟悉航空客戶價值分析的步驟與流程201
任務7.2預處理航空客戶數據202
7.2.1處理數據缺失值與異常值202
7.2.2構建航空客戶價值分析關鍵特徵202
7.2.3標准化LRFMC模型的5個特徵206
7.2.4任務實現207
任務7.3使用K-Means演算法進行客戶分群209
7.3.1了解K-Means聚類演算法209
7.3.2分析聚類結果210
7.3.3模型應用213
7.3.4任務實現214
小結215
實訓215
實訓1處理信用卡數據異常值215
實訓2構造信用卡客戶風險評價關鍵特徵217
實訓3構建K-Means聚類模型218
課後習題218
第8章財政收入預測分析220
任務8.1了解財政收入預測的背景與方法220
8.1.1分析財政收入預測背景220
8.1.2了解財政收入預測的方法222
8.1.3熟悉財政收入預測的步驟與流程223
任務8.2分析財政收入數據特徵的相關性223
8.2.1了解相關性分析223
8.2.2分析計算結果224
8.2.3任務實現225
任務8.3使用Lasso回歸選取財政收入預測的關鍵特徵225
8.3.1了解Lasso回歸方法226
8.3.2分析Lasso回歸結果227
8.3.3任務實現227
任務8.4使用灰色預測和SVR構建財政收入預測模型228
8.4.1了解灰色預測演算法228
8.4.2了解SVR演算法229
8.4.3分析預測結果232
8.4.4任務實現234
小結236
實訓236
實訓1求取企業所得稅各特徵間的相關系數236
實訓2選取企業所得稅預測關鍵特徵237
實訓3構建企業所得稅預測模型237
課後習題237
第9章家用熱水器用戶行為分析與事件識別239
任務9.1了解家用熱水器用戶行為分析的背景與步驟239
9.1.1分析家用熱水器行業現狀240
9.1.2了解熱水器採集數據基本情況240
9.1.3熟悉家用熱水器用戶行為分析的步驟與流程241
任務9.2預處理熱水器用戶用水數據242
9.2.1刪除冗餘特徵242
9.2.2劃分用水事件243
9.2.3確定單次用水事件時長閾值244
9.2.4任務實現246
任務9.3構建用水行為特徵並篩選用水事件247
9.3.1構建用水時長與頻率特徵248
9.3.2構建用水量與波動特徵249
9.3.3篩選候選洗浴事件250
9.3.4任務實現251
任務9.4構建行為事件分析的BP神經網路模型255
9.4.1了解BP神經網路演算法原理255
9.4.2構建模型259
9.4.3評估模型260
9.4.4任務實現260
小結263
實訓263
實訓1清洗運營商客戶數據263
實訓2篩選客戶運營商數據264
實訓3構建神經網路預測模型265
課後習題265
附錄A267
附錄B270
參考文獻295
學習筆記
Jupyter Notebook(此前被稱為 IPython notebook)是一個互動式筆記本,支持運行 40 多種編程語言。 Jupyter Notebook 的本質是一個 Web 應用程序,便於創建和共享文學化程序文檔,支持實時代碼,數學方程,可視化和 markdown。 用途包括:數據清理和轉換,數值模擬,統計建模,機器學習等等 。 定義 (推薦學習:Python視頻教程) 用戶可以通過電子郵件,Dropbox,GitHub 和 Jupyter Notebook Viewer,將 Jupyter Notebook 分享給其他人。 在Jupyter Notebook 中,代碼可以實時的生成圖像,視頻,LaTeX和JavaScript。 使用 數據挖掘領域中最熱門的比賽 Kaggle 里的資料都是Jupyter 格式 。 架構 Jupyter組件 Jupyter包含以下組件: Jupyter Notebook 和 ……
本文實例講述了Python實現的微信好友數據分析功能。分享給大家供大家參考,具體如下: 這里主要利用python對個人微信好友進行分析並把結果輸出到一個html文檔當中,主要用到的python包為 itchat , pandas , pyecharts 等 1、安裝itchat 微信的python sdk,用來獲取個人好友關系。獲取的代碼 如下: import itchatimport pandas as pdfrom pyecharts import Geo, Baritchat.login()friends = itchat.get_friends(update=True)[0:]def User2dict(User): User_dict = {} User_dict["NickName"] = User["NickName"] if User["NickName"] else "NaN" User_dict["City"] = User["City"] if User["City"] else "NaN" User_dict["Sex"] = User["Sex"] if User["Sex"] else 0 User_dict["Signature"] = User["Signature"] if User["Signature"] else "NaN" ……
基於微信開放的個人號介面python庫itchat,實現對微信好友的獲取,並對省份、性別、微信簽名做數據分析。 效果: 直接上代碼,建三個空文本文件stopwords.txt,newdit.txt、unionWords.txt,下載字體simhei.ttf或刪除字體要求的代碼,就可以直接運行。 #wxfriends.py 2018-07-09import itchatimport sysimport pandas as pdimport matplotlib.pyplot as pltplt.rcParams['font.sans-serif']=['SimHei']#繪圖時可以顯示中文plt.rcParams['axes.unicode_minus']=False#繪圖時可以顯示中文import jiemport jieba.posseg as psegfrom scipy.misc import imreadfrom wordcloud import WordCloudfrom os import path#解決編碼問題non_bmp_map = dict.fromkeys(range(0x10000, sys.maxunicode + 1), 0xfffd) #獲取好友信息def getFriends():……
Python數據分析之雙色球基於線性回歸演算法預測下期中獎結果示例
本文實例講述了Python數據分析之雙色球基於線性回歸演算法預測下期中獎結果。分享給大家供大家參考,具體如下: 前面講述了關於雙色球的各種演算法,這里將進行下期雙色球號碼的預測,想想有些小激動啊。 代碼中使用了線性回歸演算法,這個場景使用這個演算法,預測效果一般,各位可以考慮使用其他演算法嘗試結果。 發現之前有很多代碼都是重復的工作,為了讓代碼看的更優雅,定義了函數,去調用,頓時高大上了 #!/usr/bin/python# -*- coding:UTF-8 -*-#導入需要的包import pandas as pdimport numpy as npimport matplotlib.pyplot as pltimport operatorfrom sklearn import datasets,linear_modelfrom sklearn.linear_model import LogisticRegression#讀取文件d……
以上就是本次介紹的Python數據電子書的全部相關內容,希望我們整理的資源能夠幫助到大家,感謝大家對鬼鬼的支持。
注·獲取方式:私信(666)
③ 如何利用python進行數據分析
作者Wes McKinney是pandas庫的主要作者,所以本書也可以作為利用Python實現數據密集型應用的科學計算實踐指南。本書適合剛剛接觸Python的分析人員以及剛剛接觸科學計算的Python程序員。
•將IPython這個互動式Shell作為你的首要開發環境。
•學習NumPy(Numerical Python)的基礎和高級知識。
•從pandas庫的數據分析工具開始。
•利用高性能工具對數據進行載入、清理、轉換、合並以及重塑。
•利用matplotlib創建散點圖以及靜態或互動式的可視化結果。
•利用pandas的groupby功能對數據集進行切片、切塊和匯總操作。
•處理各種各樣的時間序列數據。
•通過詳細的案例學習如何解決Web分析、社會科學、金融學以及經•濟學等領域的問題。
④ 《利用Python進行數據分析》——案例1從Bitly獲取數據
這個案例主要目的是轉換json類型的數據,利用python和pandas方法進行計數。
step1:獲取數據
將json格式數據轉化成python對象
step2純python時區計數
1.獲取時區+計數
2.對以上字典形式進行計數
3.更更簡單的方法,直接用python標准庫的collections.Counters類
從僅獲取時區後開始
step3 使用pandas計數
step4 可視化 seaborn
5.補充一些語句
⑤ python怎麼分析數據
python怎麼分析數據?
在不同的場景下通常可以採用不同的數據分析方式,比如對於大部分職場人來說,Excel可以滿足大部分數據分析場景,當數據量比較大的時候可以通過學習資料庫知識來完成數據分析任務,對於更復雜的數據分析場景可以通過BI工具來完成數據分析。通過工具進行數據分析一方面比較便捷,另一方面也比較容易掌握。
但是針對於更加開放的數據分析場景時,就需要通過編程的方式來進行數據分析了,比如通過機器學習的方式進行數據分析,而Python語言在機器學習領域有廣泛的應用。採用機器學習的方式進行數據分析需要經過五個步驟,分別是數據准備、演算法設計、演算法訓練、演算法驗證和演算法應用。
採用機器學習進行數據分析時,首先要了解一下常見的演算法,比如knn、決策樹、支持向量機、樸素貝葉斯等等,這些演算法都是機器學習領域非常常見的演算法,也具有比較廣泛的應用場景。當然,學習這些演算法也需要具備一定的線性代數和概率論基礎。學習不同的演算法最好結合相應的應用場景進行分析,有的場景也需要結合多個演算法進行分析。另外,通過場景來學習演算法的使用會盡快建立畫面感。
採用Python進行數據分析還需要掌握一系列庫的使用,包括Numpy(矩陣運算庫)、Scipy(統計運算庫)、Matplotpb(繪圖庫)、pandas(數據集操作)、Sympy(數值運算庫)等庫,這些庫在Python進行數據分析時有廣泛的應用。
相關推薦:《Python教程》以上就是小編分享的關於python怎麼分析數據的詳細內容希望對大家有所幫助,更多有關python教程請關注環球青藤其它相關文章!
⑥ 可以讓你快速用Python進行數據分析的10個小技巧
一些小提示和小技巧可能是非常有用的,特別是在編程領域。有時候使用一點點黑客技術,既可以節省時間,還可能挽救「生命」。
一個小小的快捷方式或附加組件有時真是天賜之物,並且可以成為真正的生產力助推器。所以,這里有一些小提示和小技巧,有些可能是新的,但我相信在下一個數據分析項目中會讓你非常方便。
Pandas中數據框數據的Profiling過程
Profiling(分析器)是一個幫助我們理解數據的過程,而Pandas Profiling是一個Python包,它可以簡單快速地對Pandas 的數據框數據進行 探索 性數據分析。
Pandas中df.describe()和df.info()函數可以實現EDA過程第一步。但是,它們只提供了對數據非常基本的概述,對於大型數據集沒有太大幫助。 而Pandas中的Profiling功能簡單通過一行代碼就能顯示大量信息,且在互動式HTML報告中也是如此。
對於給定的數據集,Pandas中的profiling包計算了以下統計信息:
由Pandas Profiling包計算出的統計信息包括直方圖、眾數、相關系數、分位數、描述統計量、其他信息——類型、單一變數值、缺失值等。
安裝
用pip安裝或者用conda安裝
pip install pandas-profiling
conda install -c anaconda pandas-profiling
用法
下面代碼是用很久以前的泰坦尼克數據集來演示多功能Python分析器的結果。
#importing the necessary packages
import pandas as pd
import pandas_profiling
df = pd.read_csv('titanic/train.csv')
pandas_profiling.ProfileReport(df)
一行代碼就能實現在Jupyter Notebook中顯示完整的數據分析報告,該報告非常詳細,且包含了必要的圖表信息。
還可以使用以下代碼將報告導出到互動式HTML文件中。
profile = pandas_profiling.ProfileReport(df)
profile.to_file(outputfile="Titanic data profiling.html")
Pandas實現互動式作圖
Pandas有一個內置的.plot()函數作為DataFrame類的一部分。但是,使用此功能呈現的可視化不是互動式的,這使得它沒那麼吸引人。同樣,使用pandas.DataFrame.plot()函數繪制圖表也不能實現交互。 如果我們需要在不對代碼進行重大修改的情況下用Pandas繪制互動式圖表怎麼辦呢?這個時候就可以用Cufflinks庫來實現。
Cufflinks庫可以將有強大功能的plotly和擁有靈活性的pandas結合在一起,非常便於繪圖。下面就來看在pandas中如何安裝和使用Cufflinks庫。
安裝
pip install plotly
# Plotly is a pre-requisite before installing cufflinks
pip install cufflinks
用法
#importing Pandas
import pandas as pd
#importing plotly and cufflinks in offline mode
import cufflinks as cf
import plotly.offline
cf.go_offline()
cf.set_config_file(offline=False, world_readable=True)
是時候展示泰坦尼克號數據集的魔力了。
df.iplot()
df.iplot() vs df.plot()
右側的可視化顯示了靜態圖表,而左側圖表是互動式的,更詳細,並且所有這些在語法上都沒有任何重大更改。
Magic命令
Magic命令是Jupyter notebook中的一組便捷功能,旨在解決標准數據分析中的一些常見問題。使用命令%lsmagic可以看到所有的可用命令。
所有可用的Magic命令列表
Magic命令有兩種:行magic命令(line magics),以單個%字元為前綴,在單行輸入操作;單元magic命令(cell magics),以雙%%字元為前綴,可以在多行輸入操作。如果設置為1,則不用鍵入%即可調用Magic函數。
接下來看一些在常見數據分析任務中可能用到的命令:
% pastebin
%pastebin將代碼上傳到Pastebin並返回url。Pastebin是一個在線內容託管服務,可以存儲純文本,如源代碼片段,然後通過url可以與其他人共享。事實上,Github gist也類似於pastebin,只是有版本控制。
在file.py文件中寫一個包含以下內容的python腳本,並試著運行看看結果。
#file.py
def foo(x):
return x
在Jupyter Notebook中使用%pastebin生成一個pastebin url。
%matplotlib notebook
函數用於在Jupyter notebook中呈現靜態matplotlib圖。用notebook替換inline,可以輕松獲得可縮放和可調整大小的繪圖。但記得這個函數要在導入matplotlib庫之前調用。
%run
用%run函數在notebook中運行一個python腳本試試。
%run file.py
%%writefile
%% writefile是將單元格內容寫入文件中。以下代碼將腳本寫入名為foo.py的文件並保存在當前目錄中。
%%latex
%%latex函數將單元格內容以LaTeX形式呈現。此函數對於在單元格中編寫數學公式和方程很有用。
查找並解決錯誤
互動式調試器也是一個神奇的功能,我把它單獨定義了一類。如果在運行代碼單元時出現異常,請在新行中鍵入%debug並運行它。 這將打開一個互動式調試環境,它能直接定位到發生異常的位置。還可以檢查程序中分配的變數值,並在此處執行操作。退出調試器單擊q即可。
Printing也有小技巧
如果您想生成美觀的數據結構,pprint是首選。它在列印字典數據或JSON數據時特別有用。接下來看一個使用print和pprint來顯示輸出的示例。
讓你的筆記脫穎而出
我們可以在您的Jupyter notebook中使用警示框/注釋框來突出顯示重要內容或其他需要突出的內容。注釋的顏色取決於指定的警報類型。只需在需要突出顯示的單元格中添加以下任一代碼或所有代碼即可。
藍色警示框:信息提示
<p class="alert alert-block alert-info">
<b>Tip:</b> Use blue boxes (alert-info) for tips and notes.
If it』s a note, you don』t have to include the word 「Note」.
</p>
黃色警示框:警告
<p class="alert alert-block alert-warning">
<b>Example:</b> Yellow Boxes are generally used to include additional examples or mathematical formulas.
</p>
綠色警示框:成功
<p class="alert alert-block alert-success">
Use green box only when necessary like to display links to related content.
</p>
紅色警示框:高危
<p class="alert alert-block alert-danger">
It is good to avoid red boxes but can be used to alert users to not delete some important part of code etc.
</p>
列印單元格所有代碼的輸出結果
假如有一個Jupyter Notebook的單元格,其中包含以下代碼行:
In [1]: 10+5
11+6
Out [1]: 17
單元格的正常屬性是只列印最後一個輸出,而對於其他輸出,我們需要添加print()函數。然而通過在notebook頂部添加以下代碼段可以一次列印所有輸出。
添加代碼後所有的輸出結果就會一個接一個地列印出來。
In [1]: 10+5
11+6
12+7
Out [1]: 15
Out [1]: 17
Out [1]: 19
恢復原始設置:
InteractiveShell.ast_node_interactivity = "last_expr"
使用'i'選項運行python腳本
從命令行運行python腳本的典型方法是:python hello.py。但是,如果在運行相同的腳本時添加-i,例如python -i hello.py,就能提供更多優勢。接下來看看結果如何。
首先,即使程序結束,python也不會退出解釋器。因此,我們可以檢查變數的值和程序中定義的函數的正確性。
其次,我們可以輕松地調用python調試器,因為我們仍然在解釋器中:
import pdb
pdb.pm()
這能定位異常發生的位置,然後我們可以處理異常代碼。
自動評論代碼
Ctrl / Cmd + /自動注釋單元格中的選定行,再次命中組合將取消注釋相同的代碼行。
刪除容易恢復難
你有沒有意外刪除過Jupyter notebook中的單元格?如果答案是肯定的,那麼可以掌握這個撤消刪除操作的快捷方式。
如果您刪除了單元格的內容,可以通過按CTRL / CMD + Z輕松恢復它。
如果需要恢復整個已刪除的單元格,請按ESC + Z或EDIT>撤消刪除單元格。
結論
在本文中,我列出了使用Python和Jupyter notebook時收集的一些小提示。我相信它們會對你有用,能讓你有所收獲,從而實現輕松編碼!
⑦ python數據統計分析
1. 常用函數庫
scipy包中的stats模塊和statsmodels包是python常用的數據分析工具,scipy.stats以前有一個models子模塊,後來被移除了。這個模塊被重寫並成為了現在獨立的statsmodels包。
scipy的stats包含一些比較基本的工具,比如:t檢驗,正態性檢驗,卡方檢驗之類,statsmodels提供了更為系統的統計模型,包括線性模型,時序分析,還包含數據集,做圖工具等等。
2. 小樣本數據的正態性檢驗
(1) 用途
夏皮羅維爾克檢驗法 (Shapiro-Wilk) 用於檢驗參數提供的一組小樣本數據線是否符合正態分布,統計量越大則表示數據越符合正態分布,但是在非正態分布的小樣本數據中也經常會出現較大的W值。需要查表來估計其概率。由於原假設是其符合正態分布,所以當P值小於指定顯著水平時表示其不符合正態分布。
正態性檢驗是數據分析的第一步,數據是否符合正態性決定了後續使用不同的分析和預測方法,當數據不符合正態性分布時,我們可以通過不同的轉換方法把非正太態數據轉換成正態分布後再使用相應的統計方法進行下一步操作。
(2) 示例
(3) 結果分析
返回結果 p-value=0.029035290703177452,比指定的顯著水平(一般為5%)小,則拒絕假設:x不服從正態分布。
3. 檢驗樣本是否服務某一分布
(1) 用途
科爾莫戈羅夫檢驗(Kolmogorov-Smirnov test),檢驗樣本數據是否服從某一分布,僅適用於連續分布的檢驗。下例中用它檢驗正態分布。
(2) 示例
(3) 結果分析
生成300個服從N(0,1)標准正態分布的隨機數,在使用k-s檢驗該數據是否服從正態分布,提出假設:x從正態分布。最終返回的結果,p-value=0.9260909172362317,比指定的顯著水平(一般為5%)大,則我們不能拒絕假設:x服從正態分布。這並不是說x服從正態分布一定是正確的,而是說沒有充分的證據證明x不服從正態分布。因此我們的假設被接受,認為x服從正態分布。如果p-value小於我們指定的顯著性水平,則我們可以肯定地拒絕提出的假設,認為x肯定不服從正態分布,這個拒絕是絕對正確的。
4.方差齊性檢驗
(1) 用途
方差反映了一組數據與其平均值的偏離程度,方差齊性檢驗用以檢驗兩組或多組數據與其平均值偏離程度是否存在差異,也是很多檢驗和演算法的先決條件。
(2) 示例
(3) 結果分析
返回結果 p-value=0.19337536323599344, 比指定的顯著水平(假設為5%)大,認為兩組數據具有方差齊性。
5. 圖形描述相關性
(1) 用途
最常用的兩變數相關性分析,是用作圖描述相關性,圖的橫軸是一個變數,縱軸是另一變數,畫散點圖,從圖中可以直觀地看到相關性的方向和強弱,線性正相關一般形成由左下到右上的圖形;負面相關則是從左上到右下的圖形,還有一些非線性相關也能從圖中觀察到。
(2) 示例
(3) 結果分析
從圖中可以看到明顯的正相關趨勢。
6. 正態資料的相關分析
(1) 用途
皮爾森相關系數(Pearson correlation coefficient)是反應兩變數之間線性相關程度的統計量,用它來分析正態分布的兩個連續型變數之間的相關性。常用於分析自變數之間,以及自變數和因變數之間的相關性。
(2) 示例
(3) 結果分析
返回結果的第一個值為相關系數表示線性相關程度,其取值范圍在[-1,1],絕對值越接近1,說明兩個變數的相關性越強,絕對值越接近0說明兩個變數的相關性越差。當兩個變數完全不相關時相關系數為0。第二個值為p-value,統計學上,一般當p-value<0.05時,可以認為兩變數存在相關性。
7. 非正態資料的相關分析
(1) 用途
斯皮爾曼等級相關系數(Spearman』s correlation coefficient for ranked data ),它主要用於評價順序變數間的線性相關關系,在計算過程中,只考慮變數值的順序(rank, 值或稱等級),而不考慮變數值的大小。常用於計算類型變數的相關性。
(2) 示例
(3) 結果分析
返回結果的第一個值為相關系數表示線性相關程度,本例中correlation趨近於1表示正相關。第二個值為p-value,p-value越小,表示相關程度越顯著。
8. 單樣本T檢驗
(1) 用途
單樣本T檢驗,用於檢驗數據是否來自一致均值的總體,T檢驗主要是以均值為核心的檢驗。注意以下幾種T檢驗都是雙側T檢驗。
(2) 示例
(3) 結果分析
本例中生成了2列100行的數組,ttest_1samp的第二個參數是分別對兩列估計的均值,p-value返回結果,第一列1.47820719e-06比指定的顯著水平(一般為5%)小,認為差異顯著,拒絕假設;第二列2.83088106e-01大於指定顯著水平,不能拒絕假設:服從正態分布。
9. 兩獨立樣本T檢驗
(1) 用途
由於比較兩組數據是否來自於同一正態分布的總體。注意:如果要比較的兩組數據不滿足方差齊性, 需要在ttest_ind()函數中添加參數equal_var = False。
(2) 示例
(3) 結果分析
返回結果的第一個值為統計量,第二個值為p-value,pvalue=0.19313343989106416,比指定的顯著水平(一般為5%)大,不能拒絕假設,兩組數據來自於同一總結,兩組數據之間無差異。
10. 配對樣本T檢驗
(1) 用途
配對樣本T檢驗可視為單樣本T檢驗的擴展,檢驗的對象由一群來自正態分布獨立樣本更改為二群配對樣本觀測值之差。它常用於比較同一受試對象處理的前後差異,或者按照某一條件進行兩兩配對分別給與不同處理的受試對象之間是否存在差異。
(2) 示例
(3) 結果分析
返回結果的第一個值為統計量,第二個值為p-value,pvalue=0.80964043445811551,比指定的顯著水平(一般為5%)大,不能拒絕假設。
11. 單因素方差分析
(1) 用途
方差分析(Analysis of Variance,簡稱ANOVA),又稱F檢驗,用於兩個及兩個以上樣本均數差別的顯著性檢驗。方差分析主要是考慮各組之間的平均數差別。
單因素方差分析(One-wayAnova),是檢驗由單一因素影響的多組樣本某因變數的均值是否有顯著差異。
當因變數Y是數值型,自變數X是分類值,通常的做法是按X的類別把實例成分幾組,分析Y值在X的不同分組中是否存在差異。
(2) 示例
(3) 結果分析
返回結果的第一個值為統計量,它由組間差異除以組間差異得到,上例中組間差異很大,第二個返回值p-value=6.2231520821576832e-19小於邊界值(一般為0.05),拒絕原假設, 即認為以上三組數據存在統計學差異,並不能判斷是哪兩組之間存在差異 。只有兩組數據時,效果同 stats.levene 一樣。
12. 多因素方差分析
(1) 用途
當有兩個或者兩個以上自變數對因變數產生影響時,可以用多因素方差分析的方法來進行分析。它不僅要考慮每個因素的主效應,還要考慮因素之間的交互效應。
(2) 示例
(3) 結果分析
上述程序定義了公式,公式中,"~"用於隔離因變數和自變數,」+「用於分隔各個自變數, ":"表示兩個自變數交互影響。從返回結果的P值可以看出,X1和X2的值組間差異不大,而組合後的T:G的組間有明顯差異。
13. 卡方檢驗
(1) 用途
上面介紹的T檢驗是參數檢驗,卡方檢驗是一種非參數檢驗方法。相對來說,非參數檢驗對數據分布的要求比較寬松,並且也不要求太大數據量。卡方檢驗是一種對計數資料的假設檢驗方法,主要是比較理論頻數和實際頻數的吻合程度。常用於特徵選擇,比如,檢驗男人和女人在是否患有高血壓上有無區別,如果有區別,則說明性別與是否患有高血壓有關,在後續分析時就需要把性別這個分類變數放入模型訓練。
基本數據有R行C列, 故通稱RC列聯表(contingency table), 簡稱RC表,它是觀測數據按兩個或更多屬性(定性變數)分類時所列出的頻數表。
(2) 示例
(3) 結果分析
卡方檢驗函數的參數是列聯表中的頻數,返回結果第一個值為統計量值,第二個結果為p-value值,p-value=0.54543425102570975,比指定的顯著水平(一般5%)大,不能拒絕原假設,即相關性不顯著。第三個結果是自由度,第四個結果的數組是列聯表的期望值分布。
14. 單變數統計分析
(1) 用途
單變數統計描述是數據分析中最簡單的形式,其中被分析的數據只包含一個變數,不處理原因或關系。單變數分析的主要目的是通過對數據的統計描述了解當前數據的基本情況,並找出數據的分布模型。
單變數數據統計描述從集中趨勢上看,指標有:均值,中位數,分位數,眾數;從離散程度上看,指標有:極差、四分位數、方差、標准差、協方差、變異系數,從分布上看,有偏度,峰度等。需要考慮的還有極大值,極小值(數值型變數)和頻數,構成比(分類或等級變數)。
此外,還可以用統計圖直觀展示數據分布特徵,如:柱狀圖、正方圖、箱式圖、頻率多邊形和餅狀圖。
15. 多元線性回歸
(1) 用途
多元線性回歸模型(multivariable linear regression model ),因變數Y(計量資料)往往受到多個變數X的影響,多元線性回歸模型用於計算各個自變數對因變數的影響程度,可以認為是對多維空間中的點做線性擬合。
(2) 示例
(3) 結果分析
直接通過返回結果中各變數的P值與0.05比較,來判定對應的解釋變數的顯著性,P<0.05則認為自變數具有統計學意義,從上例中可以看到收入INCOME最有顯著性。
16. 邏輯回歸
(1) 用途
當因變數Y為2分類變數(或多分類變數時)可以用相應的logistic回歸分析各個自變數對因變數的影響程度。
(2) 示例
(3) 結果分析
直接通過返回結果中各變數的P值與0.05比較,來判定對應的解釋變數的顯著性,P<0.05則認為自變數具有統計學意義。
⑧ 如何用python進行數據分析
1、Python數據分析流程及學習路徑
數據分析的流程概括起來主要是:讀寫、處理計算、分析建模和可視化四個部分。在不同的步驟中會用到不同的Python工具。每一步的主題也包含眾多內容。
根據每個部分需要用到的工具,Python數據分析的學習路徑如下:
相關推薦:《Python入門教程》
2、利用Python讀寫數據
Python讀寫數據,主要包括以下內容:
我們以一小段代碼來看:
可見,僅需簡短的兩三行代碼即可實現Python讀入EXCEL文件。
3、利用Python處理和計算數據
在第一步和第二步,我們主要使用的是Python的工具庫NumPy和pandas。其中,NumPy主要用於矢量化的科學計算,pandas主要用於表型數據處理。
4、利用Python分析建模
在分析和建模方面,主要包括Statsmdels和Scikit-learn兩個庫。
Statsmodels允許用戶瀏覽數據,估計統計模型和執行統計測試。可以為不同類型的數據和每個估算器提供廣泛的描述性統計,統計測試,繪圖函數和結果統計列表。
Scikit-leran則是著名的機器學習庫,可以迅速使用各類機器學習演算法。
5、利用Python數據可視化
數據可視化是數據工作中的一項重要內容,它可以輔助分析也可以展示結果。