Ⅰ python中如何在代碼中主動開啟線程
首先先定義線程,然後對象.start(),如果是線程池先定義線程池,給線程池分配任務他就運行了
Ⅱ Python面試題,線程與進程的區別,Python中如何創建多線程
進程和線程這兩個概念屬於操作系統,我們經常聽說,但是可能很少有人會細究它們的含義。對於工程師而言,兩者的定義和區別還是很有必要了解清楚的。
首先說進程,進程可以看成是 CPU執行的具體的任務 。在操作系統當中,由於CPU的運行速度非常快,要比計算機當中的其他設備要快得多。比如內存、磁碟等等,所以如果CPU一次只執行一個任務,那麼會導致CPU大量時間在等待這些設備,這樣操作效率很低。為了提升計算機的運行效率,把機器的技能盡可能壓榨出來,CPU是輪詢工作的。也就是說 它一次只執行一個任務,執行一小段碎片時間之後立即切換 ,去執行其他任務。
所以在早期的單核機器的時候,看起來電腦也是並發工作的。我們可以一邊聽歌一邊上網,也不會覺得卡頓。但實際上,這是CPU輪詢的結果。在這個例子當中,聽歌的軟體和上網的軟體對於CPU而言都是 獨立的進程 。我們可以把進程簡單地理解成運行的應用,比如在安卓手機裡面,一個app啟動的時候就會對應系統中的一個進程。當然這種說法不完全准確, 一個應用也是可以啟動多個進程的 。
進程是對應CPU而言的,線程則更多針對的是程序。即使是CPU在執行當前進程的時候,程序運行的任務其實也是有分工的。舉個例子,比如聽歌軟體當中,我們需要顯示歌詞的字幕,需要播放聲音,需要監聽用戶的行為,比如是否發生了切歌、調節音量等等。所以,我們需要 進一步拆分CPU的工作 ,讓它在執行當前進程的時候,繼續通過輪詢的方式來同時做多件事情。
進程中的任務就是線程,所以從這點上來說, 進程和線程是包含關系 。一個進程當中可以包含多個線程,對於CPU而言,不能直接執行線程,一個線程一定屬於一個進程。所以我們知道,CPU進程切換切換的是執行的應用程序或者是軟體,而進程內部的線程切換,切換的是軟體當中具體的執行任務。
關於進程和線程有一個經典的模型可以說明它們之間的關系,假設CPU是一家工廠,工廠當中有多個車間。不同的車間對應不同的生產任務,有的車間生產汽車輪胎,有的車間生產汽車骨架。但是工廠的電力是有限的,同時只能滿足一個廠房的使用。
為了讓大家的進度協調,所以工廠需要輪流提供各個車間的供電。 這里的車間對應的就是進程 。
一個車間雖然只生產一種產品,但是其中的工序卻不止一個。一個車間可能會有好幾條流水線,具體的生產任務其實是流水線完成的,每一條流水線對應一個具體執行的任務。但是同樣的, 車間同一時刻也只能執行一條流水線 ,所以我們需要車間在這些流水線之間切換供電,讓各個流水線生產進度統一。
這里車間里的 流水線自然對應的就是線程的概念 ,這個模型很好地詮釋了CPU、進程和線程之間的關系。實際的原理也的確如此,不過CPU中的情況要比現實中的車間復雜得多。因為對於進程和CPU來說,它們面臨的局面都是實時變化的。車間當中的流水線是x個,下一刻可能就成了y個。
了解完了線程和進程的概念之後,對於理解電腦的配置也有幫助。比如我們買電腦,經常會碰到一個術語,就是這個電腦的CPU是某某核某某線程的。比如我當年買的第一台筆記本是4核8線程的,這其實是在說這台電腦的CPU有 4個計算核心 ,但是使用了超線程技術,使得可以把一個物理核心模擬成兩個邏輯核心。相當於我們可以用4個核心同時執行8個線程,相當於8個核心同時執行,但其實有4個核心是模擬出來的虛擬核心。
有一個問題是 為什麼是4核8線程而不是4核8進程呢 ?因為CPU並不會直接執行進程,而是執行的是進程當中的某一個線程。就好像車間並不能直接生產零件,只有流水線才能生產零件。車間負責的更多是資源的調配,所以教科書里有一句非常經典的話來詮釋: 進程是資源分配的最小單元,線程是CPU調度的最小單元 。
啟動線程Python當中為我們提供了完善的threading庫,通過它,我們可以非常方便地創建線程來執行多線程。
首先,我們引入threading中的Thread,這是一個線程的類,我們可以通過創建一個線程的實例來執行多線程。
from threading import Thread t = Thread(target=func, name='therad', args=(x, y)) t.start()簡單解釋一下它的用法,我們傳入了三個參數,分別是 target,name和args ,從名字上我們就可以猜測出它們的含義。首先是target,它傳入的是一個方法,也就是我們希望多線程執行的方法。name是我們為這個新創建的線程起的名字,這個參數可以省略,如果省略的話,系統會為它起一個系統名。當我們執行Python的時候啟動的線程名叫MainThread,通過線程的名字我們可以做區分。args是會傳遞給target這個函數的參數。
我們來舉個經典的例子:
import time, threading # 新線程執行的代碼: def loop(n): print('thread %s is running...' % threading.current_thread().name) for i in range(n): print('thread %s >>> %s' % (threading.current_thread().name, i)) time.sleep(5) print('thread %s ended.' % threading.current_thread().name) print('thread %s is running...' % threading.current_thread().name) t = threading.Thread(target=loop, name='LoopThread', args=(10, )) t.start() print('thread %s ended.' % threading.current_thread().name)我們創建了一個非常簡單的loop函數,用來執行一個循環來列印數字,我們每次列印一個數字之後這個線程會睡眠5秒鍾,所以我們看到的結果應該是每過5秒鍾屏幕上多出一行數字。
我們在Jupyter里執行一下:
表面上看這個結果沒毛病,但是其實有一個問題,什麼問題呢? 輸出的順序不太對 ,為什麼我們在列印了第一個數字0之後,主線程就結束了呢?另外一個問題是,既然主線程已經結束了, 為什麼Python進程沒有結束 , 還在向外列印結果呢?
因為線程之間是獨立的,對於主線程而言,它在執行了t.start()之後,並 不會停留,而是會一直往下執行一直到結束 。如果我們不希望主線程在這個時候結束,而是阻塞等待子線程運行結束之後再繼續運行,我們可以在代碼當中加上t.join()這一行來實現這點。
t.start() t.join() print('thread %s ended.' % threading.current_thread().name)join操作可以讓主線程在join處掛起等待,直到子線程執行結束之後,再繼續往下執行。我們加上了join之後的運行結果是這樣的:
這個就是我們預期的樣子了,等待子線程執行結束之後再繼續。
我們再來看第二個問題,為什麼主線程結束的時候,子線程還在繼續運行,Python進程沒有退出呢?這是因為默認情況下我們創建的都是用戶級線程,對於進程而言, 會等待所有用戶級線程執行結束之後才退出 。這里就有了一個問題,那假如我們創建了一個線程嘗試從一個介面當中獲取數據,由於介面一直沒有返回,當前進程豈不是會永遠等待下去?
這顯然是不合理的,所以為了解決這個問題,我們可以把創建出來的線程設置成 守護線程 。
守護線程守護線程即daemon線程,它的英文直譯其實是後台駐留程序,所以我們也可以理解成 後台線程 ,這樣更方便理解。daemon線程和用戶線程級別不同,進程不會主動等待daemon線程的執行, 當所有用戶級線程執行結束之後即會退出。進程退出時會kill掉所有守護線程 。
我們傳入daemon=True參數來將創建出來的線程設置成後台線程:
t = threading.Thread(target=loop, name='LoopThread', args=(10, ), daemon=True)這樣我們再執行看到的結果就是這樣了:
這里有一點需要注意,如果你 在jupyter當中運行是看不到這樣的結果的 。因為jupyter自身是一個進程,對於jupyter當中的cell而言,它一直是有用戶級線程存活的,所以進程不會退出。所以想要看到這樣的效果,只能通過命令行執行Python文件。
如果我們想要等待這個子線程結束,就必須通過join方法。另外,為了預防子線程鎖死一直無法退出的情況, 我們還可以 在joih當中設置timeout ,即最長等待時間,當等待時間到達之後,將不再等待。
比如我在join當中設置的timeout等於5時,屏幕上就只會輸出5個數字。
另外,如果沒有設置成後台線程的話,設置timeout雖然也有用,但是 進程仍然會等待所有子線程結束 。所以屏幕上的輸出結果會是這樣的:
雖然主線程繼續往下執行並且結束了,但是子線程仍然一直運行,直到子線程也運行結束。
關於join設置timeout這里有一個坑,如果我們只有一個線程要等待還好,如果有多個線程,我們用一個循環將它們設置等待的話。那麼 主線程一共會等待N * timeout的時間 ,這里的N是線程的數量。因為每個線程計算是否超時的開始時間是上一個線程超時結束的時間,它會等待所有線程都超時,才會一起終止它們。
比如我這樣創建3個線程:
ths = [] for i in range(3): t = threading.Thread(target=loop, name='LoopThread' + str(i), args=(10, ), daemon=True) ths.append(t) for t in ths: t.start() for t in ths: t.join(2)最後屏幕上輸出的結果是這樣的:
所有線程都存活了6秒。
總結在今天的文章當中,我們一起簡單了解了 操作系統當中線程和進程的概念 ,以及Python當中如何創建一個線程,以及關於創建線程之後的相關使用。
多線程在許多語言當中都是至關重要的,許多場景下必定會使用到多線程。比如 web後端,比如爬蟲,再比如游戲開發 以及其他所有需要涉及開發ui界面的領域。因為凡是涉及到ui,必然會需要一個線程單獨渲染頁面,另外的線程負責准備數據和執行邏輯。因此,多線程是專業程序員繞不開的一個話題,也是一定要掌握的內容之一。
Ⅲ Python多線程是什麼意思
多線程能讓你像運行一個獨立的程序一樣運行一段長代碼。這有點像調用子進程(subprocess),不過區別是你調用shu的是一個函數或者一個類,而不是獨立的程序。
程基本上是一個獨立執行流程。單個進程可以由多個線程組成。程序中的每個線程都執行特定的任務。例如,當你在電腦上玩游戲時,比如說國際足聯,整個游戲是一個單一的過程。,但它由幾個線程組成,負責播放音樂、接收用戶的輸入、同步運行對手等。所有這些都是單獨的線程,負責在同一個程序中執行這些不同的任務。
每個進程都有一個始終在運行的線程。這是主線。這個主線程實際上創建子線程對象。子線程也由主線程啟動。
Ⅳ Python多線程總結
在實際處理數據時,因系統內存有限,我們不可能一次把所有數據都導出進行操作,所以需要批量導出依次操作。為了加快運行,我們會採用多線程的方法進行數據處理, 以下為我總結的多線程批量處理數據的模板:
主要分為三大部分:
共分4部分對多線程的內容進行總結。
先為大家介紹線程的相關概念:
在飛車程序中,如果沒有多線程,我們就不能一邊聽歌一邊玩飛車,聽歌與玩 游戲 不能並行;在使用多線程後,我們就可以在玩 游戲 的同時聽背景音樂。在這個例子中啟動飛車程序就是一個進程,玩 游戲 和聽音樂是兩個線程。
Python 提供了 threading 模塊來實現多線程:
因為新建線程系統需要分配資源、終止線程系統需要回收資源,所以如果可以重用線程,則可以減去新建/終止的開銷以提升性能。同時,使用線程池的語法比自己新建線程執行線程更加簡潔。
Python 為我們提供了 ThreadPoolExecutor 來實現線程池,此線程池默認子線程守護。它的適應場景為突發性大量請求或需要大量線程完成任務,但實際任務處理時間較短。
其中 max_workers 為線程池中的線程個數,常用的遍歷方法有 map 和 submit+as_completed 。根據業務場景的不同,若我們需要輸出結果按遍歷順序返回,我們就用 map 方法,若想誰先完成就返回誰,我們就用 submit+as_complete 方法。
我們把一個時間段內只允許一個線程使用的資源稱為臨界資源,對臨界資源的訪問,必須互斥的進行。互斥,也稱間接制約關系。線程互斥指當一個線程訪問某臨界資源時,另一個想要訪問該臨界資源的線程必須等待。當前訪問臨界資源的線程訪問結束,釋放該資源之後,另一個線程才能去訪問臨界資源。鎖的功能就是實現線程互斥。
我把線程互斥比作廁所包間上大號的過程,因為包間里只有一個坑,所以只允許一個人進行大號。當第一個人要上廁所時,會將門上上鎖,這時如果第二個人也想大號,那就必須等第一個人上完,將鎖解開後才能進行,在這期間第二個人就只能在門外等著。這個過程與代碼中使用鎖的原理如出一轍,這里的坑就是臨界資源。 Python 的 threading 模塊引入了鎖。 threading 模塊提供了 Lock 類,它有如下方法加鎖和釋放鎖:
我們會發現這個程序只會列印「第一道鎖」,而且程序既沒有終止,也沒有繼續運行。這是因為 Lock 鎖在同一線程內第一次加鎖之後還沒有釋放時,就進行了第二次 acquire 請求,導致無法執行 release ,所以鎖永遠無法釋放,這就是死鎖。如果我們使用 RLock 就能正常運行,不會發生死鎖的狀態。
在主線程中定義 Lock 鎖,然後上鎖,再創建一個子 線程t 運行 main 函數釋放鎖,結果正常輸出,說明主線程上的鎖,可由子線程解鎖。
如果把上面的鎖改為 RLock 則報錯。在實際中設計程序時,我們會將每個功能分別封裝成一個函數,每個函數中都可能會有臨界區域,所以就需要用到 RLock 。
一句話總結就是 Lock 不能套娃, RLock 可以套娃; Lock 可以由其他線程中的鎖進行操作, RLock 只能由本線程進行操作。
Ⅳ Python怎麼創建子線程
輸入模塊可以使用其功能的其他程序。這就是為什麼我們使用Python標准庫的方法
輸入:。
#的/ usr / bin中/ env的蟒蛇
#文件名:! Using_sys.py
進口SYS
列印「命頌洞令行參數是:」
因為我在sys.argv中:
我列印網上列印「\ \ n此PYTHONPATH是',sys.path中,'\ N'
輸出:
$蟒蛇using_sys.py我們
參數的命令行參數:
using_sys
的.py我們
是
參數
登錄到到網PYTHONPATH為['/家庭/ swaroop /位元組/碼','/usr/lib/python23.zip「, BR>'/usr/lib/python2.3','/ usr / lib目錄/ python2.3 /開發平台,將linux2「,
」/usr/lib/python2.3/lib-tk','的/ usr /的lib / python2.3 / lib目錄-dynload「,
'的/ usr /lib/python2.3/site-packages','/usr/lib/python2.3/site-packages/gtk-2.0']
首先,我們使用import語句輸入sys模塊。基本上,這句話語句告訴Python中,我們要使用這個模塊。 sys模塊包含了與Python解釋器及其環境相關的功能。
當執行Python導入SYS語句,它被列在目錄中找到的sys.path變數sys.py模塊。如果您發現該文件,該模塊中的報表的主塊將被運行,然後這個你要使用的模塊。注意,在初始化過程只是我們第一次進行的輸入模塊。此外,「SYS」是野戚枯「系統」的縮寫。通過使用點
sys模塊的argv變數表示--sys.argv--這種方法的一個優點是名稱不與你的程仔李序中使用任何argv變數沖突。此外,還清楚地表明,該名稱是sys模塊的一部分。
sys.argv中的變數是一個字元串(列表中會詳細在後面的章節介紹)的列表。特別是,sys.argv中包含的命令行參數,即利用傳遞給你的程序的命令行參數的清單。
如果使用IDE來編寫和執行這些程序,請認準的命令行參數菜單的方法指定的程序。
在這里,當我們執行Python using_sys.py我們有觀點,我們使用Python命令來運行using_sys.py模塊,然後作為參數傳遞給程序的內容。 Python的,我們把它存儲在sys.argv變數。
記住,第一個參數始終是劇本sys.argv列表,它的名稱。所以,在這里,「using_sys.py」是sys.argv中[0],'我們'是sys.argv中[1],'是'是sys.argv中[2]和「論據」是sys.argv中[3]。注意,Python的從0開始計數,而不是從頭開始。
sys.path中包含的目錄名輸入模塊的列表。我們可以觀察到sys.path的第一個字元串是空的 - 這部分在當前目錄下的空字元串表示形式是sys.path中,這PYTHONPATH環境變數是相同的。這意味著,你可以直接在當前目錄下輸入模塊。否則,你必須把你的模塊在sys.path所列的目錄之一。
Ⅵ python如何開多進程,在每條進程里再開多線程
辦法很多。通常的辦法是,子線程出異常後,主進程檢查到它的狀態不正常,然後自己主動將其餘線程退出,最後自己再退出。這是穩妥的辦法。
另外的辦法是,某一個子線程專用於監控狀態。它發現狀態不對時,直接強制進程退出。辦法1,發消息給主進程,讓主進程退出。辦法2:用kill, pskill等方法,直接按進程PID殺進程。
Ⅶ 請教python如何開啟多線程
可以定義函數把這些代碼放在不同的函數里,然後threading模塊
import threading
th1 = threading.Thread(target=func1, args=(arg1, arg2, ...))
照這樣再定義別的線程,開啟用Thread類的start方法
th1.start(); th2.start(); ...
Ⅷ python線程 問題請教,怎麼保證子線程執行完畢
首先子線程必須由主線程啟動,所以嚴格意義上的「子線程結束後再執行主線程」是不可能實現,你的意思應該是:主線程創建完子線程後,等待子線程退出,在繼續執行。 你的代碼基本沒有多大問題,只是 Join 方法位置放置不對。 thread1.Start(); // 先啟動所有子線程 thread2.Start(); thread3.Start(); thread4.Start(); thread5.Start(); thread1.Join(); // 然後在等待子線程退出 thread2.Join(); thread3.Join(); thread4.Join(); thread5.Join(); 你先前的代碼: thread1.Start(); // 線程1 啟動 thread1.Join(); // 等待 線程1 退出,線程1 未退出前,後面代碼無法執行 thread2.Start(); // 以下代碼,均同上所述。 thread2.Join(); thread3.Start(); thread3.Join(); thread4.Start(); thread4.Join();
Ⅸ python之多線程
進程的概念:以一個整體的形式暴露給操作系統管理,裡麵包含各種資源的調用。 對各種資源管理的集合就可以稱為進程。
線程的概念:是操作系統能夠進行運算調度的最小單位。本質上就是一串指令的集合。
進程和線程的區別:
1、線程共享內存空間,進程有獨立的內存空間。
2、線程啟動速度快,進程啟動速度慢。注意:二者的運行速度是無法比較的。
3、線程是執行的指令集,進程是資源的集合
4、兩個子進程之間數據不共享,完全獨立。同一個進程下的線程共享同一份數據。
5、創建新的線程很簡單,創建新的進程需要對他的父進程進行一次克隆。
6、一個線程可以操作(控制)同一進程里的其他線程,但是進程只能操作子進程
7、同一個進程的線程可以直接交流,兩個進程想要通信,必須通過一個中間代理來實現。
8、對於線程的修改,可能會影響到其他線程的行為。但是對於父進程的修改不會影響到子進程。
第一個程序,使用循環來創建線程,但是這個程序中一共有51個線程,我們創建了50個線程,但是還有一個程序本身的線程,是主線程。這51個線程是並行的。注意:這個程序中是主線程啟動了子線程。
相比上個程序,這個程序多了一步計算時間,但是我們觀察結果會發現,程序顯示的執行時間只有0.007秒,這是因為最後一個print函數它存在於主線程,而整個程序主線程和所有子線程是並行的,那麼可想而知,在子線程還沒有執行完畢的時候print函數就已經執行了,總的來說,這個時間只是執行了一個線程也就是主線程所用的時間。
接下來這個程序,吸取了上面這個程序的缺點,創建了一個列表,把所有的線程實例都存進去,然後使用一個for循環依次對線程實例調用join方法,這樣就可以使得主線程等待所創建的所有子線程執行完畢才能往下走。 注意實驗結果:和兩個線程的結果都是兩秒多一點
注意觀察實驗結果,並沒有執行列印task has done,並且程序執行時間極其短。
這是因為在主線程啟動子線程前把子線程設置為守護線程。
只要主線程執行完畢,不管子線程是否執行完畢,就結束。但是會等待非守護線程執行完畢
主線程退出,守護線程全部強制退出。皇帝死了,僕人也跟著殉葬
應用的場景 : socket-server
注意:gil只是為了減低程序開發復雜度。但是在2.幾的版本上,需要加用戶態的鎖(gil的缺陷)而在3點幾的版本上,加鎖不加鎖都一樣。
下面這個程序是一個典型的生產者消費者模型。
生產者消費者模型是經典的在開發架構中使用的模型
運維中的集群就是生產者消費者模型,生活中很多都是
那麼,多線程的使用場景是什麼?
python中的多線程實質上是對上下文的不斷切換,可以說是假的多線程。而我們知道,io操作不佔用cpu,計算佔用cpu,那麼python的多線程適合io操作密集的任務,比如socket-server,那麼cpu密集型的任務,python怎麼處理?python可以折中的利用計算機的多核:啟動八個進程,每個進程有一個線程。這樣就可以利用多進程解決多核問題。
Ⅹ python中如何對類的成員函數開啟線程
#-*-coding:utf-8-*-
importthreading
importthread
importtime
classTest(object):
def__init__(self):
#threading.Thread.__init__(self)
褲擾self._sName="machao"
defprocess(self):
#args是關鍵字參數,需要加上名字,耐搭寫成args=(self,)
th1=threading.Thread(target=Test.buildList,args=(self,))
th1.start()
th1.join()
defbuildList(self):
whileTrue:
print"start"
time.sleep(3)
test=Test()
test.process()
看注釋。
如果解決了您的問題請胡畝旦採納!
如果未解決請繼續追問