『壹』 python怎麼連接伺服器上的informix
用 PyODBC 吧。
『貳』 怎麼用python在地圖圖片截圖中識別地圖上的橋梁
final String url = "jdbc:oracle:thin:@localhost:1521:ORCL";
final String user = "store";
final String password = "store_password";
Class.forName("oracle.jdbc.driver.OracleDriver");
Connection con = DriverManager.getConnection(url, user, password);
return con;
}
『叄』 python執行shell,報錯:未找到命令
我打算用python來執行shell命令,實現sqoop導數據功能
腳本如下:
mysql_jdbc="jdbc:mysql://{0}:{1}/{2}?characterEncoding=utf8&autoReconnect=true"
sqoop import "-Dorg.apache.sqoop.splitter.allow_text_splitter=true" \
--connect $mysql_jdbc \
--username {3} \
--password {4} \
--table {5} \
--target-dir {7} \
--delete-target-dir \
--split-by clientid
然後報錯:sqoop:未找到命令
然後我就測試:subprocess.run("java -version",shell=True)
也是報錯:java:未找到命令
網上一頓網路,查了胡行2天啊~~~~
1、檢查/etc/profile環境變數設置沒問題
2、linux機器上直接執行java -version也正常
3、linux機器上執行python3後,執行subprocess.run("java -version",shell=True)也正常輪悔
我就奇了怪了,還擺不平你這小娘子
後來突然想到之前項目里,先生效一下profile文件,試了一下,果然臘做正有效!!!
我的親娘誒,絕望之際,解救了我~~~
至於為什麼一定要這樣,還是不解
正確腳本:
shell_str ="""
source /etc/profile;
java -version
"""
subprocess.run(shell_str, shell=True)
『肆』 大數據培訓課程安排有哪些,深圳大數據培訓哪家好
下面是以道教育大數據培訓開發課程,可以參考
第一階段 WEB 開發基礎
HTML基礎
1、Html基本介紹
2、HTML語法規范
3、基本標簽介紹
4、HTML編輯器/文本文檔/WebStrom/elipse
5、HTML元素和屬性
6、基本的HTML元素
6.1 標題
6.2 段落
6.3 樣式和style屬性
6.3 鏈接 a
6.4 圖像 img
6.5 表格 table
6.6 列表 ul/ol/dl
7、 HTML注釋
8、表單介紹
9、Table標簽
10、DIV布局介紹
11、HTML列表詳解
HTML布局和Bootstrap
1、 HTML塊元素(block)和行內元素(inline)
2、使用div實現網頁布局
3、響應式WEB設計(Responsive Web Design)
4、使用bootstrap實現響應式布局
HTML表單元素
1、HTML表單 form
2、HTML表單元素
3、 HTML input的類型 type
4、 Html input的屬性
CSS基礎
1、CSS簡介及基本語法
2、在HTML文檔中使用CSS
3、CSS樣式
4、CSS選擇器
5、盒子模型
6、布局及定位
CSS高級/CSS3
1、尺寸和對齊
2、分類(clear/cursor/display/float/position/visibility)
3、導航欄
4、圖片庫
5、圖片透明
6、媒介類型 @media
7、CSS3
8、CSS3動畫效果
JavaScript基礎
1、JavaScript簡介
2、基本語法規則
3、在HTML文檔中使用JS
4、JS變數
5、JS數據類型
6、JS函數
7、JS運算符
8、流程式控制制
9、JS錯誤和調試
JavaScript對象和作用域
1、數字 Number
2、字元串String
3、日期 Date
4、數組
5、數學 Math
6、DOM對象和事件
7、BOM對象
8、Window對象
9、作用域和作用域鏈
10、JSON
Javascript庫
1、Jquery
2、Prototype
3、Ext Js
Jquery
1、Jquery基本語法
2、Jquery選擇器
3、Jquery事件
4、Jquery選擇器
5、Jquery效果和動畫
6、使用Jquery操作HTML和DOM
7、Jquery遍歷
8、Jquery封裝函數
9、Jquery案例
表單驗證和Jquery Validate
1、用Js對HTML表單進行驗證
2、Jquery Validata基本用法
3、默認校驗規則和提示信息
4、debug和ignore
5、更改錯誤信息顯示位置和樣式
6、全部校驗通過後的執行函數
7、修改驗證觸發方式
8、非同步驗證
9、自定義校驗方法
10、radio 和 checkbox、select 的驗證
Java基礎
1、關於Java
2、Java運行機制
3、第一個Java程序,注釋
4、Javac,Java,Javadoc等命令
5、標識符與關鍵字
6、變數的聲明,初始化與應用
7、變數的作用域
8、變數重名
9、基本數據類型
10、類型轉換與類型提升
11、各種數據類型使用細節
12、轉義序列
13、各種運算符的使用
流程式控制制
1、選擇控制語句if-else
2、選擇控制語句switch-case
3、循環控制語句while
4、循環控制語句do-while
5、循環控制語句for與增強型for
6、break,continue,return
7、循環標簽
8、數組的聲明與初始化
9、數組內存空間分配
10、棧與堆內存
11、二維(多維)數組
12、Arrays類的相關方法
13、main方法命令行參數
面向對象
1、面向對象的基本思想
2、類與對象
3、成員變數與默認值
4、方法的聲明,調用
5、參數傳遞和內存圖
6、方法重載的概念
7、調用原則與重載的優勢
8、構造器聲明與默認構造器
9、構造器重載
10、this關鍵字的使用
11、this調用構造器原則
12、實例變數初始化方式
13、可變參數方法
訪問許可權控制
1、包 package和庫
2、訪問許可權修飾符private/protected/public/包訪問許可權
3、類的訪問許可權
4、抽象類和抽象方法
5、介面和實現
6、解耦
7、Java的多重繼承
8、通過繼承來擴展介面
錯誤和異常處理
1、概念:錯誤和異常
2、基本異常
3、捕獲異常 catch
4、創建自定義異常
5、捕獲所有異常
6、Java標准異常
7、使用finally進行清理
8、異常的限制
9、構造器
10、異常匹配
11、異常使用指南
資料庫基礎(MySQL)
資料庫基礎(MySQL)
JDBC
1、Jdbc基本概念
2、使用Jdbc連接資料庫
3、使用Jdbc進行crud操作
4、使用Jdbc進行多表操作
5、Jdbc驅動類型
6、Jdbc異常和批量處理
7、Jdbc儲存過程
Servlet和JSP
1、Servlet簡介
2、Request對象
3、Response對象
4、轉發和重定向
5、使用Servlet完成Crud
6、Session和Coolie簡介
7、ServletContext和Jsp
8、El和Jstl的使用
Ajax
1、什麼是Ajax
2、XMLHttpRequest對象(XHR)
3、XHR請求
4、XHR響應
5、readystate/onreadystatechange
6、Jquery Ajax
7、JSON
8、案例:對用戶名是否可用進行伺服器端校驗
綜合案例
1、項目開發一般流程介紹
2、模塊化和分層
3、DButils
4、QueryRunner
5、ResultSetHandle
6、案例:用戶登錄/注冊,從前端到後端
第二階段 Java SE
訪問許可權和繼承
1、包的聲明與使用
2、import與import static
3、訪問許可權修飾符
4、類的封裝性
5、static(靜態成員變數)
6、final(修飾變數,方法)
7、靜態成員變數初始化方式
8、類的繼承與成員繼承
9、super的使用
10、調用父類構造器
11、方法的重寫與變數隱藏
12、繼承實現多態和類型轉換
13、instanceof
抽象類與介面
1、抽象類
2、抽象方法
3、繼承抽象類
4、抽象類與多態
5、介面的成員
6、靜態方法與默認方法
7、靜態成員類
8、實例成員類
9、局部類
10、匿名類
11、eclipse的使用與調試
12、內部類對外圍類的訪問關系
13、內部類的命名
Lambda表達式與常用類
1、函數式介面
2、Lambda表達式概念
3、Lambda表達式應用場合
4、使用案例
5、方法引用
6、枚舉類型(編譯器的處理)
7、包裝類型(自動拆箱與封箱)
8、String方法
9、常量池機制
10、String講解
11、StringBuilder講解
12、Math,Date使用
13、Calendars使用
異常處理與泛型
1、異常分類
2、try-catch-finally
3、try-with-resources
4、多重捕獲multi-catch
5、throw與throws
6、自定義異常和優勢
7、泛型背景與優勢
8、參數化類型與原生類型
9、類型推斷
10、參數化類型與數組的差異
11、類型通配符
12、自定義泛型類和類型擦出
13、泛型方法重載與重寫
集合
1 、常用數據結構
2 、Collection介面
3 、List與Set介面
4 、SortedSet與NavigableSet
5 、相關介面的實現類
6 、Comparable與Comparator
7、Queue介面
8 、Deque介面
9 、Map介面
10、NavigableMap
11、相關介面的實現類
12、流操作(聚合操作)
13、Collections類的使用
I/O流與反射
1 、File類的使用
2 、位元組流
3 、字元流
4 、緩存流
5 、轉換流
6 、數據流
7、對象流
8、類載入,鏈接與初始化
9 、ClassLoader的使用
10、Class類的使用
11、通過反射調用構造器
12、安全管理器
網路編程模型與多線程
1、進程與線程
2、創建線程的方式
3、線程的相關方法
4、線程同步
5、線程死鎖
6、線程協作操作
7、計算機網路(IP與埠)
8、TCP協議與UDP協議
9、URL的相關方法
10、訪問網路資源
11、TCP協議通訊
12、UDP協議通訊
13、廣播
SSM-Spring
1.Spring/Spring MVC
2.創建Spring MVC項目
3.Spring MVC執行流程和參數
SSM-Spring.IOC
1.Spring/Spring MVC
2.創建Spring MVC項目
3.Spring MVC執行流程和參數
SSM-Spring.AOP
1.Spring/Spring MVC
2.創建Spring MVC項目
3.Spring MVC執行流程和參數
SSM-Spring.Mybatis
1.MyBatis簡介
2.MyBatis配置文件
3.用MyBatis完成CRUD
4.ResultMap的使用
5.MyBatis關聯查詢
6.動態SQL
7.MyBatis緩沖
8.MyBatis-Generator
Socket編程
1.網路通信和協議
2.關於Socket
3.Java Socket
4.Socket類型
5.Socket函數
6.WebSocket
7.WebSocket/Spring MVC/WebSocket Ajax
IO/非同步
window對象
全局作用域
窗口關系及框架
窗口位置和大小
打開窗口
間歇調用和超時調用(靈活運用)
系統對話框
location對象
navigator對象
screen對象
history對象
NIO/AIO
1.網路編程模型
2.BIO/NIO/AIO
3.同步阻塞
4.同步非阻塞
5.非同步阻塞
6.非同步非阻塞
7.NIO與AIO基本操作
8.高性能IO設計模式
第三階段 Java 主流框架
MyBatis
1.mybatis框架原理分析
2.mybatis框架入門程序編寫
3.mybatis和hibernate的本質區別和應用場景
4.mybatis開發方法
5.SqlMapConfig配置文件講解
6.輸入映射-pojo包裝類型的定義與實現
7.輸出映射-resultType、resultMap
8.動態sql
9.訂單商品數據模型分析
10.高級映射的使用
11.查詢緩存之一級緩存、二級緩存
12.mybatis與spring整合
13. mybatis逆向工程自動生成代碼
Spring/Spring MVC
1. springmvc架構介紹
2. springmvc入門程序
3. spring與mybatis整合
4. springmvc註解開發—商品修改功能分析
5. springmvc註解開發—RequestMapping註解
6. springmvc註解開發—Controller方法返回值
7. springmvc註解開發—springmvc參數綁定過程分析
8. springmvc註解開發—springmvc參數綁定實例講解
9. springmvc與struts2的區別
10. springmvc異常處理
11. springmvc上傳圖片
12. springmvc實現json交互
13. springmvc對RESTful支持
14. springmvc攔截器
第四階段 關系型資料庫/MySQL/NoSQL
SQL基礎
1.SQL及主流產品
2.MySQL的下載與安裝(sinux/windows)
3.MySql的基本配置/配置文件
4.基本的SQL操作 DDL
5.基本的SQL操作 DML
6.基本的SQL操作 DCL
7.MySQL客戶端工具
8.MySQL幫助文檔
MySQL數據類型和運算符
1 數值類型
2 日期時間類型
3 字元串類型
4 CHAR 和 VARCHAR 類型
5 BINARY 和 VARBINARY 類型
6 ENUM 類型
7 SET 類型
8 算術運算符
9 比較運算符
10 邏輯運算符
11 位運算
12 運算符的優先順序
MySQL函數
1 字元串函數
2 數值函數
3 日期和時間函數
4 流程函數
5 其他常用函數
MySQL存儲引擎
1.MySQL支持的存儲引擎及其特性
2.MyISAM
3.InnoDB
4.選擇合適的存儲引擎
選擇合適的數據類型
1 CHAR 與 VARCHAR
2 TEXT 與 BLOB
3 浮點數與定點數
4 日期類型選擇
字元集
1 字元集概述
2 Unicode字元集
3 漢字及一些常見字元集
4 選擇合適的字元集
5 MySQL 支持的字元集
6 MySQL 字元集的設置 .
索引的設計和使用
1.什麼是索引
2.索引的類型
3.索引的數據結構 BTree B+Tree Hash
4.索引的存儲
5.MySQL索引
6.查看索引的使用情況
7.索引設計原則
視圖/存儲過程/函數/觸發器
1. 什麼是視圖
2. 視圖操作
3. 什麼是存儲過程
4. 存儲過程操作
5. 什麼是函數
6. 函數的相關操作
7. 觸發器
事務控制/鎖
1. 什麼是事務
2. 事務控制
3. 分布式事務
4. 鎖/表鎖/行鎖
5. InnoDB 行鎖爭用
6. InnoDB 的行鎖模式及加鎖方法7
7 InnoDB 行鎖實現方式7
8 間隙鎖(Next-Key 鎖)
9 恢復和復制的需要,對 InnoDB 鎖機制的影響
10 InnoDB 在不同隔離級別下的一致性讀及鎖的差異
11 表鎖
12 死鎖
SQL Mode和安全問題
1. 關於SQL Mode
2. MySQL中的SQL Mode
3. SQL Mode和遷移
4. SQL 注入
5. 開發過程中如何避免SQL注入
SQL優化
1.通過 show status 命令了解各種 SQL 的執行頻率
2. 定位執行效率較低的 SQL 語句
3. 通過 EXPLAIN 分析低效 SQL 的執行計劃
4. 確定問題並採取相應的優化措施
5. 索引問題
6.定期分析表和檢查表
7.定期優化表
8.常用 SQL 的優化
MySQL資料庫對象優化
1. 優化表的數據類型
2 散列化
3 逆規范化
4 使用中間表提高統計查詢速度
5. 影響MySQL性能的重要參數
6. 磁碟I/O對MySQL性能的影響
7. 使用連接池
8. 減少MySQL連接次數
9. MySQL負載均衡
MySQL集群
MySQL管理和維護
MemCache
Redis
在Java項目中使用MemCache和Redis
第五階段:操作系統/Linux、雲架構
Linux安裝與配置
1、安裝Linux至硬碟
2、獲取信息和搜索應用程序
3、進階:修復受損的Grub
4、關於超級用戶root
5、依賴發行版本的系統管理工具
6、關於硬體驅動程序
7、進階:配置Grub
系統管理與目錄管理
1、Shell基本命令
2、使用命令行補全和通配符
3、find命令、locate命令
4、查找特定程序:whereis
5、Linux文件系統的架構
6、移動、復制和刪除
7、文件和目錄的許可權
8、文件類型與輸入輸出
9、vmware介紹與安裝使用
10、網路管理、分區掛載
用戶與用戶組管理
1、軟體包管理
2、磁碟管理
3、高級硬碟管理RAID和LVM
4、進階:備份你的工作和系統
5、用戶與用戶組基礎
6、管理、查看、切換用戶
7、/etc/...文件
8、進程管理
9、linux VI編輯器,awk,cut,grep,sed,find,unique等
Shell編程
1、 SHELL變數
2、傳遞參數
3、數組與運算符
4、SHELL的各類命令
5、SHELL流程式控制制
6、SHELL函數
7、SHELL輸入/輸出重定向
8、SHELL文件包含
伺服器配置
1、系統引導
2、管理守護進程
3、通過xinetd啟動SSH服務
4、配置inetd
5、Tomcat安裝與配置
6、MySql安裝與配置
7、部署項目到Linux
第六階段:Hadoop生態系統
Hadoop基礎
1、大數據概論
2、 Google與Hadoop模塊
3、Hadoop生態系統
4、Hadoop常用項目介紹
5、Hadoop環境安裝配置
6、Hadoop安裝模式
7、Hadoop配置文件
HDFS分布式文件系統
1、認識HDFS及其HDFS架構
2、Hadoop的RPC機制
3、HDFS的HA機制
4、HDFS的Federation機制
5、 Hadoop文件系統的訪問
6、JavaAPI介面與維護HDFS
7、HDFS許可權管理
8、hadoop偽分布式
Hadoop文件I/O詳解
1、Hadoop文件的數據結構
2、 HDFS數據完整性
3、文件序列化
4、Hadoop的Writable類型
5、Hadoop支持的壓縮格式
6、Hadoop中編碼器和解碼器
7、 gzip、LZO和Snappy比較
8、HDFS使用shell+Java API
MapRece工作原理
1、MapRece函數式編程概念
2、 MapRece框架結構
3、MapRece運行原理
4、Shuffle階段和Sort階段
5、任務的執行與作業調度器
6、自定義Hadoop調度器
7、 非同步編程模型
8、YARN架構及其工作流程
MapRece編程
1、WordCount案例分析
2、輸入格式與輸出格式
3、壓縮格式與MapRece優化
4、輔助類與Streaming介面
5、MapRece二次排序
6、MapRece中的Join演算法
7、從MySQL讀寫數據
8、Hadoop系統調優
Hive數據倉庫工具
1、Hive工作原理、類型及特點
2、Hive架構及其文件格式
3、Hive操作及Hive復合類型
4、Hive的JOIN詳解
5、Hive優化策略
6、Hive內置操作符與函數
7、Hive用戶自定義函數介面
8、Hive的許可權控制
Hive深入解讀
1 、安裝部署Sqoop
2、Sqoop數據遷移
3、Sqoop使用案例
4、深入了解資料庫導入
5、導出與事務
6、導出與SequenceFile
7、Azkaban執行工作流
Sqoop與Oozie
1 、安裝部署Sqoop
2、Sqoop數據遷移
3、Sqoop使用案例
4、深入了解資料庫導入
5、導出與事務
6、導出與SequenceFile
7、Azkaban執行工作流
Zookeeper詳解
1、Zookeeper簡介
2、Zookeeper的下載和部署
3、Zookeeper的配置與運行
4、Zookeeper的本地模式實例
5、Zookeeper的數據模型
6、Zookeeper命令行操作範例
7、storm在Zookeeper目錄結構
NoSQL、HBase
1、HBase的特點
2、HBase訪問介面
3、HBase存儲結構與格式
4、HBase設計
5、關鍵演算法和流程
6、HBase安裝
7、HBase的SHELL操作
8、HBase集群搭建
第七階段:Spark生態系統
Spark
1.什麼是Spark
2.Spark大數據處理框架
3.Spark的特點與應用場景
4.Spark SQL原理和實踐
5.Spark Streaming原理和實踐
6.GraphX SparkR入門
7.Spark的監控和調優
Spark部署和運行
1.WordCount准備開發環境
2.MapRece編程介面體系結構
3.MapRece通信協議
4.導入Hadoop的JAR文件
5.MapRece代碼的實現
6.打包、部署和運行
7.打包成JAR文件
Spark程序開發
1、啟動Spark Shell
2、載入text文件
3、RDD操作及其應用
4、RDD緩存
5、構建Eclipse開發環境
6、構建IntelliJ IDEA開發環境
7、創建SparkContext對象
8、編寫編譯並提交應用程序
Spark編程模型
1、RDD特徵與依賴
2、集合(數組)創建RDD
3、存儲創建RDD
4、RDD轉換 執行 控制操作
5、廣播變數
6、累加器
作業執行解析
1、Spark組件
2、RDD視圖與DAG圖
3、基於Standalone模式的Spark架構
4、基於YARN模式的Spark架構
5、作業事件流和調度分析
6、構建應用程序運行時環境
7、應用程序轉換成DAG
Spark SQL與DataFrame
1、Spark SQL架構特性
2、DataFrame和RDD的區別
3、創建操作DataFrame
4、RDD轉化為DataFrame
5、載入保存操作與Hive表
6、Parquet文件JSON數據集
7、分布式的SQL Engine
8、性能調優 數據類型
深入Spark Streaming
1、Spark Streaming工作原理
2、DStream編程模型
3、Input DStream
4、DStream轉換 狀態 輸出
5、優化運行時間及內存使用
6、文件輸入源
7、基於Receiver的輸入源
8、輸出操作
Spark MLlib與機器學習
1、機器學習分類級演算法
2、Spark MLlib庫
3、MLlib數據類型
4、MLlib的演算法庫與實例
5、ML庫主要概念
6、演算法庫與實例
GraphX與SparkR
1、Spark GraphX架構
2、GraphX編程與常用圖演算法
3、GraphX應用場景
4、SparkR的工作原理
5、R語言與其他語言的通信
6、SparkR的運行與應用
7、R的DataFrame操作方法
8、SparkR的DataFrame
Scala編程開發
1、Scala語法基礎
2、idea工具安裝
3、maven工具配置
4、條件結構、循環、高級for循環
5、數組、映射、元組
6、類、樣例類、對象、伴生對象
7、高階函數與函數式編程
Scala進階
1、 柯里化、閉包
2、模式匹配、偏函數
3、類型參數
4、協變與逆變
5、隱式轉換、隱式參數、隱式值
6、Actor機制
7、高級項目案例
Python編程
1、Python編程介紹
2、Python的基本語法
3、Python開發環境搭建
4、Pyhton開發Spark應用程序
第八階段:Storm生態系統
storm簡介與基本知識
1、storm的誕生誕生與成長
2、storm的優勢與應用
3、storm基本知識概念和配置
4、序列化與容錯機制
5、可靠性機制—保證消息處理
6、storm開發環境與生產環境
7、storm拓撲的並行度
8、storm命令行客戶端
Storm拓撲與組件詳解
1、流分組和拓撲運行
2、拓撲的常見模式
3、本地模式與stormsub的對比
4、 使用非jvm語言操作storm
5、hook、組件基本介面
6、基本抽象類
7、事務介面
8、組件之間的相互關系
spout詳解 與bolt詳解
1、spout獲取數據的方式
2、常用的spout
3、學習編寫spout類
4、bolt概述
5、可靠的與不可靠的bolt
6、復合流與復合anchoring
7、 使用其他語言定義bolt
8、學習編寫bolt類
storm安裝與集群搭建
1、storm集群安裝步驟與准備
2、本地模式storm配置命令
3、配置hosts文件、安裝jdk
4、zookeeper集群的搭建
5、部署節點
6、storm集群的搭建
7、zookeeper應用案例
8、Hadoop高可用集群搭建
Kafka
1、Kafka介紹和安裝
2、整合Flume
3、Kafka API
4、Kafka底層實現原理
5、Kafka的消息處理機制
6、數據傳輸的事務定義
7、Kafka的存儲策略
Flume
1、Flume介紹和安裝
2、Flume Source講解
3、Flume Channel講解
4、Flume Sink講解
5、flume部署種類、流配置
6、單一代理、多代理說明
7、flume selector相關配置
Redis
1、Redis介紹和安裝、配置
2、Redis數據類型
3、Redis鍵、字元串、哈希
4、Redis列表與集合
5、Redis事務和腳本
6、Redis數據備份與恢復
7、Redis的SHELL操作
『伍』 python和java需要什麼呀
python語言和Java語言對比如下:
1、代碼開發效率
Python代碼開發效率非常高,同樣的函數功能,Java需要十幾行,Python只要幾行,代碼數量要遠小於Java,這樣開發的時間和效率比
Java高很多。
2、資料庫的支持
Java跟資料庫結合更緊密一些,有大量的資料庫支持Java,類似JDBC這樣的封裝,使得的Java使用資料庫更容易。Python雖然沒有他倆
關系那麼鐵,但是目前支持Python的資料庫也非常多,而且很多主流資料庫SQL,Mongodb,Redis都有API支持Python, 可以說
Python不缺的就是庫。
作為一名 Java 程序員,肯定會建議你先學 Java,然後再學 Python,但如果你問一個 Python 程序員,可能會得到一個完全相反的答
案。與此同時,Python 已經不再是乳臭未乾的黃毛小子了,它已經成長而且和主流的編程語言,像 Java,C++ 有的一拼。
現在 Java 和 Python 都滿足剛才說的條件,甚至在做了一些很棒的分析比較之後,依然很難得出應該學習哪個語言。
代碼開發效率
Python代碼開發效率非常高,同樣的函數功能,Java需要十幾行,Python只要幾行,代碼數量要遠小於Java,這樣開發的時間和效率比
Java高很多。目前為止我認為Python是最優美的語言。
應用領域
Java主要的戰場是在Android手機開發和Web後端開發,而Python主要應用在數據科學,機器學習,人工智慧領域和IOT.可以說兩個都
是各自領域的霸主,但是隨著谷歌扶植Kotlin來取代Java,而後端開發NodeJS強勢崛陵橋爛起,所以Java的後端開發霸主地位正在被挑戰。
3、運行速度消宏
Java是靜態語言靜態編譯的,速度上要比Python快的很多尺漏,而Python動態類型語言,一邊執行一邊編譯,速度要上慢一些。
4、對Legacy代碼的支持
對於legacy代碼的支持,由於Java大量的用於電商,互聯網後端,銀行等大型系統,所以對於legacy的代碼的數量要遠大於Python。
『陸』 python後端開發需要學什麼
第一階段:Python語言基礎
主要學習Python最基礎知識,如Python3、數據類型、字元串、函數、類、文件操作等。階段課程結束後,學員需要完成Pygame實戰飛機大戰、2048等項目。
第二階段:Python語言高級
主要學習Python庫、正則表達式、進程線程、爬蟲、遍歷以及MySQL資料庫。
第三階段:Pythonweb開發
主要學習HTML、CSS、JavaScript、jQuery等前端知識,掌握python三大後端框架(Django、 Flask以及Tornado)。需要完成網頁界面設計實戰;能獨立開發網站。
第四階段:Linux基礎
主要學習Linux相關的各種命令,如文件處理命令、壓縮解壓命令、許可權管理以及Linux Shell開發等。
第五階段:Linux運維自動化開發
主要學習Python開發Linux運維、Linux運維報警工具開發、Linux運維報警安全審計開發、Linux業務質量報表工具開發、Kali安全檢測工具檢測以及Kali 密碼破解實戰。
第六階段:Python爬蟲
主要學習python爬蟲技術,掌握多線程爬蟲技術,分布式爬蟲技術。
第七階段:Python數據分析和大數據
主要學習numpy數據處理、pandas數據分析、matplotlib數據可視化、scipy數據統計分析以及python 金融數據分析;Hadoop HDFS、python Hadoop MapRece、python Spark core、python Spark SQL以及python Spark MLlib。
第八階段:Python機器學習
主要學習KNN演算法、線性回歸、邏輯斯蒂回歸演算法、決策樹演算法、樸素貝葉斯演算法、支持向量機以及聚類k-means演算法。
關於python後端開發需要學什麼的內容,青藤小編就和您分享到這里了。如果您對python編程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於python編程的技巧及素材等內容,可以點擊本站的其他文章進行學習。
『柒』 黑馬程序員的Python培訓內容有什麼_python快速編程入門黑馬程序員
不知道Java學習順序的話,我提供你一條學習線路圖!
按照視頻學習的過程中,學習方法也是很重要的!一定要記得勤記筆記,整理程思維導圖,方便後續復習方便。
第一部分:JavaSE:Java語言最基本的一套庫
學習JavaEE或JavaME之前,JavaSE是必學的。
*Java開發環境搭建
*Java基礎語法
*面向對象
*數組
*異常
*集合
*線程
*IO流
*反螞弊攜射機制
*註解Annotation
*網路編程
第二部分:資料庫【MySQLJDBC】
*只要學習編程,資料庫是一定要學習的,是一門公共的學科。
*java、C、python、C#等程序員都需要學習資料庫。
*資料庫產品很多:MySQL、Oracle、SqlServer、DB2......
*我們動力節點資料庫課程包括:MySQLOracle
*Oracle:銀行、政府使用oracle的較多。
*MySQL:互聯網公司、一般企業使用MySQL較多。
*Oracle我們是提供視頻的。課堂上不講。
*我悶伏們課堂上講MySQL。
*Java語言鏈接資料庫:JDBC
第三部分:WEB前端
*系統結構:B/S【Browser/Server】C/S【Client/Server】
*WEB是網站的意思。WEB前端是:網站當中的頁面。
*WEB前端程序是運行在瀏覽器當中的。
*HTML5CSS3JavaScript(JS)
*WEB前端也有很多框架:
-jQuery
-Bootstrap
-Vue
-NodeJS
-AugularJS
-RectJS
-LayUI
-EasyUI
.....
第四部分:JavaWEB
*Servlet
*JSP
*AJAX(是JavaScript的一部分語法,專門做頁面局部卜睜刷新)
第五部分:JavaWEB項目
*做一個B/S結構的項目,將WEB前端和JavaWEB內容做一個整合練習。
*其實到這里為止,所有的系統都可以做了。但是用的技術很Low。沒有用框架。
『捌』 python連接hive的時候必須要依賴sasl類庫嗎
客戶端連接Hive需要使用HiveServer2。HiveServer2是HiveServer的重寫版本,HiveServer不支持多個客戶端的並發請求。當前HiveServer2是基於Thrift RPC實現的。它被設計用於為像JDBC、ODBC這樣的開發API客戶端提供更好的支持。Hive 0.11版本引入的HiveServer2。
HiveServer2的啟動
啟動HiveServer2
HiveServer2的啟動十分簡便:
$ $HIVE_HOME/bin/hiveserver2
或者
$ $HIVE_HOME/bin/hive --service hiveserver2
默認情況下,HiverServer2的Thrift監聽埠是10000,其WEB UI埠是10002。可通過來查看HiveServer2的Web UI界面,這里顯示了Hive的一些基本信息。如果Web界面不能查看,則說明HiveServer2沒有成功運行。
使用beeline測試客戶端連接
HiveServer2成功運行後,我們可以使用Hive提供的客戶端工具beeline連接HiveServer2。
$ $HIVE_HOME/bin/beeline
beeline > !connect jdbc:hive2://localhost:10000
如果成功登錄將出現如下的命令提示符,此時可以編寫HQL語句。
0: jdbc:hive2://localhost:10000>
報錯:User: xxx is not allowed to impersonate anonymous
在beeline使用!connect連接HiveServer2時可能會出現如下錯誤信息:
12Caused by: org.apache.hadoop.ipc.RemoteException:User: xxx is not allowed to impersonate anonymous這里的xxx是我的操作系統用戶名稱。這個問題的解決方法是在hadoop的core-size.xml文件中添加xxx用戶代理配置:
123456789<spanclass="hljs-tag"><<spanclass="hljs-title">property><spanclass="hljs-tag"><<spanclass="hljs-title">name>hadoop.proxyuser.xxx.groups<spanclass="hljs-tag"></<spanclass="hljs-title">name><spanclass="hljs-tag"><<spanclass="hljs-title">value>*<spanclass="hljs-tag"></<spanclass="hljs-title">value><spanclass="hljs-tag"></<spanclass="hljs-title">property><spanclass="hljs-tag"><<spanclass="hljs-title">property><spanclass="hljs-tag"><<spanclass="hljs-title">name>hadoop.proxyuser.xxx.hosts<spanclass="hljs-tag"></<spanclass="hljs-title">name><spanclass="hljs-tag"><<spanclass="hljs-title">value>*<spanclass="hljs-tag"></<spanclass="hljs-title">value><spanclass="hljs-tag"></<spanclass="hljs-title">property></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span>重啟HDFS後,再用beeline連接HiveServer2即可成功連接。
常用配置
HiveServer2的配置可以參考官方文檔《Setting Up HiveServer2》
這里列舉一些hive-site.xml的常用配置:
hive.server2.thrift.port:監聽的TCP埠號。默認為10000。
hive.server2.thrift.bind.host:TCP介面的綁定主機。
hive.server2.authentication:身份驗證方式。默認為NONE(使用 plain SASL),即不進行驗證檢查。可選項還有NOSASL, KERBEROS, LDAP, PAM and CUSTOM.
hive.server2.enable.doAs:是否以模擬身份執行查詢處理。默認為true。
Python客戶端連接HiveServer2
python中用於連接HiveServer2的客戶端有3個:pyhs2,pyhive,impyla。官網的示例採用的是pyhs2,但pyhs2的官網已聲明不再提供支持,建議使用impyla和pyhive。我們這里使用的是impyla。
impyla的安裝
impyla必須的依賴包括:
six
bit_array
thriftpy(python2.x則是thrift)
為了支持Hive還需要以下兩個包:
sasl
thrift_sasl
可在Python PI中下載impyla及其依賴包的源碼。
impyla示例
以下是使用impyla連接HiveServer2的示例:
1234567891011『玖』 pyflink消費kafka-connect-jdbc消息(帶schema)
1、數據接入
通過kafka的restFul介面創建連接mysql的連接器並啟動。跡山
{
"name": "mysql_stream_test",
"config": {
"connector.class": "io.confluent.connect.jdbc.JdbcSourceConnector",
"timestamp.column.name": "",
"incrementing.column.name": "ID",
"connection.password": "",
"validate.non.null": true,
"tasks.max": 1,
"batch.max.rows": 100,
"table.whitelist": "baseqx.test_demo",
"mode": "incrementing",
"topic.prefix": "mysql_",
"connection.user": "",
"poll.interval.ms": 5000,
"numeric.mapping": "best_fit",
"connection.url": "jdbc:mysql://xxx.xxx.xxx.xxx:3306/枝州則baseqx?useUnicode=true&characterEncoding=utf8&allowMultiQueries=true"
}
}
2.kafka-connect創建主題中的猛棚默認數據格式為
{"schema":{"type":"struct","fields":[{"type":"int32","optional":false,"field":"ID"},{"type":"string","optional":false,"field":"NAME"},{"type":"int64","optional":false,"name":"org.apache.kafka.connect.data.Timestamp","version":1,"field":"CREATE_TIME"}],"optional":false,"name":"test_demo"},"payload":{"ID":1,"NAME":"prestoEtl","CREATE_TIME":1606902182000}}
3.使用pyflink消費帶schema的消息
#!/usr/bin/python3.7
# -*- coding: UTF-8 -*-
from pyflink.datastream import StreamExecutionEnvironment, CheckpointingMode
from pyflink.table import StreamTableEnvironment, TableConfig, SqlDialect
s_env = StreamExecutionEnvironment.get_execution_environment()
s_env.set_parallelism(1)
st_env = StreamTableEnvironment.create(s_env, TableConfig())
st_env.get_config().set_python_executable("python3")
st_env.use_catalog("default_catalog")
st_env.use_database("default_database")
# DML上可以固定schema為字元串, 用 ROW 函數封裝 payload
ddlKafkaConn = """
create table sourceKafkaConn(
`scheam` STRING comment 'kafkaConn每行模式',
`payload` ROW(ID BIGINT,NAME STRING,CREATE_TIME STRING) comment '行數據'
)comment '從kafkaConnect獲取帶模式的數據'
with(
'connector' = 'kafka',
'topic' = 'mysql_test_demo',
'properties.bootstrap.servers' = '192.168.113.11:9092',
'scan.startup.mode' = 'earliest-offset',
'format' = 'json'
)
"""
# 'connector.startup-mode' = 'earliest-offset 表示讀取最早的消息 | latest-offset 表示讀取消息隊列中最新的消息',
st_env.execute_sql(ddlKafkaConn)
sinkPrint = '''
CREATE TABLE sinkPrint WITH ('connector' = 'print')
LIKE sourceKafkaConn (EXCLUDING ALL)
'''
st_env.execute_sql(sinkPrint)
st_env.execute_sql("SHOW TABLES").print()
st_env.sql_query("select scheam,ROW(ID,NAME,CREATE_TIME) as payload from sourceKafkaConn") \
.insert_into("sinkPrint")
st_env.execute("pyflink-kafka-v4")
4.執行
4.1pythonpyflink-kafka-v4.py
4.2flinkrun-mxxx.xxx.xxx.xxx:8081-pypyflink-kafka-v4.py
5.執行結果
+-----------------+|tablename|+-----------------
+|sinkPrint|
+|sourceKafkaConn|
+-----------------+
2 rowsinset
+I(null,1,prestoEtl,1606902182000)
+I(null,2,執行的非常好,1606902562000)
+I(null,3,使用flink解析topic的schema,1607070278000)
『拾』 python連接Oracle報錯:DatabaseError: ORA-12514: TNS: 監聽程序當前無法識別連接描述符中請求的服務
jdbc:oracle:thin:@10.20.206.47:1521:shl","
中10.20.206.47替換成實例名