1. 51單片機最小系統原理圖
我是一名單片機工程師,下面的講解你參考一下.
.
51單片機共有40隻引腳.下面這個就是最小系統原理圖,就是靠這四個部分,這個單片機就可以運行起來了.(看下面的數字標記,1234)
.
這個腳是存儲器使用選擇腳,當這個腳接」地」時,那麼就是告訴單片機,選擇使用外部存儲器,當這個腳接」5V」時,說明單片機使用內部存儲器.
如果選擇外部的存儲器,太浪費單片機僅有的資源,所以這一腳永遠接電源5V(如上圖所示),使用單片機的內部存儲器.
5 如果內部存儲器不夠容量,最多選擇更高級的容量,就可以解決容量不夠的問題了,就是這么簡單
.
一天入門51單片機:點我學習
.
我是歲月哥,願你學習愉快!
2. C51單片機數碼管動態顯示工作原理是什麼
數碼管要正常顯示,就要用驅動電路來驅動數碼管的各個段碼,從而顯示出我們要的數字,因此根據數碼管的驅動方式的不同,可以分為靜態式和動態式兩類。
��① 靜態顯示驅動:靜態驅動也稱直流驅動。靜態驅動是指每個數碼管的每一個段碼都由一個單片機的I/O埠進行驅動,或者使用如BCD碼二-十進制解碼器解碼進行驅動。靜態驅動的優點是編程簡單,顯示亮度高,缺點是佔用I/O埠多,如驅動5個數碼管靜態顯示則需要5×8=40根I/O埠來驅動,要知道一個89S51單片盯脊機罩稿可用的I/O埠才32個呢:),實際應用時必須增加解碼驅動器進行驅動,增加了硬體電路的復雜性。
��② 動態顯示驅動:數碼管動態顯示介面是單片機中應用最為廣泛的一種顯示方式之一,動態驅動是將所有數碼管的8個顯示筆劃"a,b,c,d,e,f,g,dp"的同名端連在一起,另外為每個數碼管的公共極COM增加位選通控制電路,位選通由各自獨立的I/O線控制,當單片機輸出字形碼時,所有數碼管都接收到相同的字形碼,但究竟是那個數碼管會顯示出字形,取決於單片機對位選通COM端電路的控制,所以我們只要將需要顯示的數碼管的選通控制打開,該位就顯示出字形,沒有選通的數碼管就不會凱悶滲亮。通過分時輪流控制各個數碼管的的COM端,就使各個數碼管輪流受控顯示,這就是動態驅動。在輪流顯示過程中,每位數碼管的點亮時間為1~2ms,由於人的視覺暫留現象及發光二極體的余輝效應,盡管實際上各位數碼管並非同時點亮,但只要掃描的速度足夠快,給人的印象就是一組穩定的顯示數據,不會有閃爍感,動態顯示的效果和靜態顯示是一樣的,能夠節省大量的I/O埠,而且功耗更低。
3. c51單片機定時器工作原理
定時器應用時,編程一般是定時或計數到就產生中斷和段鍵,中斷方喚巧式時,由硬體自動清0;C51編程時不用管TF0,TF1.
如果你用查詢方式編程時,由軟體清燃宴零TF0=0. 查詢我沒用過。
4. 51單片機的工作原理
單片機由運算器、控制器、存儲器、輸入輸出設備構成。
單片機自動完成賦予它的任務的過程,也就是單片機執行程序的過程,即一條條執行的指令的過程,所謂指令就是把要求單片機執行的各種操作用的命令的形式寫下來,這是在設計人員賦予它的指令系統所決定的,一條指令對應著一種基本操作;單片機所能執行的全部指令,就是該單片機的指令系統,不同種類的單片機,其指令系統亦不同。為使單片機能自動完成某一特定任務,必須把要解決的問題編成一系列指令(這些指令必須是選定單片機能識別和執行的指令),這一系列指令的集合就成為程序,程序需要預先存放在具有存儲功能的部件——存儲器中。存儲器由許多存儲單元(最小的存儲單位)組成,就像大樓房有許多房間組成一樣,指令就存放在這些單元里,單元里的指令取出並執行就像大樓房的每個房間的被分配到了唯一一個房間號一樣,每一個存儲單元也必須被分配到唯一的地址號,該地址號稱為存儲單元的地址,這樣只要知道了存儲單元的地址,就可以找到這個存儲單元,其中存儲的指令就可以被取出,然後再被執行。程序通常是順序執行的,所以程序中的指令也是一條條順序存放的,單片機在執行程序時要能把這些指令一條條取出並加以執行,必須有一個部件能追蹤指令所在的地址,這一部件就是程序計數器PC(包含在CPU中),在開始執行程序時,給PC賦以程序中第一條指令所在的地址,然後取得每一條要執行的命令,PC在中的內容就會自動增加,增加量由本條指令長度決定,可能是1、2或3,以指向下一條指令的起始地址,保證指令順序執行。
5. C51單片機對位定址的原理和編程方法
原理:
位定址是一種使用單片機實現程序控制位邏輯操作的方法,通過一系列指令在單位元組的內存空間中的一個特定的位 (bit 位) 上進行操作。它用於控制亂拿只有兩狀態的I/O埠。
編程方法:
1. 用 ORL A, #data 命令將某個指定的位置位,即把單位元組內部某個指定的位置1。
2. 用 ANL A, #data 命令清除某個指定衡槐的位置位,即咐陪友把單位元組內部某個指定的位置0。
3. 用 CLR C 命令將某個指定的位置位清零,即把單位元組內指定的位置置零。
4. 用 MOV C, bit 命令將某個指定的位置位置1,即把單位元組內部某個指定的位置1。
6. c51單片機復位電路的工作原理
51單片機復位電路工作原理之我理解
一、復位電路的用途
單片機復位電路就好比電腦的重啟部分,當電腦在使用中出現死機,按下重啟按鈕電腦內部的程序從頭開始執行。單片機也一樣,當單片機系統在運行中,受到環境干擾出現程序跑飛的時候,按下復位按鈕內部的程序自動從頭開始執行。
二、復位電路的工作原理
在書本上有介紹,51單片機要復位只需要在第9引腳接個高電平持續2US就可以實現,那這個過程是如何實現的呢?
在單片機系統中,系統上電啟動的時候復位一次,當按鍵按下的時候系統再次復位,如果釋放後再按下,系統還會復位。所以可以通過按鍵的斷開和閉合在運行的系統中控制其復位。
開機的時候為什麼為復位
在電路圖中,電容的的大小是10uF,電阻的大小是10k。所以根據公式,可以算出電容充電到電源電壓的0.7倍(單片機的電源是5V,所以充電到0.7倍即為3.5V),需要的時間是10K*10UF=0.1S。
也就是說在電腦啟動的0.1S內,電容兩端的電壓時在0~3.5V增加。這個時候10K電阻兩端的電壓為從5~1.5V減少(串聯電路各處電壓之和為總電壓)。所以在0.1S內,RST引腳所接收到的電壓是5V~1.5V。在5V正常工作的51單片機中小於1.5V的電壓信號為低電平信號,而大於1.5V的電壓信號為高電平信號。所以在開機0.1S內,單片機系統自動復位(RST引腳接收到的高電平信號時間為0.1S左右)。
按鍵按下的時候為什麼會復位
在單片機啟動0.1S後,電容C兩端的電壓持續充電為5V,這是時候10K電阻兩端的電壓接近於0V,RST處於低電平所以系統正常工作。當按鍵按下的時候,開關導通,這個時候電容兩端形成了一個迴路,電容被短路,所以在按鍵按下的這個過程中,電容開始釋放之前充的電量。隨著時間的推移,電容的電壓在0.1S內,從5V釋放到變為了1.5V,甚至更小。根據串聯電路電壓為各處之和,這個時候10K電阻兩端的電壓為3.5V,甚至更大,所以RST引腳又接收到高電平。單片機系統自動復位。
總結:
1、復位電路的原理是單片機RST引腳接收到2US以上的電平信號,只要保證電容的充放電時間大於2US,即可實現復位,所以電路中的電容值是可以改變的。
2、按鍵按下系統復位,是電容處於一個短路電路中,釋放了所有的電能,電阻兩端的電壓增加引起的。
7. C51單片機的PWM原理是什麼
原理是當輸出頻率一定時,輸出電壓與高電平的占空比成正比,即PWM每個周期中高電平脈寬越寬輸出電壓越高。
單片機使用方法是
1.設置定時器的工作模式為PWM和輸出引腳;
2.設置定時器的工作頻率或PWM的頻率;
3.當需要改變輸出電壓時修改脈寬參數即可
8. 簡述51單片機的工作原理
單片機的工作原理與計算機CPU的工作原理是一樣的,主要是利用片內的半導體存儲器存放用戶的程序和數據,單片機的核心中央微處理器CPU中有指令寄存器、指令解碼器,程序計數器等部件,由程序計數器尋找下一條要執行的指令,找到後,將指令送給指令寄存器,再由指令解碼器翻譯執行該指令,完成對指令功能的操作。 一句話:單片機的工作就是不斷地取指令、分析指令、執行指令的循環過程。按預先編寫的程序執行,以達到用戶期待的結果。 單片機主要用途是做生產設備的控制器,做智能儀表的核心部件,由於單片機體積微小,可以植入任何一個設備和儀表當中,因此它也是嵌入式技術的核心部件。
它一般由嵌入式微處理器、外圍硬體設備、嵌入式操作系統以及用戶的應用程序等四個部分組成.嵌入式系統是以應用為中心,以計算機技術為基礎,並且軟硬體可裁剪,適用於應用系統對功能、可靠性、成本、體積、功耗有嚴格要求的專用計算機系統。它一般由嵌入式微處理器、外圍硬體設備、嵌入式操作系統以及用戶的應用程序等四個部分組成,用於實現對其他設備的控制、監視或管理等功能。嵌入式系統一般指非PC系統,它包括硬體和軟體兩部分。硬體包括處理器/微處理器、存儲器及外設器件和I/O埠、圖形控制器等。軟體部分包括操作系統軟體(OS)(要求實時和多任務操作)和應用程序編程
9. c51單片機復位電路的工作原理
如S22復位鍵按下時:RST經1k電阻接VCC,獲得10k電阻上所分得電壓,形成高電平,進入「復位狀態」
當S22復位鍵斷開時:RST經10k電阻接地,電流降為0,電阻上的電壓也將為0,RST降為低電平,開始正常工作
(9)c51單片機編程原理擴展閱讀:
復位電路是一種用來使電路恢復到起始狀態的電路設備,它的操作原理與計算器有著異曲同工之妙,只是啟動原理和手段有所不同。復位電路,就是利用它把電路恢復到起始狀態。就像計算器的清零按鈕的作用一樣,以便回到原始狀態,重新進行計算。
和計算器清零按鈕有所不同的是,復位電路啟動的手段有所不同。一是在給電路通電時馬上進行復位操作;二是在必要時可以由手動操作;三是根據程序或者電路運行的需要自動地進行。復位電路都是比較簡單的大都是只有電阻和電容組合就可以辦到了,再復雜點就有三極體等配合程序來進行了。
單片機復位電路主要有四種類型:
(1)微分型復位電路:
(2)積分型復位電路:
(3)比較器型復位電路:
比較器型復位電路的基本原理。上電復位時,由於組成了一個RC低通網路,所以比較器的正相輸入端的電壓比負相端輸入電壓延遲一定時間.而比較器的負相端網路的時間常數遠遠小於正相端RC網路的時間常數。
因此在正端電壓還沒有超過負端電壓時,比較器輸出低電平,經反相器後產生高電平.復位脈沖的寬度主要取決於正常電壓上升的速度.由於負端電壓放電迴路時間常數較大,因此對電源電壓的波動不敏感.但是容易產生以下二種不利現象:
(1)電源二次開關間隔太短時,復位不可靠:
(2)當電源電壓中有浪涌現象時,可能在浪涌消失後不能產生復位脈沖。
為此,將改進比較器重定電路,如圖9所示.這個改進電路可以消除第一種現象,並減少第二種現象的產生.為了徹底消除這二種現象,可以利用數字邏輯的方法和比較器配合,設計的比較器重定電路。此電路稍加改進即可作為上電復位和看門狗復位電路共同復位的電路,大大提高了復位的可靠性。
10. c51單片機的工作原理
它是一種在線式實時控制計算機,在線式就是現場控制,需要的是有較強的抗干擾能力,較低的成本,它內部也用和電腦功能類似的模塊,比如CPU,內存,並行匯流排,還有和硬碟作用相同的存儲器件。
c51單片機是靠程序的,並且可以修改。通過不同的程序實現不同的功能,尤其是特殊的獨特的一些功能,這是別的器件需要費很大力氣才能做到的,有些則是花大力氣也很難做到的。一個不是很復雜的功能要是用美國50年代開發的74系列,或者60年代的CD4000系列這些純硬體來搞定的話,電路一定是一塊大PCB板!但是如果要是用美國70年代成功投放市場的系列單片機,結果就會有天壤粗燃之別!只因為單片機的通過你編寫的程序可以岩肢虛實現高智能,高效率,以及高飢液可靠性!