Ⅰ 求python statsmodel中ARMA中的predict()函數和forecast()用法
1. if 語句用來檢驗一個條件, 如果 條件為真,我們運行一塊語句(稱為 if-塊 ), 否則 我們處理
另外一塊語句(稱為 else-塊 )。 else 從句是可選的。---python簡明教程
2.test() 真 not test()假 , if not test() 不執行
test()假 not test()真 ,此時 if not test()後面的就可以被執行了
Ⅱ 使用Python的線性回歸問題,怎麼解決
本文中,我們將進行大量的編程——但在這之前,我們先介紹一下我們今天要解決的實例問題。
1) 預測房子價格
閃電俠是一部由劇作家/製片人Greg Berlanti、Andrew Kreisberg和Geoff Johns創作,由CW電視台播放的美國電視連續劇。它基於DC漫畫角色閃電俠(Barry Allen),一個具有超人速度移動能力的裝扮奇特的打擊犯罪的超級英雄,這個角色是由Robert Kanigher、John Broome和Carmine Infantino創作。它是綠箭俠的衍生作品,存在於同一世界。該劇集的試播篇由Berlanti、Kreisberg和Johns寫作,David Nutter執導。該劇集於2014年10月7日在北美首映,成為CW電視台收視率最高的電視節目。
綠箭俠是一部由劇作家/製片人 Greg Berlanti、Marc Guggenheim和Andrew Kreisberg創作的電視連續劇。它基於DC漫畫角色綠箭俠,一個由Mort Weisinger和George Papp創作的裝扮奇特的犯罪打擊戰士。它於2012年10月10日在北美首映,與2012年末開始全球播出。主要拍攝於Vancouver、British Columbia、Canada,該系列講述了億萬花花公子Oliver Queen,由Stephen Amell扮演,被困在敵人的島嶼上五年之後,回到家鄉打擊犯罪和腐敗,成為一名武器是弓箭的神秘義務警員。不像漫畫書中,Queen最初沒有使用化名」綠箭俠「。
由於這兩個節目並列為我最喜愛的電視節目頭銜,我一直想知道哪個節目更受其他人歡迎——誰會最終贏得這場收視率之戰。 所以讓我們寫一個程序來預測哪個電視節目會有更多觀眾。 我們需要一個數據集,給出每一集的觀眾。幸運地,我從維基網路上得到了這個數據,並整理成一個.csv文件。它如下所示。
閃電俠
閃電俠美國觀眾數
綠箭俠
綠箭俠美國觀眾數
1 4.83 1 2.84
2 4.27 2 2.32
3 3.59 3 2.55
4 3.53 4 2.49
5 3.46 5 2.73
6 3.73 6 2.6
7 3.47 7 2.64
8 4.34 8 3.92
9 4.66 9 3.06
觀眾數以百萬為單位。
解決問題的步驟:
首先我們需要把數據轉換為X_parameters和Y_parameters,不過這里我們有兩個X_parameters和Y_parameters。因此,把他們命名為flash_x_parameter、flash_y_parameter、arrow_x_parameter、arrow_y_parameter吧。然後我們需要把數據擬合為兩個不同的線性回歸模型——先是閃電俠,然後是綠箭俠。 接著我們需要預測兩個電視節目下一集的觀眾數量。 然後我們可以比較結果,推測哪個節目會有更多觀眾。
步驟1
導入我們的程序包:
Python
1
2
3
4
5
6
7
# Required Packages
import csv
import sys
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn import datasets, linear_model
步驟2
寫一個函數,把我們的數據集作為輸入,返回flash_x_parameter、flash_y_parameter、arrow_x_parameter、arrow_y_parameter values。
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
# Function to get data
def get_data(file_name):
data = pd.read_csv(file_name)
flash_x_parameter = []
flash_y_parameter = []
arrow_x_parameter = []
arrow_y_parameter = []
for x1,y1,x2,y2 in zip(data['flash_episode_number'],data['flash_us_viewers'],data['arrow_episode_number'],data['arrow_us_viewers']):
flash_x_parameter.append([float(x1)])
flash_y_parameter.append(float(y1))
arrow_x_parameter.append([float(x2)])
arrow_y_parameter.append(float(y2))
return flash_x_parameter,flash_y_parameter,arrow_x_parameter,arrow_y_parameter
現在我們有了我們的參數,來寫一個函數,用上面這些參數作為輸入,給出一個輸出,預測哪個節目會有更多觀眾。
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Function to know which Tv show will have more viewers
def more_viewers(x1,y1,x2,y2):
regr1 = linear_model.LinearRegression()
regr1.fit(x1, y1)
predicted_value1 = regr1.predict(9)
print predicted_value1
regr2 = linear_model.LinearRegression()
regr2.fit(x2, y2)
predicted_value2 = regr2.predict(9)
#print predicted_value1
#print predicted_value2
if predicted_value1 > predicted_value2:
print "The Flash Tv Show will have more viewers for next week"
else:
print "Arrow Tv Show will have more viewers for next week"
把所有東西寫在一個文件中。打開你的編輯器,把它命名為prediction.py,復制下面的代碼到prediction.py中。
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
# Required Packages
import csv
import sys
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn import datasets, linear_model
# Function to get data
def get_data(file_name):
data = pd.read_csv(file_name)
flash_x_parameter = []
flash_y_parameter = []
arrow_x_parameter = []
arrow_y_parameter = []
for x1,y1,x2,y2 in zip(data['flash_episode_number'],data['flash_us_viewers'],data['arrow_episode_number'],data['arrow_us_viewers']):
flash_x_parameter.append([float(x1)])
flash_y_parameter.append(float(y1))
arrow_x_parameter.append([float(x2)])
arrow_y_parameter.append(float(y2))
return flash_x_parameter,flash_y_parameter,arrow_x_parameter,arrow_y_parameter
# Function to know which Tv show will have more viewers
def more_viewers(x1,y1,x2,y2):
regr1 = linear_model.LinearRegression()
regr1.fit(x1, y1)
predicted_value1 = regr1.predict(9)
print predicted_value1
regr2 = linear_model.LinearRegression()
regr2.fit(x2, y2)
predicted_value2 = regr2.predict(9)
#print predicted_value1
#print predicted_value2
if predicted_value1 > predicted_value2:
print "The Flash Tv Show will have more viewers for next week"
else:
print "Arrow Tv Show will have more viewers for next week"
x1,y1,x2,y2 = get_data('input_data.csv')
#print x1,y1,x2,y2
more_viewers(x1,y1,x2,y2)
可能你能猜出哪個節目會有更多觀眾——但運行一下這個程序看看你猜的對不對。
3) 替換數據集中的缺失值
有時候,我們會遇到需要分析包含有缺失值的數據的情況。有些人會把這些缺失值捨去,接著分析;有些人會用最大值、最小值或平均值替換他們。平均值是三者中最好的,但可以用線性回歸來有效地替換那些缺失值。
這種方法差不多像這樣進行。
首先我們找到我們要替換那一列里的缺失值,並找出缺失值依賴於其他列的哪些數據。把缺失值那一列作為Y_parameters,把缺失值更依賴的那些列作為X_parameters,並把這些數據擬合為線性回歸模型。現在就可以用缺失值更依賴的那些列預測缺失的那一列。
一旦這個過程完成了,我們就得到了沒有任何缺失值的數據,供我們自由地分析數據。
為了練習,我會把這個問題留給你,所以請從網上獲取一些缺失值數據,解決這個問題。一旦你完成了請留下你的評論。我很想看看你的結果。
個人小筆記:
我想分享我個人的數據挖掘經歷。記得在我的數據挖掘引論課程上,教師開始很慢,解釋了一些數據挖掘可以應用的領域以及一些基本概念。然後突然地,難度迅速上升。這令我的一些同學感到非常沮喪,被這個課程嚇到,終於扼殺了他們對數據挖掘的興趣。所以我想避免在我的博客文章中這樣做。我想讓事情更輕松隨意。因此我嘗試用有趣的例子,來使讀者更舒服地學習,而不是感到無聊或被嚇到。
謝謝讀到這里——請在評論框里留下你的問題或建議,我很樂意回復你。
Ⅲ python+函數的返回值能不能直接輸出
在Python中,一個函數的返回值可以直接輸出,示例代碼如下:
# 定義一個函數
def add(a, b):
return a + b
# 調用函數並輸出返回值
print(add(1, 2))
在這段代碼中,我們首先定義了一個名為add的函數,該函數接收兩個參數a和b,並通過return語句返回它們的和。接著,我們調用該函數並傳入參數1和2,並使用print函數輸出函數的返回值,即3。
請注意,上面的代碼只是一個示例,實際應用中可能需要根據實際情況進行更多的處理,比如考慮函數沒有返回值等情況。
Ⅳ python函數如何同時處理返回值以及返回內容
如圖所示,可以做一個參考
Ⅳ python 函數返回值返回到哪裡
python 函數返回值有兩種形式: 1 返回一個值。 2 返回多個值。 現看看返回一個值的吧。
def firstvalue(a,b):
c = a + b
return c
print firstvalue(1,2)結果:3
再看看返回多個值的: 那怎麼可以返回多個值呢,其他的語言一般調用函數的話,只能返回一個值,可能我不太熟悉所有的語言,我知道的語言只能返回一個值,而python可以返回多個值,感覺非常方便,發代碼看下:
def secondvalue(a,b):
c = a + b
return (a,b,c)
x,y,z = secondvalue(1,2)
print 'x:',x,'y:',y,'z:',z
可能上面的東西寫的有點簡單,但是有的細節處理也很重要。順便分享下我如何學習python的經歷把,大家沒事拍拍磚。