❶ python中級精華-並發之啟動和停止線程
為了讓代碼能夠並發執行,向創建線程並在核實的時候銷毀它。
由於目的比較單純,只是講解基礎的線程創建方法,所以可以直接使用threading庫中的Thread類來實例化一個線程對象。
例子,用戶輸入兩個數字,並且求其兩個數字的四則運算的結果:
除了以上的一些功能以外,在python線程
中沒有其他的諸如給線程發信號、設置線程調度屬性、執行任何其他高級操作的功能了,如果需要這些功能,就需要手工編寫了。
另外,需要注意的是,由於GIL(全局解釋器鎖)的存在,限制了在python解釋器當中只允許運行一個線程。基於這個原因,不停該使用python線程來處理計算密集型的任務,因為在這種任務重我們希望在多個CPU核心上實現並行處理。Python線程更適合於IO處理以及設計阻塞操作的並發執行任務(即等待IO響應或等待資料庫取出結果等)。
如何判斷線程是否已經啟動?
目的:我們載入了一個線程,但是想要知道這個線程什麼時候才會開始運行?
方法:
線程的核心特徵我認為就是不確定性,因為其什麼時候開始運行,什麼時候被打斷,什麼時候恢復執行,這不是程序員能夠控制的,而是有系統調度
來完成的。如果遇到像某個線程的運行依託於其他某個線程運行到某個狀態時該線程才能開始運行,那麼這就是線程同步
問題,同樣這個問題非常棘手。要解決這類問題我們要藉助threading中的Event對象。
Event其實和條件標記類似,勻速線程
等待某個時間發生。初始狀態時事件被設置成0。如果事件沒有被設置而線程正在等待該事件,那麼線程就會被阻塞,直到事件被設置位置,當有線程設置了這個事件之後,那麼就會喚醒正在等待事件的線程,如果線程等待的事件已經設置了,那麼線程會繼續執行。
一個例子:
如上能夠確定的是,主線程會在線程t運行結束時再運行。
❷ python中什麼是線程
線程是系統中的名詞,Python一般是單線程的,Python的多線程優化很差。
線程,有時被稱為輕量級進程(Lightweight Process,LWP),是程序執行流的最小單元。一個標準的線程由線程ID,當前指令指針(PC),寄存器集合和堆棧組成。另外,線程是進程中的一個實體,是被系統獨立調度和分派的基本單位,線程自己不擁有系統資源,只擁有一點兒在運行中必不可少的資源,但它可與同屬一個進程的其它線程共享進程所擁有的全部資源。一個線程可以創建和撤消另一個線程,同一進程中的多個線程之間可以並發執行。由於線程之間的相互制約,致使線程在運行中呈現出間斷性。線程也有就緒、阻塞和運行三種基本狀態。就緒狀態是指線程具備運行的所有條件,邏輯上可以運行,在等待處理機;運行狀態是指線程佔有處理機正在運行;阻塞狀態是指線程在等待一個事件(如某個信號量),邏輯上不可執行。每一個程序都至少有一個線程,若程序只有一個線程,那就是程序本身。
線程是程序中一個單一的順序控制流程。進程內有一個相對獨立的、可調度的執行單元,是系統獨立調度和分派CPU的基本單位指令運行時的程序的調度單位。在單個程序中同時運行多個線程完成不同的工作,稱為多線程。
❸ python開發之如何在線程間進行事件通知
1.等待事件一端調用wait,等待事件 event.wait(),如果要wait持續生效 得event.clear()
2.通知事件一端調用set,通知事件慧首 event.set()
3.daemon線程是指所有的線程如果前慎數孝飢結束了,daemon線程也會結束!
❹ 一文帶你讀懂Python線程
Python線程
進程有很多優點,它提供了多道編程,可以提高計算機CPU的利用率。既然進程這么優秀,為什麼還要線程呢?其實,仔細觀察就會發現進程還是有很多缺陷的。
主要體現在一下幾個方面:
進程只能在一個時間做一個任務,如果想同時做兩個任務或多個任務,就必須開啟多個進程去完成多個任務。
進程在執行的過程中如果阻塞,例如等待輸入,整個進程就會掛起,即使進程中有些工作不依賴於輸入的數據,也將無法執行。
每個進程都有自己的獨立空間,所以多進程的創建,銷毀相比於多線程更加耗時,也更加佔用系統資源。
進程是資源分配的最小單位,線程是CPU調度的最小單位,每一個進程中至少有一個線程。
線程與進程的區別
可以歸納為以下4點:
1)地址空間:進程間相互獨立的每個進程都有自己獨立的內存空間,也就是說一個進程內的數據在另一個進程是不可見的。但同一進程中的各線程間數據是共享的。
2)通信:由於每個進程有自己獨立的內存空間,所以進程間通信需要IPC,而進程內的數據對於多個線程來說是共享的,每個線程都可以訪問,所以為了保證數據的一致性,需要使用鎖。
3)調度和切換:線程上下文切換比進程上下文切換要快得多。
4)在多線程操作系統中,進程不是一個可執行的實體,它主要的功能是向操作系統申請一塊內存空間,然後在內存空間中開線程來執行任務,相當於一個容器,容器中的線程才是真正的執行體。一個進程可以包含多個線程,而一個線程是不能包含進程的。因為進程是系統分配資源的最小單位,所以線程不能向操作系統申請自己的空間,但一個線程內可以包含多個線程。
相關推薦:《Python視頻教程》
線程的特點:
在多線程的操作系統中,通常是在一個進程中包括多個線程,每個線程都是作為利用CPU的基本單位,是花費最小開銷的實體。線程具有以下屬性。
1)輕型實體
線程中的實體基本上不擁有系統資源,只是有一點必不可少的、能保證獨立運行的資源。
線程的實體包括程序、數據和TCB。線程是動態概念,它的動態特性由線程式控制制塊TCB(Thread Control Block)描述。
2)獨立調度和分派的基本單位。
在多線程OS中,線程是能獨立運行的基本單位,因而也是獨立調度和分派的基本單位。由於線程很「輕」,故線程的切換非常迅速且開銷小(在同一進程中的)。
3)共享進程資源。
在同一進程中的各個線程,都可以共享該進程所擁有的資源,這首先表現在:所有線程都具有相同的進程id,這意味著,線程可以訪問該進程的每一個內存資源;此外,還可以訪問進程所擁有的已打開文件、定時器、信號量機構等。由於同一個進程內的線程共享內存和文件,所以線程之間互相通信不必調用內核。
4)可並發執行
在一個進程中的多個線程之間,可以並發執行,甚至允許在一個進程中所有線程都能並發執行;同樣,不同進程中的線程也能並發執行,充分利用和發揮了處理機與外圍設備並行工作的能力。
線程的實現可以分為兩類:
用戶級線程(User-Level Thread)和內核級線程(Kernel-Level Thread),後者又稱為內核支持的線程或輕量級進程。在多線程操作系統中,各個系統的實現方式並不相同,在有的系統中實現了用戶級線程,有的系統中實現了內核級線程。
用戶線程和內核線程的區別:
1、內核支持線程是OS內核可感知的,而用戶級線程是OS內核不可感知的。
2、用戶級線程的創建、撤消和調度不需要OS內核的支持,是在語言(如Java)這一級處理的;而內核支持線程的創建、撤消和調度都需OS內核提供支持,而且與進程的創建、撤消和調度大體是相同的。
3、用戶級線程執行系統調用指令時將導致其所屬進程被中斷,而內核支持線程執行系統調用指令時,只導致該線程被中斷。
4、在只有用戶級線程的系統內,CPU調度還是以進程為單位,處於運行狀態的進程中的多個線程,由用戶程序控制線程的輪換運行;在有內核支持線程的系統內,CPU調度則以線程為單位,由OS的線程調度程序負責線程的調度。
5、用戶級線程的程序實體是運行在用戶態下的程序,而內核支持線程的程序實體則是可以運行在任何狀態下的程序。
內核線程的優缺點:
優點:當有多個處理機時,一個進程的多個線程可以同時執行。
缺點:由內核進行調度。
用戶線程的優缺點:
優點:
線程的調度不需要內核直接參與,控制簡單。
可以在不支持線程的操作系統中實現。
創建和銷毀線程、線程切換代價等線程管理的代價比內核線程少得多。
允許每個進程定製自己的調度演算法,線程管理比較靈活。
線程能夠利用的表空間和堆棧空間比內核級線程多。
同一進程中只能同時有一個線程在運行,如果有一個線程使用了系統調用而阻塞,那麼整個進程都會被掛起。另外,頁面失效也會產生同樣的問題。
缺點:
資源調度按照進程進行,多個處理機下,同一個進程中的線程只能在同一個處理機下分時復用。
❺ 一篇文章帶你深度解析Python線程和進程
使用Python中的線程模塊,能夠同時運行程序的不同部分,並簡化設計。如果你已經入門Python,並且想用線程來提升程序運行速度的話,希望這篇教程會對你有所幫助。
線程與進程
什麼是進程
進程是系統進行資源分配和調度的一個獨立單位 進程是具有一定獨立功能的程序關於某個數據集合上的一次運行活動,進程是系統進行資源分配和調度的一個獨立單位。每個進程都有自己的獨立內存空間,不同進程通過進程間通信來通信。由於進程比較重量,占據獨立的內存,所以上下文進程間的切換開銷(棧、寄存器、虛擬內存、文件句柄等)比較大,但相對比較穩定安全。
什麼是線程
CPU調度和分派的基本單位 線程是進程的一個實體,是CPU調度和分派的基本單位,它是比進程更小的能獨立運行的基本單位.線程自己基本上不擁有系統資源,只擁有一點在運行中必不可少的資源(如程序計數器,一組寄存器和棧),但是它可與同屬一個進程的其他的線程共享進程所擁有的全部資源。線程間通信主要通過共享內存,上下文切換很快,資源開銷較少,但相比進程不夠穩定容易丟失數據。
進程與線程的關系圖
線程與進程的區別:
進程
現實生活中,有很多的場景中的事情是同時進行的,比如開車的時候 手和腳共同來駕駛 汽車 ,比如唱歌跳舞也是同時進行的,再比如邊吃飯邊打電話;試想如果我們吃飯的時候有一個領導來電,我們肯定是立刻就接聽了。但是如果你吃完飯再接聽或者回電話,很可能會被開除。
注意:
多任務的概念
什麼叫 多任務 呢?簡單地說,就是操作系統可以同時運行多個任務。打個比方,你一邊在用瀏覽器上網,一邊在聽MP3,一邊在用Word趕作業,這就是多任務,至少同時有3個任務正在運行。還有很多任務悄悄地在後台同時運行著,只是桌面上沒有顯示而已。
現在,多核CPU已經非常普及了,但是,即使過去的單核CPU,也可以執行多任務。由於CPU執行代碼都是順序執行的,那麼,單核CPU是怎麼執行多任務的呢?
答案就是操作系統輪流讓各個任務交替執行,任務1執行0.01秒,切換到任務2,任務2執行0.01秒,再切換到任務3,執行0.01秒,這樣反復執行下去。表面上看,每個任務都是交替執行的,但是,由於CPU的執行速度實在是太快了,我們感覺就像所有任務都在同時執行一樣。
真正的並行執行多任務只能在多核CPU上實現,但是,由於任務數量遠遠多於CPU的核心數量,所以,操作系統也會自動把很多任務輪流調度到每個核心上執行。 其實就是CPU執行速度太快啦!以至於我們感受不到在輪流調度。
並行與並發
並行(Parallelism)
並行:指兩個或兩個以上事件(或線程)在同一時刻發生,是真正意義上的不同事件或線程在同一時刻,在不同CPU資源呢上(多核),同時執行。
特點
並發(Concurrency)
指一個物理CPU(也可以多個物理CPU) 在若幹道程序(或線程)之間多路復用,並發性是對有限物理資源強制行使多用戶共享以提高效率。
特點
multiprocess.Process模塊
process模塊是一個創建進程的模塊,藉助這個模塊,就可以完成進程的創建。
語法:Process([group [, target [, name [, args [, kwargs]]]]])
由該類實例化得到的對象,表示一個子進程中的任務(尚未啟動)。
注意:1. 必須使用關鍵字方式來指定參數;2. args指定的為傳給target函數的位置參數,是一個元祖形式,必須有逗號。
參數介紹:
group:參數未使用,默認值為None。
target:表示調用對象,即子進程要執行的任務。
args:表示調用的位置參數元祖。
kwargs:表示調用對象的字典。如kwargs = {'name':Jack, 'age':18}。
name:子進程名稱。
代碼:
除了上面這些開啟進程的方法之外,還有一種以繼承Process的方式開啟進程的方式:
通過上面的研究,我們千方百計實現了程序的非同步,讓多個任務可以同時在幾個進程中並發處理,他們之間的運行沒有順序,一旦開啟也不受我們控制。盡管並發編程讓我們能更加充分的利用IO資源,但是也給我們帶來了新的問題。
當多個進程使用同一份數據資源的時候,就會引發數據安全或順序混亂問題,我們可以考慮加鎖,我們以模擬搶票為例,來看看數據安全的重要性。
加鎖可以保證多個進程修改同一塊數據時,同一時間只能有一個任務可以進行修改,即串列的修改。加鎖犧牲了速度,但是卻保證了數據的安全。
因此我們最好找尋一種解決方案能夠兼顧:1、效率高(多個進程共享一塊內存的數據)2、幫我們處理好鎖問題。
mutiprocessing模塊為我們提供的基於消息的IPC通信機制:隊列和管道。隊列和管道都是將數據存放於內存中 隊列又是基於(管道+鎖)實現的,可以讓我們從復雜的鎖問題中解脫出來, 我們應該盡量避免使用共享數據,盡可能使用消息傳遞和隊列,避免處理復雜的同步和鎖問題,而且在進程數目增多時,往往可以獲得更好的可獲展性( 後續擴展該內容 )。
線程
Python的threading模塊
Python 供了幾個用於多線程編程的模塊,包括 thread, threading 和 Queue 等。thread 和 threading 模塊允許程序員創建和管理線程。thread 模塊 供了基本的線程和鎖的支持,而 threading 供了更高級別,功能更強的線程管理的功能。Queue 模塊允許用戶創建一個可以用於多個線程之間 共享數據的隊列數據結構。
python創建和執行線程
創建線程代碼
1. 創建方法一:
2. 創建方法二:
進程和線程都是實現多任務的一種方式,例如:在同一台計算機上能同時運行多個QQ(進程),一個QQ可以打開多個聊天窗口(線程)。資源共享:進程不能共享資源,而線程共享所在進程的地址空間和其他資源,同時,線程有自己的棧和棧指針。所以在一個進程內的所有線程共享全局變數,但多線程對全局變數的更改會導致變數值得混亂。
代碼演示:
得到的結果是:
首先需要明確的一點是GIL並不是Python的特性,它是在實現Python解析器(CPython)時所引入的一個概念。就好比C++是一套語言(語法)標准,但是可以用不同的編譯器來編譯成可執行代碼。同樣一段代碼可以通過CPython,PyPy,Psyco等不同的Python執行環境來執行(其中的JPython就沒有GIL)。
那麼CPython實現中的GIL又是什麼呢?GIL全稱Global Interpreter Lock為了避免誤導,我們還是來看一下官方給出的解釋:
主要意思為:
因此,解釋器實際上被一個全局解釋器鎖保護著,它確保任何時候都只有一個Python線程執行。在多線程環境中,Python 虛擬機按以下方式執行:
由於GIL的存在,Python的多線程不能稱之為嚴格的多線程。因為 多線程下每個線程在執行的過程中都需要先獲取GIL,保證同一時刻只有一個線程在運行。
由於GIL的存在,即使是多線程,事實上同一時刻只能保證一個線程在運行, 既然這樣多線程的運行效率不就和單線程一樣了嗎,那為什麼還要使用多線程呢?
由於以前的電腦基本都是單核CPU,多線程和單線程幾乎看不出差別,可是由於計算機的迅速發展,現在的電腦幾乎都是多核CPU了,最少也是兩個核心數的,這時差別就出來了:通過之前的案例我們已經知道,即使在多核CPU中,多線程同一時刻也只有一個線程在運行,這樣不僅不能利用多核CPU的優勢,反而由於每個線程在多個CPU上是交替執行的,導致在不同CPU上切換時造成資源的浪費,反而會更慢。即原因是一個進程只存在一把gil鎖,當在執行多個線程時,內部會爭搶gil鎖,這會造成當某一個線程沒有搶到鎖的時候會讓cpu等待,進而不能合理利用多核cpu資源。
但是在使用多線程抓取網頁內容時,遇到IO阻塞時,正在執行的線程會暫時釋放GIL鎖,這時其它線程會利用這個空隙時間,執行自己的代碼,因此多線程抓取比單線程抓取性能要好,所以我們還是要使用多線程的。
GIL對多線程Python程序的影響
程序的性能受到計算密集型(CPU)的程序限制和I/O密集型的程序限制影響,那什麼是計算密集型和I/O密集型程序呢?
計算密集型:要進行大量的數值計算,例如進行上億的數字計算、計算圓周率、對視頻進行高清解碼等等。這種計算密集型任務雖然也可以用多任務完成,但是花費的主要時間在任務切換的時間,此時CPU執行任務的效率比較低。
IO密集型:涉及到網路請求(time.sleep())、磁碟IO的任務都是IO密集型任務,這類任務的特點是CPU消耗很少,任務的大部分時間都在等待IO操作完成(因為IO的速度遠遠低於CPU和內存的速度)。對於IO密集型任務,任務越多,CPU效率越高,但也有一個限度。
當然為了避免GIL對我們程序產生影響,我們也可以使用,線程鎖。
Lock&RLock
常用的資源共享鎖機制:有Lock、RLock、Semphore、Condition等,簡單給大家分享下Lock和RLock。
Lock
特點就是執行速度慢,但是保證了數據的安全性
RLock
使用鎖代碼操作不當就會產生死鎖的情況。
什麼是死鎖
死鎖:當線程A持有獨占鎖a,並嘗試去獲取獨占鎖b的同時,線程B持有獨占鎖b,並嘗試獲取獨占鎖a的情況下,就會發生AB兩個線程由於互相持有對方需要的鎖,而發生的阻塞現象,我們稱為死鎖。即死鎖是指多個進程因競爭資源而造成的一種僵局,若無外力作用,這些進程都將無法向前推進。
所以,在系統設計、進程調度等方面注意如何不讓這四個必要條件成立,如何確定資源的合理分配演算法,避免進程永久占據系統資源。
死鎖代碼
python線程間通信
如果各個線程之間各干各的,確實不需要通信,這樣的代碼也十分的簡單。但這一般是不可能的,至少線程要和主線程進行通信,不然計算結果等內容無法取回。而實際情況中要復雜的多,多個線程間需要交換數據,才能得到正確的執行結果。
python中Queue是消息隊列,提供線程間通信機制,python3中重名為為queue,queue模塊塊下提供了幾個阻塞隊列,這些隊列主要用於實現線程通信。
在 queue 模塊下主要提供了三個類,分別代表三種隊列,它們的主要區別就在於進隊列、出隊列的不同。
簡單代碼演示
此時代碼會阻塞,因為queue中內容已滿,此時可以在第四個queue.put('蘋果')後面添加timeout,則成為 queue.put('蘋果',timeout=1)如果等待1秒鍾仍然是滿的就會拋出異常,可以捕獲異常。
同理如果隊列是空的,無法獲取到內容默認也會阻塞,如果不阻塞可以使用queue.get_nowait()。
在掌握了 Queue 阻塞隊列的特性之後,在下面程序中就可以利用 Queue 來實現線程通信了。
下面演示一個生產者和一個消費者,當然都可以多個
使用queue模塊,可在線程間進行通信,並保證了線程安全。
協程
協程,又稱微線程,纖程。英文名Coroutine。
協程是python個中另外一種實現多任務的方式,只不過比線程更小佔用更小執行單元(理解為需要的資源)。為啥說它是一個執行單元,因為它自帶CPU上下文。這樣只要在合適的時機, 我們可以把一個協程 切換到另一個協程。只要這個過程中保存或恢復 CPU上下文那麼程序還是可以運行的。
通俗的理解:在一個線程中的某個函數,可以在任何地方保存當前函數的一些臨時變數等信息,然後切換到另外一個函數中執行,注意不是通過調用函數的方式做到的,並且切換的次數以及什麼時候再切換到原來的函數都由開發者自己確定。
在實現多任務時,線程切換從系統層面遠不止保存和恢復 CPU上下文這么簡單。操作系統為了程序運行的高效性每個線程都有自己緩存Cache等等數據,操作系統還會幫你做這些數據的恢復操作。所以線程的切換非常耗性能。但是協程的切換只是單純的操作CPU的上下文,所以一秒鍾切換個上百萬次系統都抗的住。
greenlet與gevent
為了更好使用協程來完成多任務,除了使用原生的yield完成模擬協程的工作,其實python還有的greenlet模塊和gevent模塊,使實現協程變的更加簡單高效。
greenlet雖說實現了協程,但需要我們手工切換,太麻煩了,gevent是比greenlet更強大的並且能夠自動切換任務的模塊。
其原理是當一個greenlet遇到IO(指的是input output 輸入輸出,比如網路、文件操作等)操作時,比如訪問網路,就自動切換到其他的greenlet,等到IO操作完成,再在適當的時候切換回來繼續執行。
模擬耗時操作:
如果有耗時操作也可以換成,gevent中自己實現的模塊,這時候就需要打補丁了。
使用協程完成一個簡單的二手房信息的爬蟲代碼吧!
以下文章來源於Python專欄 ,作者宋宋
文章鏈接:https://mp.weixin.qq.com/s/2r3_ipU3HjdA5VnqSHjUnQ
❻ python多線程的問題如何處理
在python里線程出問題,可能會導致主進程崩潰。 雖然python里的線程是操作系統的真實線程。
那麼怎麼解決呢?通過我們用進程方式。子進程崩潰後,會完全的釋放所有的內存和錯誤狀態。所以進程更安全。 另外通過進程,python可以很好的繞過GIL,這個全局鎖問題。
但是進程也是有局限的。不要建立超過CPU總核數的進程,否則效率也不高。
簡單的總結一下。
當我們想實現多任務處理時,首先要想到使用multiprocessing, 但是如果覺著進程太笨重,那麼就要考慮使用線程。 如果多任務處理中需要處理的太多了,可以考慮多進程,每個進程再採用多線程。如果還處理不要,就要使用輪詢模式,比如使用poll event, twisted等方式。如果是GUI方式,則要通過事件機制,或者是消息機制處理,GUI使用單線程。
所以在python里線程不要盲目用, 也不要濫用。 但是線程不安全是事實。如果僅僅是做幾個後台任務,則可以考慮使用守護線程做。如果需要做一些危險操作,可能會崩潰的,就用子進程去做。 如果需要高度穩定性,同時並發數又不高的服務。則強烈建議用多進程的multiprocessing模塊實現。
在linux或者是unix里,進程的使用代價沒有windows高。還是可以接受的。
❼ python基礎(21)-線程通信
到這里,我們要聊一下線程通信的內容;
首先,我們拋開語言不談,先看看比較基礎的東西,線程間通信的方式;其實也就是哪幾種(我這里說的,是我的所謂的知道的。。。)事件,消息隊列,信號量,條件變數(鎖算不算?我只是認為是同步的一種);所以我們也就是要把這些掌握了,因為各有各的好處嘛;
條件變數我放到了上面的線程同步裡面講了,我總感覺這算是同步的一種,沒有很多具體信息的溝通;同時吧,我認為條件變數比較重要,因為這種可以應用於線程池的操作上;所以比較重要;這里,拋開條件變數不談,我們看看其他的東西;
1、消息隊列:
queue 模塊下提供了幾個阻塞隊列,這些隊列主要用於實現線程通信。在 queue 模塊下主要提供了三個類,分別代表三種隊列,它們的主要區別就在於進隊列、出隊列的不同。
關於這三個隊列類的簡單介紹如下:
queue.Queue(maxsize=0):代表 FIFO(先進先出)的常規隊列,maxsize 可以限制隊列的大小。如果隊列的大小達到隊列的上限,就會加鎖,再次加入元素時就會被阻塞,直到隊列中的元素被消費。如果將 maxsize 設置為 0 或負數,則該隊列的大小就是無限制的。
queue.LifoQueue(maxsize=0):代表 LIFO(後進先出)的隊列,與 Queue 的區別就是出隊列的順序不同。
PriorityQueue(maxsize=0):代表優先順序隊列,優先順序最小的元素先出隊列。
這三個隊列類的屬性和方法基本相同, 它們都提供了如下屬性和方法:
Queue.qsize():返回隊列的實際大小,也就是該隊列中包含幾個元素。
Queue.empty():判斷隊列是否為空。
Queue.full():判斷隊列是否已滿。
Queue.put(item, block=True, timeout=None):向隊列中放入元素。如果隊列己滿,且 block 參數為 True(阻塞),當前線程被阻塞,timeout 指定阻塞時間,如果將 timeout 設置為 None,則代表一直阻塞,直到該隊列的元素被消費;如果隊列己滿,且 block 參數為 False(不阻塞),則直接引發 queue.FULL 異常。
Queue.put_nowait(item):向隊列中放入元素,不阻塞。相當於在上一個方法中將 block 參數設置為 False。
Queue.get(item, block=True, timeout=None):從隊列中取出元素(消費元素)。如果隊列已滿,且 block 參數為 True(阻塞),當前線程被阻塞,timeout 指定阻塞時間,如果將 timeout 設置為 None,則代表一直阻塞,直到有元素被放入隊列中; 如果隊列己空,且 block 參數為 False(不阻塞),則直接引發 queue.EMPTY 異常。
Queue.get_nowait(item):從隊列中取出元素,不阻塞。相當於在上一個方法中將 block 參數設置為 False。
其實我們想想,這個隊列,是python進行封裝的,那麼我們可以用在線程間的通信;同時也是可以用做一個數據結構;先進先出就是隊列,後進先出就是棧;我們用這個棧寫個十進制轉二進制的例子:
沒毛病,可以正常的列印;其中需要注意的就是,maxsize在初始化的時候如果是0或者是個負數的話,那麼就會是不限制大小;
那麼其實我們想想,我們如果用做線程通信的話,我們兩個線程,可以把隊列設置為1的大小,如果是1對多,比如是創建者和消費者的關系,我們完全可以作為消息隊列,比如說創建者一直在創建一些東西,然後放入到消息隊列裡面,然後供消費著使用;就是一個很好的例子;所以,其實說是消息隊列,也就是隊列,沒差;
=====================================================================
下面來看一下事件
Event 是一種非常簡單的線程通信機制,一個線程發出一個 Event,另一個線程可通過該 Event 被觸發。
Event 本身管理一個內部旗標,程序可以通過 Event 的 set() 方法將該旗標設置為 True,也可以調用 clear() 方法將該旗標設置為 False。程序可以調用 wait() 方法來阻塞當前線程,直到 Event 的內部旗標被設置為 True。
Event 提供了如下方法:
is_set():該方法返回 Event 的內部旗標是否為True。
set():該方法將會把 Event 的內部旗標設置為 True,並喚醒所有處於等待狀態的線程。
clear():該方法將 Event 的內部旗標設置為 False,通常接下來會調用 wait() 方法來阻塞當前線程。
wait(timeout=None):該方法會阻塞當前線程。
這里我想解釋一下;其實對於事件來說,事件可以看成和條件變數是一樣的,只是我們說說不一樣的地方;
1、對於事件來說,一旦觸發了事件,也就是說,一旦set為true了,那麼就會一直為true,需要clear調內部的標志,才能繼續wait;但是conditon不是,他是一次性的喚醒其他線程;
2、conditon自己帶鎖;事件呢?不是的;沒有自己的鎖;比如說有一個存錢的線程,有一個是取錢的線程;那麼存錢的線程要存錢;需要怎麼辦呢?1、發現銀行沒有錢了(is_set判斷);2、鎖住銀行;3、存錢;4、釋放銀行;5、喚醒事件;對於取錢的人;1、判斷是否有錢;2、被喚醒了,然後鎖住銀行;3、開始取錢;4、清理告訴存錢的人,我沒錢了(clear);5、釋放鎖;6、等著錢存進去;
其實說白了,就是記住一點;這個旗標需要自己clear就對了
寫個例子,怕以後忘了怎麼用;
其實時間和信號量比較像;但是信號量不用自己清除標志位;但是事件是需要的;
❽ python實現多線程並發執行
由於停服維護的需求(服務越來越多的原因),此前編寫的shell腳本執行速度緩慢(for循環,這就會很慢),為提高執行速度,參考很多資料,完成此腳本,實現並發執行機制.(當然這是測試腳本,有需要的同學,拿去改ba改ba,應該就可以用了)
此處腳本參考了 https://www.jb51.net/article/86053.htm
❾ 深入解析Python中的線程同步方法
深入解析Python中的線程同步方法
同步訪問共享資源
在使用線程的時候,一個很重要的問題是要避免多個線程對同一變數或其它資源的訪問沖突。一旦你稍不留神,重疊訪問、在多個線程中修改(共享資源)等這些操作會導致各種各樣的問題;更嚴重的是,這些問題一般只會在比較極端(比如高並發、生產伺服器、甚至在性能更好的硬體設備上)的情況下才會出現。
比如有這樣一個情況:需要追蹤對一事件處理的次數
counter = 0
def process_item(item):
global counter
... do something with item ...
counter += 1
如果你在多個線程中同時調用這個函數,你會發現counter的值不是那麼准確。在大多數情況下它是對的,但有時它會比實際的少幾個。
出現這種情況的原因是,計數增加操作實際上分三步執行:
解釋器獲取counter的當前值計算新值將計算的新值回寫counter變數
考慮一下這種情況:在當前線程獲取到counter值後,另一個線程搶佔到了CPU,然後同樣也獲取到了counter值,並進一步將counter值重新計算並完成回寫;之後時間片重新輪到當前線程(這里僅作標識區分,並非實際當前),此時當前線程獲取到counter值還是原來的,完成後續兩步操作後counter的值實際只加上1。
另一種常見情況是訪問不完整或不一致狀態。這類情況主要發生在一個線程正在初始化或更新數據時,另一個進程卻嘗試讀取正在更改的數據。
原子操作
實現對共享變數或其它資源的同步訪問最簡單的方法是依靠解釋器的原子操作。原子操作是在一步完成執行的操作,在這一步中其它線程無法獲得該共享資源。
通常情況下,這種同步方法只對那些只由單個核心數據類型組成的共享資源有效,譬如,字元串變數、數字、列表或者字典等。下面是幾個線程安全的操作:
讀或者替換一個實例屬性讀或者替換一個全局變數從列表中獲取一項元素原位修改一個列表(例如:使用append增加一個列表項)從字典中獲取一項元素原位修改一個字典(例如:增加一個字典項、調用clear方法)
注意,上面提到過,對一個變數或者屬性進行讀操作,然後修改它,最終將其回寫不是線程安全的。因為另外一個線程會在這個線程讀完卻沒有修改或回寫完成之前更改這個共享變數/屬性。
鎖
鎖是Python的threading模塊提供的最基本的同步機制。在任一時刻,一個鎖對象可能被一個線程獲取,或者不被任何線程獲取。如果一個線程嘗試去獲取一個已經被另一個線程獲取到的鎖對象,那麼這個想要獲取鎖對象的線程只能暫時終止執行直到鎖對象被另一個線程釋放掉。
鎖通常被用來實現對共享資源的同步訪問。為每一個共享資源創建一個Lock對象,當你需要訪問該資源時,調用acquire方法來獲取鎖對象(如果其它線程已經獲得了該鎖,則當前線程需等待其被釋放),待資源訪問完後,再調用release方法釋放鎖:
lock = Lock()
lock.acquire() #: will block if lock is already held
... access shared resource
lock.release()
注意,即使在訪問共享資源的過程中出錯了也應該釋放鎖,可以用try-finally來達到這一目的:
lock.acquire()
try:
... access shared resource
finally:
lock.release() #: release lock, no matter what
在Python 2.5及以後的版本中,你可以使用with語句。在使用鎖的時候,with語句會在進入語句塊之前自動的獲取到該鎖對象,然後在語句塊執行完成後自動釋放掉鎖:
from __future__ import with_statement #: 2.5 only
with lock:
... access shared resource
acquire方法帶一個可選的等待標識,它可用於設定當有其它線程佔有鎖時是否阻塞。如果你將其值設為False,那麼acquire方法將不再阻塞,只是如果該鎖被佔有時它會返回False:
if not lock.acquire(False):
... 鎖資源失敗
else:
try:
... access shared resource
finally:
lock.release()
你可以使用locked方法來檢查一個鎖對象是否已被獲取,注意不能用該方法來判斷調用acquire方法時是否會阻塞,因為在locked方法調用完成到下一條語句(比如acquire)執行之間該鎖有可能被其它線程佔有。
if not lock.locked():
#: 其它線程可能在下一條語句執行之前佔有了該鎖
lock.acquire() #: 可能會阻塞
簡單鎖的缺點
標準的鎖對象並不關心當前是哪個線程佔有了該鎖;如果該鎖已經被佔有了,那麼任何其它嘗試獲取該鎖的線程都會被阻塞,即使是佔有鎖的這個線程。考慮一下下面這個例子:
lock = threading.Lock()
def get_first_part():
lock.acquire()
try:
... 從共享對象中獲取第一部分數據
finally:
lock.release()
return data
def get_second_part():
lock.acquire()
try:
... 從共享對象中獲取第二部分數據
finally:
lock.release()
return data
示例中,我們有一個共享資源,有兩個分別取這個共享資源第一部分和第二部分的函數。兩個訪問函數都使用了鎖來確保在獲取數據時沒有其它線程修改對應的共享數據。
現在,如果我們想添加第三個函數來獲取兩個部分的數據,我們將會陷入泥潭。一個簡單的方法是依次調用這兩個函數,然後返回結合的結果:
def get_both_parts():
first = get_first_part()
seconde = get_second_part()
return first, second
這里的問題是,如有某個線程在兩個函數調用之間修改了共享資源,那麼我們最終會得到不一致的數據。最明顯的解決方法是在這個函數中也使用lock:
def get_both_parts():
lock.acquire()
try:
first = get_first_part()
seconde = get_second_part()
finally:
lock.release()
return first, second
然而,這是不可行的。裡面的兩個訪問函數將會阻塞,因為外層語句已經佔有了該鎖。為了解決這個問題,你可以通過使用標記在訪問函數中讓外層語句釋放鎖,但這樣容易失去控制並導致出錯。幸運的是,threading模塊包含了一個更加實用的鎖實現:re-entrant鎖。
Re-Entrant Locks (RLock)
RLock類是簡單鎖的另一個版本,它的特點在於,同一個鎖對象只有在被其它的線程佔有時嘗試獲取才會發生阻塞;而簡單鎖在同一個線程中同時只能被佔有一次。如果當前線程已經佔有了某個RLock鎖對象,那麼當前線程仍能再次獲取到該RLock鎖對象。
lock = threading.Lock()
lock.acquire()
lock.acquire() #: 這里將會阻塞
lock = threading.RLock()
lock.acquire()
lock.acquire() #: 這里不會發生阻塞
RLock的主要作用是解決嵌套訪問共享資源的問題,就像前面描述的示例。要想解決前面示例中的問題,我們只需要將Lock換為RLock對象,這樣嵌套調用也會OK.
lock = threading.RLock()
def get_first_part():
... see above
def get_second_part():
... see above
def get_both_parts():
... see above
這樣既可以單獨訪問兩部分數據也可以一次訪問兩部分數據而不會被鎖阻塞或者獲得不一致的數據。
注意RLock會追蹤遞歸層級,因此記得在acquire後進行release操作。
Semaphores
信號量是一個更高級的鎖機制。信號量內部有一個計數器而不像鎖對象內部有鎖標識,而且只有當佔用信號量的線程數超過信號量時線程才阻塞。這允許了多個線程可以同時訪問相同的代碼區。
semaphore = threading.BoundedSemaphore()
semaphore.acquire() #: counter減小
... 訪問共享資源
semaphore.release() #: counter增大
當信號量被獲取的時候,計數器減小;當信號量被釋放的時候,計數器增大。當獲取信號量的時候,如果計數器值為0,則該進程將阻塞。當某一信號量被釋放,counter值增加為1時,被阻塞的線程(如果有的話)中會有一個得以繼續運行。
信號量通常被用來限制對容量有限的資源的訪問,比如一個網路連接或者資料庫伺服器。在這類場景中,只需要將計數器初始化為最大值,信號量的實現將為你完成剩下的事情。
max_connections = 10
semaphore = threading.BoundedSemaphore(max_connections)
如果你不傳任何初始化參數,計數器的值會被初始化為1.
Python的threading模塊提供了兩種信號量實現。Semaphore類提供了一個無限大小的信號量,你可以調用release任意次來增大計數器的值。為了避免錯誤出現,最好使用BoundedSemaphore類,這樣當你調用release的次數大於acquire次數時程序會出錯提醒。
線程同步
鎖可以用在線程間的同步上。threading模塊包含了一些用於線程間同步的類。
Events
一個事件是一個簡單的同步對象,事件表示為一個內部標識(internal flag),線程等待這個標識被其它線程設定,或者自己設定、清除這個標識。
event = threading.Event()
#: 一個客戶端線程等待flag被設定
event.wait()
#: 服務端線程設置或者清除flag
event.set()
event.clear()
一旦標識被設定,wait方法就不做任何處理(不會阻塞),當標識被清除時,wait將被阻塞直至其被重新設定。任意數量的線程可能會等待同一個事件。
Conditions
條件是事件對象的高級版本。條件表現為程序中的某種狀態改變,線程可以等待給定條件或者條件發生的信號。
下面是一個簡單的生產者/消費者實例。首先你需要創建一個條件對象:
#: 表示一個資源的附屬項
condition = threading.Condition()
生產者線程在通知消費者線程有新生成資源之前需要獲得條件:
#: 生產者線程
... 生產資源項
condition.acquire()
... 將資源項添加到資源中
condition.notify() #: 發出有可用資源的信號
condition.release()
消費者必須獲取條件(以及相關聯的鎖),然後嘗試從資源中獲取資源項:
#: 消費者線程
condition.acquire()
while True:
...從資源中獲取資源項
if item:
break
condition.wait() #: 休眠,直至有新的資源
condition.release()
... 處理資源
wait方法釋放了鎖,然後將當前線程阻塞,直到有其它線程調用了同一條件對象的notify或者notifyAll方法,然後又重新拿到鎖。如果同時有多個線程在等待,那麼notify方法只會喚醒其中的一個線程,而notifyAll則會喚醒全部線程。
為了避免在wait方法處阻塞,你可以傳入一個超時參數,一個以秒為單位的浮點數。如果設置了超時參數,wait將會在指定時間返回,即使notify沒被調用。一旦使用了超時,你必須檢查資源來確定發生了什麼。
注意,條件對象關聯著一個鎖,你必須在訪問條件之前獲取這個鎖;同樣的,你必須在完成對條件的訪問時釋放這個鎖。在生產代碼中,你應該使用try-finally或者with.
可以通過將鎖對象作為條件構造函數的參數來讓條件關聯一個已經存在的鎖,這可以實現多個條件公用一個資源:
lock = threading.RLock()
condition_1 = threading.Condition(lock)
condition_2 = threading.Condition(lock)
互斥鎖同步
我們先來看一個例子:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import time, threading
# 假定這是你的銀行存款:
balance = 0
muxlock = threading.Lock()
def change_it(n):
# 先存後取,結果應該為0:
global balance
balance = balance + n
balance = balance - n
def run_thread(n):
# 循環次數一旦多起來,最後的數字就變成非0
for i in range(100000):
change_it(n)
t1 = threading.Thread(target=run_thread, args=(5,))
t2 = threading.Thread(target=run_thread, args=(8,))
t3 = threading.Thread(target=run_thread, args=(9,))
t1.start()
t2.start()
t3.start()
t1.join()
t2.join()
t3.join()
print balance
結果 :
[/data/web/test_python]$ python multhread_threading.py
0
[/data/web/test_python]$ python multhread_threading.py
61
[/data/web/test_python]$ python multhread_threading.py
0
[/data/web/test_python]$ python multhread_threading.py
24
上面的例子引出了多線程編程的最常見問題:數據共享。當多個線程都修改某一個共享數據的時候,需要進行同步控制。
線程同步能夠保證多個線程安全訪問競爭資源,最簡單的同步機制是引入互斥鎖。互斥鎖為資源引入一個狀態:鎖定/非鎖定。某個線程要更改共享數據時,先將其鎖定,此時資源的狀態為「鎖定」,其他線程不能更改;直到該線程釋放資源,將資源的狀態變成「非鎖定」,其他的線程才能再次鎖定該資源。互斥鎖保證了每次只有一個線程進行寫入操作,從而保證了多線程情況下數據的正確性。
threading模塊中定義了Lock類,可以方便的處理鎖定:
#創建鎖mutex = threading.Lock()
#鎖定mutex.acquire([timeout])
#釋放mutex.release()
其中,鎖定方法acquire可以有一個超時時間的可選參數timeout。如果設定了timeout,則在超時後通過返回值可以判斷是否得到了鎖,從而可以進行一些其他的處理。
使用互斥鎖實現上面的例子的代碼如下:
balance = 0
muxlock = threading.Lock()
def change_it(n):
# 獲取鎖,確保只有一個線程操作這個數
muxlock.acquire()
global balance
balance = balance + n
balance = balance - n
# 釋放鎖,給其他被阻塞的線程繼續操作
muxlock.release()
def run_thread(n):
for i in range(10000):
change_it(n)
加鎖後的結果,就能確保數據正確:
[/data/web/test_python]$ python multhread_threading.py
0
[/data/web/test_python]$ python multhread_threading.py
0
[/data/web/test_python]$ python multhread_threading.py
0
[/data/web/test_python]$ python multhread_threading.py
0
❿ Python的keyboard模塊使用多線程
在Python的keyboard模塊中,使用了線程來處理鍵盤事件。具體來說,keyboard模塊使用了Python標准庫中的threading模塊來創建線程,以便在後台監視鍵盤事件並在發生事件時調用回調函數。
當你使用keyboard模塊的add_hotkey()函數注冊熱鍵時,模塊會創建一個新的線程來監緩襪視鍵盤事件。當你按下熱鍵時,這個線程會在後台調用你提供的回調函數。
在使擾含激用keyboard模塊時,你不需要顯式地創建或控制線程,模塊會在內部處理線程的創建和管理。如果你需要在程序中使用多線程來老孫完成其他任務,可以通過Python標准庫中的threading模塊來創建新的線程。
需要注意的是,在使用多線程時,需要注意線程之間的同步和互斥,以避免競爭條件和死鎖等問題。建議在使用多線程時仔細閱讀Python官方文檔,並使用線程安全的工具和技術來編寫多線程程序。