Ⅰ python學習,量化交易的應該怎麼學
掘金量化社區就有很多寬客互動交流學習,再說掘金有很多針對新手入門的指引,可以讓您從0到1一步步成為一個合格的quant.
Ⅱ 怎麼學習python量化交易
下面教你八步寫個量化交易策略——單股票均線策略
1 確定策略內容與框架
若昨日收盤價高出過去20日平均價今天開盤買入股票
若昨日收盤價低於過去20日平均價今天開盤賣出股票
只操作一隻股票,很簡單對吧,但怎麼用代碼說給計算機聽呢?
想想人是怎麼操作的,應該包括這樣兩個部分
既然是單股票策略,事先決定好交易哪一個股票。
每天看看昨日收盤價是否高出過去20日平均價,是的話開盤就買入,不是開盤就賣出。每天都這么做,循環下去。
對應代碼也是這兩個部分
definitialize(context):
用來寫最開始要做什麼的地方
defhandle_data(context,data):
用來寫每天循環要做什麼的地方
2 初始化
我們要寫設置要交易的股票的代碼,比如 兔寶寶(002043)
definitialize(context):
g.security='002043.XSHE'#存入兔寶寶的股票代碼
3 獲取收盤價與均價
首先,獲取昨日股票的收盤價
#用法:變數=data[股票代碼].close
last_price=data[g.security].close#取得最近日收盤價,命名為last_price
然後,獲取近二十日股票收盤價的平均價
#用法:變數=data[股票代碼].mavg(天數,『close』)
#獲取近二十日股票收盤價的平均價,命名為average_price
average_price=data[g.security].mavg(20,'close')
4 判斷是否買賣
數據都獲取完,該做買賣判斷了
#如果昨日收盤價高出二十日平均價,則買入,否則賣出
iflast_price>average_price:
買入
eliflast_price<average_price:
賣出
問題來了,現在該寫買賣下單了,但是拿多少錢去買我們還沒有告訴計算機,所以每天還要獲取賬戶里現金量。
#用法:變數=context.portfolio.cash
cash=context.portfolio.cash#取得當前的現金量,命名為cash
5 買入賣出
#用法:order_value(要買入股票股票的股票代碼,要多少錢去買)
order_value(g.security,cash)#用當前所有資金買入股票
#用法:order_target(要買賣股票的股票代碼,目標持倉金額)
order_target(g.security,0)#將股票倉位調整到0,即全賣出
6 策略代碼寫完,進行回測
把買入賣出的代碼寫好,策略就寫完了,如下
definitialize(context):#初始化
g.security='002043.XSHE'#股票名:兔寶寶
defhandle_data(context,data):#每日循環
last_price=data[g.security].close#取得最近日收盤價
#取得過去二十天的平均價格
average_price=data[g.security].mavg(20,'close')
cash=context.portfolio.cash#取得當前的現金
#如果昨日收盤價高出二十日平均價,則買入,否則賣出。
iflast_price>average_price:
order_value(g.security,cash)#用當前所有資金買入股票
eliflast_price<average_price:
order_target(g.security,0)#將股票倉位調整到0,即全賣出
現在,在策略回測界面右上部,設置回測時間從20140101到20160601,設置初始資金100000,設置回測頻率,然後點擊運行回測。
7 建立模擬交易,使策略和行情實時連接自動運行
策略寫好,回測完成,點擊回測結果界面(如上圖)右上部紅色模擬交易按鈕,新建模擬交易如下圖。 寫好交易名稱,設置初始資金,數據頻率,此處是每天,設置好後點提交。
8 開啟微信通知,接收交易信號
點擊聚寬導航欄我的交易,可以看到創建的模擬交易,如下圖。 點擊右邊的微信通知開關,將OFF調到ON,按照指示掃描二維碼,綁定微信,就能微信接收交易信號了。
Ⅲ 學習Python需要掌握哪些技術
分享Python學習路線。
第一階段Python基礎與linux資料庫。這是Python的入門階段,也是幫助零基礎學員打好基礎的重要階段。你需要掌握Python基本語法規則及變數、邏輯控制、內置數據結構、文件操作、高級函數、模塊、常用標准庫模塊、函數、異常處理、MySQL使用、協程等知識點。
學習目標:掌握Python基礎語法,具備基礎的編程能力;掌握Linux基本操作命令,掌握MySQL進階內容,完成銀行自動提款機系統實戰、英漢詞典、歌詞解析器等項目。
第二階段WEB全棧。這一部分主要學習Web前端相關技術,你需要掌握HTML、CSS、JavaScript、jQuery、BootStrap、Web開發基礎、VUE、Flask Views、Flask模板、 資料庫操作、Flask配置等知識。
學習目標:掌握WEB前端技術內容,掌握WEB後端框架,熟練使用Flask、Tornado、Django,可以完成數據監控後台的項目。
第三階段數據分析+人工智慧。這部分主要是學習爬蟲相關的知識點,你需要掌握數據抓取、數據提取、數據存儲、爬蟲並發、動態網頁抓取、scrapy框架、分布式爬蟲、爬蟲攻防、數據結構、演算法等知識。
學習目標:可以掌握爬蟲、數據採集,數據機構與演算法進階和人工智慧技術。可以完成爬蟲攻防、圖片馬賽克、電影推薦系統、地震預測、人工智慧項目等階段項目。
第四階段高級進階。這是Python高級知識點,你需要學習項目開發流程、部署、高並發、性能調優、Go語言基礎、區塊鏈入門等內容。
學習目標:可以掌握自動化運維與區塊鏈開發技術,可以完成自動化運維項目、區塊鏈等項目。
按照上面的Python學習路線圖學習完後,你基本上就可以成為一名合格的Python開發工程師。當然,想要快速成為企業競聘的精英人才,你需要有好的老師指導,還要有較多的項目積累實戰經驗。
自學本身難度較高,一步一步學下來肯定全面且扎實,如果自己有針對性的想學哪一部分,可以直接跳過暫時不需要的針對性的學習自己需要的模塊,可以多看一些不同的視頻學習。
Ⅳ 自學3年Python的我成了數據分析師,總結成一張思維導圖
大家好,我是一名普通畢業生,現就職於某互聯網公司。之前很多同學問我「 為什麼自學3年Python,最後卻成為了數據分析師 ?」
首先肯定是數據分析師的前景和薪資條件,打動了我
下面是我的學習之路,附帶一些必備學習的資料,可以 免費領取 ,相信感興趣的你看完也可以找到自己的方向。
眾所周知:Python是當今最火的編程語言之一,各大招聘網站上都會要求求職者會這門語言,並且它很容易上手,業務面寬泛,像Web網頁工程師、網路爬蟲工程師、自動化運維、自動化測試、 游戲 開發、數據分析、AI等等。
我們首先明確一個大的方向,知道自己以後要做什麼。因為我是統計學專業,所以我會選擇從事數據分析行業,那麼 用Python做數據分析成了一個最佳選擇 。
要想使用Python做數據分析,首先就應該知道「 數據分析的流程是怎樣的? 」
我這次特地總結了一張 思維導圖 給大家,點擊放大看更清楚哦。
(點擊查看高清大圖)
基於此,我這里將我以前學習過程中用過的電子書(技能類、統計類、業務類),還有相關視頻免費分享給大家,省去了你們挑選視頻的時間,也希望能夠對你們的學習有所幫助。
PS:我總結的資料有點多哦,差不多有4G,大家一定要給你的網路雲盤空出位置來哦!
如果遇到一些環境配置,還有一些錯誤異常等bug,資料就顯得不太夠用,這時就需要找到老師,給我們特別講解。
或者是想 快速學習 數據分析領域知識,不妨先找一找 直播課 看看, 了解當下最貼合實際的學習思路,確定自己的方向。
Day1 20:00&量化交易入門:
用Python做股票指標分析和買賣時機選擇
場景工具:Python工具分解RSI指標流程處理: 業務場景分析建模和可視化學習成果:使用RSI指標模型做買賣點搜索、交易回溯實戰案例:分析A股數據模型,制定投資策略
Day2 20:00&職場晉升必備:
製作酷炫報表,4步帶你學習數據可視化
場景工具:用Tableau學習如何管理數據流程處理: 利用業務拆解找到數據指標、進行數據可視化學習成果:高效的對數據驅動型業務作出精準決策實戰案例:利用可視化工具構建 旅遊 客流量趨勢地圖
Day3 20:00&量化交易進階:
0基礎用Python搭建量化分析平台
場景工具:利用pandas工具分解KDJ指標構成流程處理: 交易數據爬取,業務場景分析建模和可視化分析結果:用KDJ指標模型對比特幣行情買賣點搜索&交易回溯實戰項目:掌握根據數據指數和分析工具尋找虛擬貨幣買賣原理
他們 每周都會定期分享 一些 干貨 供大家學習參考,對學習很有幫助。
(深度學習DeepLearning.ai實驗室認證)
(微軟/甲骨文/Cloudera等公司頒發的數據分析證書)
4步學會數據可視化,辦公效率提高三倍
(更多精彩內容 等你解鎖)
Ⅳ 《零起點Python大數據與量化交易》pdf下載在線閱讀,求百度網盤雲資源
《零起點Python大數據與量化交易》(何海群)電子書網盤下載免費在線閱讀
鏈接:https://pan..com/s/1NU-wBfdVmrtklf9xuq1d3A
書名:零起點Python大數據與量化交易
作者:何海群
豆瓣評分:3.9
出版社:電子工業出版社
出版年份:2017-2
頁數:444
內容簡介:
《零起點Python大數據與量化交易》是國內較早關於Python大數據與量化交易的原創圖書,配合zwPython開發平台和zwQuant開源量化軟體學習,是一套完整的大數據分析、量化交易的學習教材,可直接用於實盤交易。《零起點Python大數據與量化交易》有三大特色:第一,以實盤個案分析為主,全程配有Python代碼;第二,包含大量的圖文案例和Python源碼,無須專業編程基礎,懂Excel即可開始學習;第三,配有專業的zwPython集成開發平台、zwQuant量化軟體和zwDat數據包。
《零起點Python大數據與量化交易》內容源自筆者的原版教學課件,雖然限於篇幅和載體,省略了視頻和部分環節,但核心內容都有保留,配套的近百套Python教學程序沒有進行任何刪減。考慮到廣大入門讀者的需求,筆者在各個核心函數環節增添了函數流程圖。
Ⅵ 用python做量化交易要學多久
5個月。
python憑借其突出的語言優勢與特性,已經融入到各行各業的每個領域。一般來說,python培訓需要脫產學習5個月左右,這樣的時長才能夠讓學員既掌握工作所需的技能,還能夠積累一定的項目經驗。當然如果你想要在人工智慧的路上越走越遠,則需要不斷的積累和學習。
python培訓的5個月時間里,有相當大一部分時間是在實戰做項目,第一階段是為期一個月學習python的核心編程,主要是python的語言基礎和高級應用,幫助學員獲得初步軟體工程知識並樹立模塊化編程思想。學完這一階段的內容,學員已經能夠勝任python初級開發工程師的職位。
(6)python量化交易入門擴展閱讀:
Python開發基礎課程內容包括:計算機硬體、操作系統原理、安裝linux操作系統、linux操作系統維護常用命令、Python語言介紹、環境安裝、基本語法、基本數據類型、二進制運算、流程式控制制、字元編碼、文件處理、數據類型、用戶認證、三級菜單程序、購物車程序開發、函數、內置方法、遞歸、迭代器、裝飾器、內置方法、員工信息表開發、模塊的跨目錄導入、常用標准庫學習,b加密 e正則logging日誌模塊等,軟體開發規范學習,計算器程序、ATM程序開發等。
Ⅶ 《Python與量化投資從基礎到實戰》pdf下載在線閱讀,求百度網盤雲資源
《07 Python股票量化投資課程(完結)》網路網盤資源免費下載
鏈接:https://pan..com/s/1MgFE6VMeR8H6YkS2jxEZmw
07 Python股票量化投資課程(完結)|09課後大作業|08第八課資料|07第七課資料|06第六課資料|05第五課資料|04第四課資料|03第三課資料|02第二課資料|01第一課資料|25人工智慧與量化投資(下).mp4|24人工智慧與量化投資(上).mp4|23實盤交易(下).mp4|22實盤交易(中).mp4|21實盤交易(上).mp4
Ⅷ 學習量化選擇Python還是R比較好
python對於新手來說較容易入門,而且python目前國內多家量化交易平台都支持,比如優礦、掘金量化、米筐、聚寬等,反而支持R語言的平台很少,所以說python語言做量化才是主流。
Ⅸ 如何系統地學習量化交易
接觸量化交易大租咐概有半年的時間,順序大概是這樣: 1. 學習了量化的分析理念,主要用於期現基差套利。 2. 學了Python,自己嘗試著寫了一套選股系統,主要是數據處理和一些策略,表現一般。 3. 改用MATLAB,還是拿來做分析和寫策略。然後在tb上實現。 4. 接觸了一些c++和c#的平台,正在看c++ premier。 最近發現hft很多人自己寫平台,去看了ctp的介面,發現一點都看不懂,問了做程序的朋弊喊純友,說是要去學學網路協議。 看到自己一年下來,居然接觸了這么多東西,感到非常驚訝。但是確實每個都是和程序化有關的。最近還打算辭職去讀個書,系統的學習編程。滲讓
Ⅹ 用python做量化交易要學多久
如果已經有了Python基礎,半個月可以入門的。
如果沒有Python基礎,就先嘩雹學Python,學一兩個月有野數了基礎後,再結合量化交易的模型,邊學Python語言,亂脊帆邊學以Python實現量化模型,上手也會很快的。
雖然每個搞量化的人必須會寫代碼,也必須具備扎實的數學功底,在開發策略的過程中,的確需要分析大量數據,不斷做回測和優化,但是,這一切的背後是強大的金融思維和對金融市場的深刻理解在支撐的。