⑴ python實操:手把手教你用Matplotlib把數據畫出來
作者:邁克爾·貝耶勒(Michael Beyeler)
如需轉載請聯系華章 科技
如果已安裝Anaconda Python版本,就已經安裝好了可以使用的 Matplotlib。否則,可能要訪問官網並從中獲取安裝說明:
http://matplotlib.org
正如使用np作為 NumPy 的縮寫,我們將使用一些標準的縮寫來表示 Matplotlib 的引入:
在本書中,plt介面會被頻繁使用。
讓我們創建第一個繪圖。
假設想要畫出正弦函數sin(x)的線性圖。得到函數在x坐標軸上0≤x<10內所有點的值。我們將使用 NumPy 中的 linspace 函數來在x坐標軸上創建一個從0到10的線性空間,以及100個采樣點:
可以使用 NumPy 中的sin函數得到所有x點的值,並通過調用plt中的plot函數把結果畫出來:
你親自嘗試了嗎?發生了什麼嗎?有沒有什麼東西出現?
實際情況是,取決於你在哪裡運行腳本,可能無法看到任何東西。有下面幾種可能性:
1. 從.py腳本中繪圖
如果從一個腳本中運行 Matplotlib,需要加上下面的這行調用:
在腳本末尾調用這個函數,你的繪圖就會出現!
2. 從 IPython shell 中繪圖
這實際上是互動式地執行Matplotlib最方便的方式。為了讓繪圖出現,需要在啟動 IPython 後使用所謂的%matplotlib魔法命令。
接下來,無須每次調用plt.show()函數,所有的繪圖將會自動出現。
3. 從 Jupyter Notebook 中繪圖
如果你是從基於瀏覽器的 Jupyter Notebook 中看這段代碼,需要使用同樣的%matplotlib魔法命令。然而,也可以直接在notebook中嵌入圖形,這會有兩種輸出選項:
在本書中,將會使用inline選項:
現在再次嘗試一下:
上面的命令會得到下面的繪圖輸出結果:
如果想要把繪圖保存下來留作以後使用,可以直接在 IPython 或者 Jupyter Notebook 使用下面的命令保存:
僅需要確保你使用了支持的文件後綴,比如.jpg、.png、.tif、.svg、.eps或者.pdf。
作為本章最後一個測試,讓我們對外部數據集進行可視化,比如scikit-learn中的數字數據集。
為此,需要三個可視化工具:
那麼開始引入這些包吧:
第一步是載入實際數據:
如果沒記錯的話,digits應該有兩個不同的數據域:data域包含了真正的圖像數據,target域包含了圖像的標簽。相對於相信我們的記憶,我們還是應該對digits稍加 探索 。輸入它的名字,添加一個點號,然後按Tab鍵:digits.<TAB>,這個操作將向我們展示digits也包含了一些其他的域,比如一個名為images的域。images和data這兩個域,似乎簡單從形狀上就可以區分。
兩種情況中,第一維對應的都是數據集中的圖像數量。然而,data中所有像素都在一個大的向量中排列,而images保留了各個圖像8×8的空間排列。
因此,如果想要繪制出一副單獨的圖像,使用images將更加合適。首先,使用NumPy的數組切片從數據集中獲取一幅圖像:
這里是從1797個元素的數組中獲取了它的第一行數據,這行數據對應的是8×8=64個像素。下面就可以使用plt中的imshow函數來繪制這幅圖像:
上面的命令得到下面的輸出:
此外,這里也使用cmap參數指定了一個顏色映射。默認情況下,Matplotlib 使用MATLAB默認的顏色映射jet。然而,在灰度圖像的情況下,gray顏色映射更有效。
最後,可以使用plt的subplot函數繪制全部數字的樣例。subplot函數與MATLAB中的函數一樣,需要指定行數、列數以及當前的子繪圖索引(從1開始計算)。我們將使用for 循環在數據集中迭代出前十張圖像,每張圖像都分配到一個單獨的子繪圖中。
這會得到下面的輸出結果:
關於作者:Michael Beyeler,華盛頓大學神經工程和數據科學專業的博士後,主攻仿生視覺計算模型,用以為盲人植入人工視網膜(仿生眼睛),改善盲人的視覺體驗。 他的工作屬於神經科學、計算機工程、計算機視覺和機器學習的交叉領域。同時他也是多個開源項目的積極貢獻者。
本文摘編自《機器學習:使用OpenCV和Python進行智能圖像處理》,經出版方授權發布。
⑵ 如何用python繪制各種圖形
1.環境
系統:windows10
python版本:python3.6.1
使用的庫:matplotlib,numpy
2.numpy庫產生隨機數幾種方法
import numpy as np
numpy.random
rand(d0,d1,...,dn)
In [2]: x=np.random.rand(2,5)
In [3]: x
Out[3]:
array([[ 0.84286554, 0.50007593, 0.66500549, 0.97387807, 0.03993009],
[ 0.46391661, 0.50717355, 0.21527461, 0.92692517, 0.2567891 ]])
randn(d0,d1,...,dn)查詢結果為標准正態分布
In [4]: x=np.random.randn(2,5)
In [5]: x
Out[5]:
array([[-0.77195196, 0.26651203, -0.35045793, -0.0210377 , 0.89749635],
[-0.20229338, 1.44852833, -0.10858996, -1.65034606, -0.39793635]])
randint(low,high,size)
生成low到high之間(半開區間 [low, high)),size個數據
In [6]: x=np.random.randint(1,8,4)
In [7]: x
Out[7]: array([4, 4, 2, 7])
random_integers(low,high,size)
生成low到high之間(閉區間 [low, high)),size個數據
In [10]: x=np.random.random_integers(2,10,5)
In [11]: x
Out[11]: array([7, 4, 5, 4, 2])
3.散點圖
x x軸
y y軸
s 圓點面積
c 顏色
marker 圓點形狀
alpha 圓點透明度#其他圖也類似這種配置
N=50# height=np.random.randint(150,180,20)# weight=np.random.randint(80,150,20)
x=np.random.randn(N)
y=np.random.randn(N)
plt.scatter(x,y,s=50,c='r',marker='o',alpha=0.5)
plt.show()
8.箱型圖
import matplotlib.pyplot as pltimport numpy as npdata=np.random.normal(loc=0,scale=1,size=1000)#sym 點的形狀,whis虛線的長度plt.boxplot(data,sym="o",whis=1.5)plt.show()
#sym 點的形狀,whis虛線的長度
⑶ 如何利用Python中的Pandas庫繪制柱形圖
我們利用Python的Pandas庫可以繪制很多圖形,那麼如何繪制柱形圖呢?下面我給大家分享演示一下。
Pycharm
首先我們打開Excel文件,准備要生成柱形圖的數據表,如下圖所示
接下來在Python文件中導入pandas庫,然後將Excel文件載入到緩存對象中,如下圖所示
然後我們導入matplotlib下面的pyplot庫,如下圖所示,導入以後給它起一個別名
接下來我們通過pandas庫下面的bar來設置柱形圖的X,Y坐標軸,如下圖所示
然後通過pyplot的show方法將柱形圖進行展示出來,如下圖所示
接下來運行程序以後我們就看到柱形圖生成出來了,如下圖所示
然後如果我們想將柱形圖中的數據排序的話可以利用sort_values實現,如下圖所示
最後運行排序好後的程序,我們就可以看到柱形圖中的數據已經排序好了,如下圖所示
⑷ Python 數據可視化:繪制箱線圖、餅圖和直方圖
上一課介紹了柱形圖和條形圖,本課將介紹另外幾種統計圖表。
Box Plot 有多種翻譯,盒須圖、盒式圖、盒狀圖或箱線圖、箱形圖等,不管什麼名稱,它的基本結構是這樣的:
這種圖是由美國著名統計學家約翰·圖基(John Tukey)於 1977 年發明的,它能顯示出一組數據的上限、下限、中位數及上下四分位數。
為了更深入理解箱線圖的含義,假設有這樣一組數據:[1, 3, 5, 8, 10,11, 16, 98 ],共有 8 個數字。
首先要計算箱線圖中的「四分位數」,注意不是 4 個數:
對於已經排序的數據 [1, 3, 5, 8, 10,11, 16, 98 ],下四分位數(Q1)的位置是數列中從小到大第 2.25 個數,當然是不存在這個數字的——如果是第 2 個或者第 3 個,則存在。但是,可以用下面的原則,計算出此位置的數值。
四分位數等於與該位置兩側的兩個整數的加權平均數,此權重取決於相對兩側整數的距離遠近,距離越近,權重越大,距離越遠,權重越小,權數之和等於 1。
根據這個原則,可以分別計算本例中數列的 3 個四分位數。
在此計算基礎上,還可以進一步計算四分位間距和上限、下限的數值。
先看一個簡單示例,了解基本的流程。
輸出結果:
這里繪制了兩張箱線圖,一張沒有顯示平均值,另外一張顯示了平均值,所使用的方法就是 boxplot,其完整參數列表為:
參數很多,不要擔心記憶問題,更別擔心理解問題。首先很多參數都是可以「望文生義」的,再有,與以前所使用的其他方法(函數)的參數含義也大同小異。
輸出結果:
所謂的「凹槽」,不是簡單形狀的改變,左右折線的上限區間表示了數據分布的置信區間,橫線依然是上限和下限。
⑸ python中獲取的數據為矩陣形式,如何在python以實時的形式繪制出動態圖
你好,下面是一個畫動態圖的例子。
import matplotlib.pyplot as plt
fig, ax = plt.subplots()
y1 = []
for i in range(50):
y1.append(i) # 每迭代一次,將i放入y1中畫出來
ax.cla() # 清除鍵
ax.bar(y1, label='test', height=y1, width=0.3)
ax.legend()
plt.pause(0.1)
⑹ python繪圖中有哪四個繪圖技巧
pre{overflow-x: auto}技巧1: plt.subplots()
技巧2: plt.subplot()
技巧3: plt.tight_layout()
技巧4: plt.suptitle()
數據集:
讓我們導入包並更新圖表的默認設置,為圖表添加一點個罩斗鏈人風格。 我們將在提示上使用 Seaborn 的內置數據集:
import seaborn as sns # v0.11.2 import matplotlib.pyplot as plt # v3.4.2 sns.set(style='darkgrid', context='talk', palette='rainbow')df = sns.load\_dataset('tips') df.head()技巧1: plt.subplots()
繪制多個子圖的一種簡單方法是使用 plt.subplots() 。
這是繪制 2 個並排子圖的示例語法:
fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(10,4)) sns.histplot(data=df, x='tip', ax=ax[0]) sns.boxplot(data=df, x='tip', ax=ax[1]);
在這里,我們銷中在一個圖中繪制了兩個子圖。 我們可以進一步自定義每個子圖。
例如,我們可以像這樣為每個子圖添加標題:
fig, ax = plt.subplots(1, 2, figsize=(10,4)) sns.histplot(data=df, x='tip', ax=ax[0]) ax[0].set\_title("Histogram") sns.boxplot(data=df, x='tip', ax=ax[1]) ax[1].set\_title("Boxplot");
在循環中將所有數值變數用同一組圖表示:
numerical = df.select\_dtypes('number').columnsfor col in numerical: fig, ax = plt.subplots(1, 2, figsize=(10,4)) sns.histplot(data=df, x=col, ax=ax[0]) sns.boxplot(data=df, x=col, ax=ax[1]); 技巧2: plt.subplot()另一種可視化多個圖形的方法是使用 plt.subplot(), 末尾沒有 s
語法與之前略有不同:
plt.figure(figsize=(10,4)) ax1 物孫= plt.subplot(1,2,1) sns.histplot(data=df, x='tip', ax=ax1) ax2 = plt.subplot(1,2,2) sns.boxplot(data=df, x='tip', ax=ax2);
當我們想為多個圖繪制相同類型的圖形並在單個圖中查看所有圖形,該方法特別有用:
plt.figure(figsize=(14,4)) for i, col in enumerate(numerical): ax = plt.subplot(1, len(numerical), i+1) sns.boxplot(data=df, x=col, ax=ax)
我們同樣能定製子圖形。例如加個 title
plt.figure(figsize=(14,4)) for i, col in enumerate(numerical): ax = plt.subplot(1, len(numerical), i+1) sns.boxplot(data=df, x=col, ax=ax) ax.set\_title(f"Boxplot of {col}")
通過下面的比較,我們能更好的理解它們的相似處與不同處熟悉這兩種方法很有用,因為它們可以在不同情況下派上用場。
技巧3: plt.tight_layout()在繪制多個圖形時,經常會看到一些子圖的標簽在它們的相鄰子圖上重疊,
如下所示:
categorical = df.select\_dtypes('category').columnsplt.figure(figsize=(8, 8)) for i, col in enumerate(categorical): ax = plt.subplot(2, 2, i+1) sns.countplot(data=df, x=col, ax=ax)
頂部兩個圖表的 x 軸上的變數名稱被剪掉,右側圖的 y 軸標簽與左側子圖重疊.使用 plt.tight_layout 很方便
plt.figure(figsize=(8, 8)) for i, col in enumerate(categorical): ax = plt.subplot(2, 2, i+1) sns.countplot(data=df, x=col, ax=ax) plt.tight\_layout()
專業 看起來更好了。
技巧4: plt.suptitle()真個圖形添加標題:
plt.figure(figsize=(8, 8)) for i, col in enumerate(categorical): ax = plt.subplot(2, 2, i+1) sns.countplot(data=df, x=col, ax=ax) plt.suptitle('Category counts for all categorical variables') plt.tight\_layout()此外,您可以根據自己的喜好自定義各個圖。 例如,您仍然可以為每個子圖添加標題。
到此這篇關於python繪圖 四個繪圖技巧的文章就介紹到這了,希望大家以後多多支持!
⑺ Python 數據可視化:數據分布統計圖和熱圖
本課將繼續介紹 Seaborn 中的統計圖。一定要牢記,Seaborn 是對 Matplotlib 的高級封裝,它優化了很多古老的做圖過程,因此才會看到一個函數解決問題的局面。
在統計學中,研究數據的分布情況,也是一個重要的工作,比如某些數據是否為正態分布——某些機器學習模型很在意數據的分布情況。
在 Matplotlib 中,可以通過繪制直方圖將數據的分布情況可視化。在 Seaborn 中,也提供了繪制直方圖的函數。
輸出結果:
sns.distplot 函數即實現了直方圖,還順帶把曲線畫出來了——曲線其實代表了 KDE。
除了 sns.distplot 之外,在 Seaborn 中還有另外一個常用的繪制數據分布的函數 sns.kdeplot,它們的使用方法類似。
首先看這樣一個示例。
輸出結果:
① 的作用是設置所得圖示的背景顏色,這樣做的目的是讓下面的 ② 繪制的圖像顯示更清晰,如果不設置 ①,在顯示的圖示中看到的就是白底圖像,有的部分看不出來。
② 最終得到的是坐標網格,而且在圖中分為三部分,如下圖所示。
相對於以往的坐標網格,多出了 B 和 C 兩個部分。也就是說,不僅可以在 A 部分繪制某種統計圖,在 B 和 C 部分也可以繪制。
繼續操作:
輸出結果:
語句 ③ 實現了在坐標網格中繪制統計圖的效果,jp.plot 方法以兩個繪圖函數為參數,分別在 A 部分繪制了回歸統計圖,在 B 和 C 部分繪制了直方圖,而且直方圖分別表示了對應坐標軸數據的分布,即:
我們把有語句 ② 和 ③ 共同實現的統計圖,稱為聯合統計圖。除了用 ② ③ 兩句可以繪制這種圖之外,還有一個函數也能夠「兩步並作一步」,具體如下:
輸出結果:
⑻ python 繪制三維圖形、三維數據散點圖
1. 繪制3D曲面圖
from matplotlib import pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
fig=plt.figure()
ax=Axes3D(fig)
x=np.arange(-4,4,0.25)
y=np.arange(-4,4,0.25)
x,y=np.meshgrid(x,y)
r=np.sqrt(x**2, y**2)
z=np.sin(r)
//繪面函數
ax.plot_surface(x,y,z,rstride=1,cstride=1,cmap=「rainbow」
plt.show()
2.繪制三維的散點圖(表述一些數據點分布)
4a.mat數據地址:http blog.csdn.net/eddy_zhang/article/details/50496164
from matplotlib import pyplot as plt
import scipy.io as sio
from mpl_toolkits.mplot3d import Axes3D
matl=『4a.mat』
data=sio.loadmat(matl)
m=data[『data』]
x,y,z=m[0],m[1],m[2]
//創建一個繪圖工程
ax=plt.subplot(111,project=『3D』)
//將數據點分成三部分畫,在顏色上有區分度
ax.scatter(x[:1000], y[:1000], z[:1000],c=『y』 )//繪制數據點
ax.scatter(x[1000:4000], y[1000:4000], z[1000:4000],c=『r』 )//繪制數據點
ax.scatter(x[4000:], y[4000:], z[4000:],c=『g』 )//繪制數據點
ax.set_zlable(『z』)//坐標軸
ax.set_ylable(『y』)//坐標軸
ax.set_xlable(『x』)
plt.show()
⑼ python繪圖篇
1,xlable,ylable設置x,y軸的標題文字。
2,title設置標題。
3,xlim,ylim設置x,y軸顯示範圍。
plt.show()顯示繪圖窗口,通常情況下,show()會阻礙程序運行,帶-wthread等參數的環境下,窗口不會關閉。
plt.saveFig()保存圖像。
面向對象繪圖
1,當前圖表和子圖可以用gcf(),gca()獲得。
subplot()繪制包含多個圖表的子圖。
configure subplots,可調節子圖與圖表邊框距離。
可以通過修改配置文件更改對象屬性。
圖標顯示中文
1,在程序中直接指定字體。
2, 在程序開始修改配置字典reParams.
3,修改配置文件。
Artist對象
1,圖標的繪制領域。
2,如何在FigureCanvas對象上繪圖。
3,如何使用Renderer在FigureCanvas對象上繪圖。
FigureCanvas和Render處理底層圖像操作,Artist處理高層結構。
分為簡單對象和容器對象,簡單的Aritist是標準的繪圖元件,例如Line 2D,Rectangle,Text,AxesImage等,而容器類型包含許多簡單的的 Aritist對象,使他們構成一個整體,例如Axis,Axes,Figure等。
直接創建Artist對象進項繪圖操作步奏:
1,創建Figure對象(通過figure()函數,會進行許多初始化操作,不建議直接創建。)
2,為Figure對象創建一個或多個Axes對象。
3,調用Axes對象的方法創建各類簡單的Artist對象。
Figure容器
如何找到指定的Artist對象。
1,可調用add_subplot()和add_axes()方法向圖表添加子圖。
2,可使用for循環添加柵格。
3,可通過transform修改坐標原點。
Axes容器
1,patch修改背景。
2,包含坐標軸,坐標網格,刻度標簽,坐標軸標題等內容。
3,get_ticklabels(),,get-ticklines獲得刻度標簽和刻度線。
1,可對曲線進行插值。
2,fill_between()繪制交點。
3,坐標變換。
4,繪制陰影。
5,添加註釋。
1,繪制直方圖的函數是
2,箱線圖(Boxplot)也稱箱須圖(Box-whisker Plot),是利用數據中的五個統計量:最小值、第一四分位
數、中位數、第三四分位數與最大值來描述數據的一種方法,它可以粗略地看出數據是否具有對稱性以及分
布的分散程度等信息,特別可以用於對幾個樣本的比較。
3,餅圖就是把一個圓盤按所需表達變數的觀察數劃分為若干份,每一份的角度(即面積)等價於每個觀察
值的大小。
4,散點圖
5,QQ圖
低層繪圖函數
類似於barplot(),dotchart()和plot()這樣的函數採用低層的繪圖函數來畫線和點,來表達它們在頁面上放置的位置以及其他各種特徵。
在這一節中,我們會描述一些低層的繪圖函數,用戶也可以調用這些函數用於繪圖。首先我們先講一下R怎麼描述一個頁面;然後我們講怎麼在頁面上添加點,線和文字;最後講一下怎麼修改一些基本的圖形。
繪圖區域與邊界
R在繪圖時,將顯示區域劃分為幾個部分。繪制區域顯示了根據數據描繪出來的圖像,在此區域內R根據數據選擇一個坐標系,通過顯示出來的坐標軸可以看到R使用的坐標系。在繪制區域之外是邊沿區,從底部開始按順時針方向分別用數字1到4表示。文字和標簽通常顯示在邊沿區域內,按照從內到外的行數先後顯示。
添加對象
在繪制的圖像上還可以繼續添加若干對象,下面是幾個有用的函數,以及對其功能的說明。
•points(x, y, ...),添加點
•lines(x, y, ...),添加線段
•text(x, y, labels, ...),添加文字
•abline(a, b, ...),添加直線y=a+bx
•abline(h=y, ...),添加水平線
•abline(v=x, ...),添加垂直線
•polygon(x, y, ...),添加一個閉合的多邊形
•segments(x0, y0, x1, y1, ...),畫線段
•arrows(x0, y0, x1, y1, ...),畫箭頭
•symbols(x, y, ...),添加各種符號
•legend(x, y, legend, ...),添加圖列說明
⑽ 如何用python繪制簡單條形圖
如何用python繪制簡單條形圖呢?這里離不開matplotlib的使用。
條形圖是數據可視化圖形中很基礎也很常用的一種圖,簡單解釋下:條形圖也叫長條圖(英語:bar chart),亦稱條圖(英語:bar graph)、條狀圖、棒形圖、柱狀圖、條形圖表,是一種以長方形的長度為變數的統計圖表。長條圖用來比較兩個或以上的價值(不同時間或者不同條件),只有一個變數,通常利用於較小的數據集分析。長條圖亦可橫向排列,或用多維方式表達。
那麼一個普通的條形圖是長什麼樣子的呢?
當!當!當!就是下圖的這個樣子:
圖先亮出來啦,接下來研究這個圖是怎麼畫的吧,先看一下原數據長什麼樣子:
實際畫圖的流程和畫折線圖很相近,只是用到的畫圖函數不一樣,繪制條形圖的函數plt.bar():
由於這只是最簡單的一個條形圖,實際上條形圖的函數plt.bar()還有不少可以探索的參數設置,和對折線圖函數plt.plot()的探索差不多,有興趣的孩子可以自己去進行探索哦。
按照條形長短進行排序展示的條形圖
當然也可以有其他的設置,比如說上圖中的線條高低參差不齊,這是因為x軸的數據是按照學校名稱進行排序的,那麼可不可以按照分數的高低進行排序呢?也就是讓所有的長方形按照從高到矮或者從矮到高的順序進行排列?
當然可以啦!這里需要強調的是,條的高低排列等信息都是來源於原數據的,要想讓條形的順序發生改變,需要對畫圖的來源數據進行更改呢!
把原數據逆序排序後截取前十名數據賦值給data_yuwen,作為新的數據源傳入畫圖函數plt.bar(),畫出來的圖自然就不一樣了。
先看一眼數據長什麼樣子:
根據這個數據源繪制出的圖形如下,由於用來畫圖的數據進行了降序排序操作,所以生成條形圖的條也會進行降序排序展示:
很多時候,我們常見的條形圖還有另一種展現形式,那就是橫向的條形圖,比較火的那種動態條形圖絕大多數也都是橫向的條形圖,那麼橫向的條形圖如何繪制呢?
理解plt.bar()主要參數
其實也不難,只要清楚plt.bar()函數中主要參數的作用就可以了!條形圖函數中有五個主要參數,分別是x,height,width,bottom,orientation。其中x控制的是每個條在x軸上位置,height控制的是每個條的長度,width控制的是每個條的寬度,bottom控制的是每個條在y軸方向的起始位置,orientation控制的是條形的方向,是縱向還是橫向,默認是縱向的。
通過一個小例子理解下這幾個參數的作用:
上邊的幾行代碼輸出的圖形如下:
對比著代碼和實際輸出的條形圖,各個主要參數的作用是不是一目瞭然啦?
橫向條形圖
理解了這幾個參數作用後,縱向的條形圖轉換成橫向的條形圖就沒什麼難度了!
需要設置所有條形在x軸的位置都為0,也就全部從最左側開始畫條形;由於是橫向條形圖,所以實際上條的寬度顯示的是數據大小,將width參數設置成原數據中的語文成績;bottom控制每個條在y軸方向的起始位置,設置bottom=range(10)設置每個條形在y軸的起始位置各不相同避免有條形重疊;height控制的是每個條在y軸方向上的長度,條形圖橫向設置後,在y軸上的長度失去了衡量數據的意義,所以直接設置一個常數即可;最後設置條形的方向為橫向,即orientation=「horizontal」。
溫馨提示:數據和標簽一定要匹配,即plt.bar()重點的數據要和plt.yticks()中提取出來的標簽一一對應,一旦不匹配,整個圖展現的結果就是一個錯誤的結果!
上述代碼生成的條形圖如下:
感覺上邊這種生成橫向條形圖的方式有點點繞,和人們的習慣認知有點不大一樣,難道畫一個橫向條形圖就非得轉變自己的習慣認知這么反人類嗎?
當然不是的,實際上有更簡單的方法繪制一個橫向條形圖,之所以沒有一開始就直接用這種簡單的方法,也是為了讓大家體會下條形圖參數的靈活設置而已,而且如果比較繞的方法都能理解了,簡單的方法理解和運用起來就更沒有難度了啊!
不賣關子了,我們來認識下和plt.bar()函數類似的plt.barh()函數。
plt.barh()函數是專門繪制水平條形圖的函數,主要的參數有:
y 控制y軸顯示的標簽來源width 控制橫向條形的長度,即用來進行對比的數據源height 條形的寬度需要設置的參數主要就是這三個,比用plt.bar()函數繪制水平條形圖簡單了很多,具體代碼如下:
效果圖:
和用plt.bar()函數繪制的橫向條形圖一毛一樣對不對?以後有需求繪制橫向條形圖,盡量用plt.barh()函數吧,畢竟它是專門繪制這種類型圖的,簡單好用。
然而實際工作中對於條形圖的需求不只是這些,比如例子中只是對各個學校語文成績的展示,有時候需要各個學科的成績同時展現在一幅條形圖中,有時候也需要繪制堆積條形圖對各學科的成績以及總成績進行展示,這些圖又該如何繪制呢?其實只要理解了各個參數的含義,繪制這些圖也不在話下,至於具體怎麼畫,且看下回分解啊!