A. 如何用python爬蟲抓取網頁內容
首先,你要安裝requests和BeautifulSoup4,然後執行如下代碼.
importrequests
frombs4importBeautifulSoup
iurl='http://news.sina.com.cn/c/nd/2017-08-03/doc-ifyitapp0128744.shtml'
res=requests.get(iurl)
res.encoding='utf-8'
#print(len(res.text))
soup=BeautifulSoup(res.text,'html.parser')
#標題
H1=soup.select('#artibodyTitle')[0].text
#來源
time_source=soup.select('.time-source')[0].text
#來源
origin=soup.select('#artibodyp')[0].text.strip()
#原標題
oriTitle=soup.select('#artibodyp')[1].text.strip()
#內容
raw_content=soup.select('#artibodyp')[2:19]
content=[]
forparagraphinraw_content:
content.append(paragraph.text.strip())
'@'.join(content)
#責任編輯
ae=soup.select('.article-editor')[0].text
這樣就可以了
B. python爬蟲可以做什麼
1、收集數據
Python爬蟲程序可用於收集數據,這是最直接和最常用的方法。由於爬蟲程序是一個程序,程序運行得非常快,不會因為重復的事情而感到疲倦,因此使用爬蟲程序獲取大量數據變得非常簡單、快速。
2、數據儲存
Python爬蟲可以將從各個網站收集的數據存入原始頁面資料庫。其中的頁面數據與用戶瀏覽器得到的HTML是完全一樣的。注意:搜索引擎蜘蛛在抓取頁面時,也做一定的重復內容檢測,一旦遇到訪問許可權很低的網站上有大量抄襲、採集或者復制的內容,很可能就不再爬行。
3、網頁預處理
Python爬蟲可以將爬蟲抓取回來的頁面,進行各種步驟的預處理。比如提取文字、中文分詞、消除噪音、索引處理、特殊文字處理等。
4、提供檢索服務、網站排名
Python爬蟲在對信息進行組織和處理之後,為用戶提供關鍵字檢索服務,將用戶檢索相關的信息展示給用戶。同時可以根據頁面的PageRank
值來進行網站排名,這樣Rank值高的網站在搜索結果中會排名較前,當然也可以直接使用Money購買搜索引擎網站排名。
5、科學研究
在線人類行為、在線社群演化、人類動力學研究、計量社會學、復雜網路、數據挖掘等領域的實證研究都需要大量數據,Python爬蟲是收集相關數據的利器。
C. python的爬蟲是什麼意思
Python爬蟲即使用Python程序開發的網路爬蟲(網頁蜘蛛,網路機器人),是一種按照一定的規則,自動地抓取萬維網信息的程序或者腳本。另外一些不常使用的名字還有螞蟻、自動索引、模擬程序或者蠕蟲。其實通俗的講就是通過程序去獲取 web 頁面上自己想要的數據,也就是自動抓取數據。網路爬蟲(英語:web crawler),也叫網路蜘蛛(spider),是一種用來自動瀏覽萬維網的網路機器人。其目的一般為編纂網路索引。
網路搜索引擎等站點通過爬蟲軟體更新自身的網站內容或其對其他網站的索引。網路爬蟲可以將自己所訪問的頁面保存下來,以便搜索引擎事後生成索引供用戶搜索。
爬蟲訪問網站的過程會消耗目標系統資源。不少網路系統並不默許爬蟲工作。因此在訪問大量頁面時,爬蟲需要考慮到規劃、負載,還需要講「禮貌」。 不願意被爬蟲訪問、被爬蟲主人知曉的公開站點可以使用robots.txt文件之類的方法避免訪問。這個文件可以要求機器人只對網站的一部分進行索引,或完全不作處理。
互聯網上的頁面極多,即使是最大的爬蟲系統也無法做出完整的索引。因此在公元2000年之前的萬維網出現初期,搜索引擎經常找不到多少相關結果。現在的搜索引擎在這方面已經進步很多,能夠即刻給出高質量結果。
爬蟲還可以驗證超鏈接和HTML代碼,用於網路抓取。
Python 爬蟲
Python 爬蟲架構
Python 爬蟲架構主要由五個部分組成,分別是調度器、URL 管理器、網頁下載器、網頁解析器、應用程序(爬取的有價值數據)。
調度器:相當於一台電腦的 CPU,主要負責調度 URL 管理器、下載器、解析器之間的協調工作。
URL 管理器:包括待爬取的 URL 地址和已爬取的 URL 地址,防止重復抓取 URL 和循環抓取 URL,實現 URL 管理器主要用三種方式,通過內存、資料庫、緩存資料庫來實現。
網頁下載器:通過傳入一個 URL 地址來下載網頁,將網頁轉換成一個字元串,網頁下載器有 urlpb2(Python 官方基礎模塊)包括需要登錄、代理、和 cookie,requests(第三方包)
網頁解析器:將一個網頁字元串進行解析,可以按照我們的要求來提取出我們有用的信息,也可以根據 DOM 樹的解析方式來解析。網頁解析器有正則表達式(直觀,將網頁轉成字元串通過模糊匹配的方式來提取有價值的信息,當文檔比較復雜的時候,該方法提取數據的時候就會非常的困難)、html.parser(Python 自帶的)、beautifulsoup(第三方插件,可以使用 Python 自帶的 html.parser 進行解析,也可以使用 lxml 進行解析,相對於其他幾種來說要強大一些)、lxml(第三方插件,可以解析 xml 和 HTML),html.parser 和 beautifulsoup 以及 lxml 都是以 DOM 樹的方式進行解析的。
應用程序:就是從網頁中提取的有用數據組成的一個應用。
爬蟲可以做什麼?
你可以用爬蟲爬圖片,爬取視頻等等你想要爬取的數據,只要你能通過瀏覽器訪問的數據都可以通過爬蟲獲取。
爬蟲的本質是什麼?
模擬瀏覽器打開網頁,獲取網頁中我們想要的那部分數據
瀏覽器打開網頁的過程:
當你在瀏覽器中輸入地址後,經過 DNS 伺服器找到伺服器主機,向伺服器發送一個請求,伺服器經過解析後發送給用戶瀏覽器結果,包括 html,js,css 等文件內容,瀏覽器解析出來最後呈現給用戶在瀏覽器上看到的結果
所以用戶看到的瀏覽器的結果就是由 HTML 代碼構成的,我們爬蟲就是為了獲取這些內容,通過分析和過濾 html 代碼,從中獲取我們想要資源。
相關推薦:《Python教程》以上就是小編分享的關於python的爬蟲是什麼意思的詳細內容希望對大家有所幫助,更多有關python教程請關注環球青藤其它相關文章!
D. python爬蟲需要會哪些知識
python爬蟲要學什麼?讓我們一起了解一下吧!
1、學習計算機網路協議基礎,了解一個完整的網路請求過程,大致了解網路慶山協議(http協議,tcp-ip協議),了解socket編程,為後期學習爬蟲打下扎實的基礎。
2、學習前端基礎,你需要掌握html、css和JavaScript之間的關系野差蠢,瀏覽器的載入過程,ajax、json和xml,GET、POST方法。
3、學習python爬蟲相關知識,比如最常使用的爬蟲庫requests,要知道如何用requests發送請求獲取數據。網頁定位和選取,比如beautifulsoup、xpath、css選擇器,數據處理用正則表達式。
4、學習數據存儲知識,比如用python將抓取的數據自動導出Excel或者資料庫中。
拓展:爬蟲python能做什麼
1、收集數據
python爬蟲程序可用於收集數據。這也是最直接和最常用的方法。由於爬蟲程序是一個程序,程序運行得非常快,不會因為重復的事情而感到疲倦,因此使用爬蟲程序獲取大量數據變得非常簡單和快速。
2、調研
比如要調研一家電商公司,想知道他們的商品銷售情況。這家公司聲稱每月銷售額達數億元。如果你使用頌陪爬蟲來抓取公司網站上所有產品的銷售情況,那麼你就可以計算出公司的實際總銷售額。
3、刷流量和秒殺
刷流量是python爬蟲的自帶的功能。當一個爬蟲訪問一個網站時,如果爬蟲隱藏得很好,網站無法識別訪問來自爬蟲,那麼它將被視為正常訪問。
除了刷流量外,還可以參與各種秒殺活動,包括但不限於在各種電商網站上搶商品,優惠券,搶機票和火車票。
今天的分享就是這些,希望能幫助到大家!
E. Python編程基礎之(五)Scrapy爬蟲框架
經過前面四章的學習,我們已經可以使用Requests庫、Beautiful Soup庫和Re庫,編寫基本的Python爬蟲程序了。那麼這一章就來學習一個專業的網路爬蟲框架--Scrapy。沒錯,是框架,而不是像前面介紹的函數功能庫。
Scrapy是一個快速、功能強大的網路爬蟲框架。
可能大家還不太了解什麼是框架,爬蟲框架其實是實現爬蟲功能的一個軟體結構和功能組件的集合。
簡而言之, Scrapy就是一個爬蟲程序的半成品,可以幫助用戶實現專業的網路爬蟲。
使用Scrapy框架,不需要你編寫大量的代碼,Scrapy已經把大部分工作都做好了,允許你調用幾句代碼便自動生成爬蟲程序,可以節省大量的時間。
當然,框架所生成的代碼基本是一致的,如果遇到一些特定的爬蟲任務時,就不如自己使用Requests庫搭建來的方便了。
PyCharm安裝
測試安裝:
出現框架版本說明安裝成功。
掌握Scrapy爬蟲框架的結構是使用好Scrapy的重中之重!
先上圖:
整個結構可以簡單地概括為: 「5+2」結構和3條數據流
5個主要模塊(及功能):
(1)控制所有模塊之間的數據流。
(2)可以根據條件觸發事件。
(1)根據請求下載網頁。
(1)對所有爬取請求進行調度管理。
(1)解析DOWNLOADER返回的響應--response。
(2)產生爬取項--scraped item。
(3)產生額外的爬取請求--request。
(1)以流水線方式處理SPIDER產生的爬取項。
(2)由一組操作順序組成,類似流水線,每個操作是一個ITEM PIPELINES類型。
(3)清理、檢查和查重爬取項中的HTML數據並將數據存儲到資料庫中。
2個中間鍵:
(1)對Engine、Scheler、Downloader之間進行用戶可配置的控制。
(2)修改、丟棄、新增請求或響應。
(1)對請求和爬取項進行再處理。
(2)修改、丟棄、新增請求或爬取項。
3條數據流:
(1):圖中數字 1-2
1:Engine從Spider處獲得爬取請求--request。
2:Engine將爬取請求轉發給Scheler,用於調度。
(2):圖中數字 3-4-5-6
3:Engine從Scheler處獲得下一個要爬取的請求。
4:Engine將爬取請求通過中間件發送給Downloader。
5:爬取網頁後,Downloader形成響應--response,通過中間件發送給Engine。
6:Engine將收到的響應通過中間件發送給Spider處理。
(3):圖中數字 7-8-9
7:Spider處理響應後產生爬取項--scraped item。
8:Engine將爬取項發送給Item Pipelines。
9:Engine將爬取請求發送給Scheler。
任務處理流程:從Spider的初始爬取請求開始爬取,Engine控制各模塊數據流,不間斷從Scheler處獲得爬取請求,直至請求為空,最後到Item Pipelines存儲數據結束。
作為用戶,只需配置好Scrapy框架的Spider和Item Pipelines,也就是數據流的入口與出口,便可完成一個爬蟲程序的搭建。Scrapy提供了簡單的爬蟲命令語句,幫助用戶一鍵配置剩餘文件,那我們便來看看有哪些好用的命令吧。
Scrapy採用命令行創建和運行爬蟲
PyCharm打開Terminal,啟動Scrapy:
Scrapy基本命令行格式:
具體常用命令如下:
下面用一個例子來學習一下命令的使用:
1.建立一個Scrapy爬蟲工程,在已啟動的Scrapy中繼續輸入:
執行該命令,系統會在PyCharm的工程文件中自動創建一個工程,命名為pythonDemo。
2.產生一個Scrapy爬蟲,以教育部網站為例http://www.moe.gov.cn:
命令生成了一個名為demo的spider,並在Spiders目錄下生成文件demo.py。
命令僅用於生成demo.py文件,該文件也可以手動生成。
觀察一下demo.py文件:
3.配置產生的spider爬蟲,也就是demo.py文件:
4.運行爬蟲,爬取網頁:
如果爬取成功,會發現在pythonDemo下多了一個t20210816_551472.html的文件,我們所爬取的網頁內容都已經寫入該文件了。
以上就是Scrapy框架的簡單使用了。
Request對象表示一個HTTP請求,由Spider生成,由Downloader執行。
Response對象表示一個HTTP響應,由Downloader生成,有Spider處理。
Item對象表示一個從HTML頁面中提取的信息內容,由Spider生成,由Item Pipelines處理。Item類似於字典類型,可以按照字典類型來操作。
F. python爬蟲是什麼
世界上80%的爬蟲是基於Python開發的,學好爬蟲技能,可為後續的大數據分析、挖掘、機器學習等提供重要的數據源。
什麼是爬蟲?
網路爬蟲(又被稱為網頁蜘蛛,網路機器人,在FOAF社區中間,更經常的稱為網頁追逐者),是一種按照一定的規則,自動地抓取萬維網信息的程序或者腳本。另外一些不常使用的名字還有螞蟻、自動索引、模擬程序或者蠕蟲。
其實通俗的講就是通過程序去獲取web頁面上自己想要的數據,也就是自動抓取數據
爬蟲可以做什麼?
你可以用爬蟲爬圖片,爬取視頻等等你想要爬取的數據,只要你能通過瀏覽器訪問的數據都可以通過爬蟲獲取。
爬蟲的本質是什麼?
模擬瀏覽器打開網頁,獲取網頁中我們想要的那部分數據
瀏覽器打開網頁的過程:
當你在瀏覽器中輸入地址後,經過DNS伺服器找到伺服器主機,向伺服器發送一個請求,伺服器經過解析後發送給用戶瀏覽器結果,包括html,js,css等文件內容,瀏覽器解析出來最後呈現給用戶在瀏覽器上看到的結果
所以用戶看到的瀏覽器的結果就是由HTML代碼構成的,我們爬蟲就是為了獲取這些內容,通過分析和過濾html代碼,從中獲取我們想要資源。
G. Python爬蟲是什麼
為自動提取網頁的程序,它為搜索引擎從萬維網上下載網頁。
網路爬蟲為一個自動提取網頁的程序,它為搜索引擎從萬維網上下載網頁,是搜索引擎的重要組成。傳統爬蟲從一個或若干初始網頁的URL開始,獲得初始網頁上的URL,在抓取網頁的過程中,不斷從當前頁面上抽取新的URL放入隊列,直到滿足系統的一定停止條件。
將根據一定的搜索策略從隊列中選擇下一步要抓取的網頁URL,並重復上述過程,直到達到系統的某一條件時停止。另外,所有被爬蟲抓取的網頁將會被系統存貯,進行一定的分析、過濾,並建立索引,以便之後的查詢和檢索。
(7)python爬蟲程序詳解擴展閱讀:
網路爬蟲的相關要求規定:
1、由Python標准庫提供了系統管理、網路通信、文本處理、資料庫介面、圖形系統、XML處理等額外的功能。
2、按照網頁內容目錄層次深淺來爬行頁面,處於較淺目錄層次的頁面首先被爬行。 當同一層次中的頁面爬行完畢後,爬蟲再深入下一層繼續爬行。
3、文本處理,包含文本格式化、正則表達式匹配、文本差異計算與合並、Unicode支持,二進制數據處理等功能。
H. python編寫爬蟲小程序的方法
我們可以通過python 來實現這樣一個簡單的爬蟲功能,把我們想要的代碼爬取到本地。下面就迅判看
看如何使用python來實現這樣一個功能。
起因
深夜忽然想下載一點電子書來擴充一下kindle,就想起來python學得太淺,什麼「裝飾器」啊、「多線程」啊都沒有學到。
想到廖雪峰大神的python教程很經典、很著名。就想找找有木有pdf版的下載差判,結果居然沒找到!!CSDN有個不完整的還騙走了我一個積分!!尼瑪!!
怒了,准備寫個程序直接去爬廖雪峰的教程,然後再html轉成電子書。
過程
過程很有趣呢,用淺薄的python知識,寫python程序,去爬python教程,來學習python。想想有點小激動
果然python很是方便,50行左右就OK了。直接貼代碼:
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
# coding:utf-8
import urllib
domain =
#廖雪峰的域名
path = rC:Userscyhhao2013Desktoptemp #html要保存的路徑
# 一個html的頭文件
input = open(rC:Userscyhhao2013Desktop.html, r)
head = input.read()
# 打開python教程主界面
f = urllib.urlopen(/wiki/)
home = f.read()
f.close()
# 替換所有空格回車(這樣容易好獲取url)
geturl = home.replace(n, )
geturl = geturl.replace( , )
# 得到包含url的字元串
list = geturl.split(rem;ahref=)[1:]
# 強迫畝慶改症犯了,一定要把第一個頁面也加進去才完美
list.insert(0, /wiki/)
# 開始遍歷url List
for li in list:
url = li.split(r)[0]
url = domain + url #拼湊url
print url
f = urllib.urlopen(url)
html = f.read()
# 獲得title為了寫文件名
title = html.split(title)[1]
title = title.split( - 廖雪峰的官方網站/title)[0]
# 要轉一下碼,不然加到路徑里就悲劇了
title = title.decode(utf-8).replace(/,)
# 截取正文
html = html.split(r!-- block main --)[1]
html = html.split(rh4您的支持是作者寫作最大的動力!/h4)[0]
html = html.replace(rsrc=, src= + domain)
# 加上頭和尾組成完整的html
html = head + html+/body/html
# 輸出文件
output = open(path + %d % list.index(li) + title + .html, w)
output.write(html)
output.close()
簡直,人生苦短我用python啊!
以上所述就是本文的全部內容了,希望大家能夠喜歡。
I. 如何用python爬取網站數據
這里簡單介紹一下吧,以抓取網站靜態、動態2種數據為慧返拍例,實驗環境win10+python3.6+pycharm5.0,主要內容如下:
抓取網站靜態數據(數據在網頁源碼中):以糗事網路網站數據為例
1.這里假設我們抓取的數據如下,主要包括用戶昵稱、內容、好笑數和評論數這4個欄位,如下:
對應的網頁源碼如下,包含我們所需要的數據:
2.對應網頁結構,主要代碼如下,很簡單,主要用到requests+BeautifulSoup,其中requests用於請求頁面,BeautifulSoup用於解析頁面:
程序運行截圖如下,已經成功爬取到數據:
抓取網站動態數據(數據不在網頁源碼中,json等文件中):以人人貸網站數據為例
1.這里假設我們爬取的是債券數據,主要包括年利率世型、借款標題、期限、金額和進度這5個欄位信息,截圖如下:
打開網頁源碼中,可以發現數據不在網頁源碼中,按F12抓包分析時,才發現在一個json文件中,如下:
2.獲取到json文件的url後,我們就可以爬取對應數據了,這里使用的包與上面類似,因為是json文件,所以還用了json這個包(解析json),主要內容如下:
程序運行截圖如下,前羨已經成功抓取到數據:
至此,這里就介紹完了這2種數據的抓取,包括靜態數據和動態數據。總的來說,這2個示例不難,都是入門級別的爬蟲,網頁結構也比較簡單,最重要的還是要會進行抓包分析,對頁面進行分析提取,後期熟悉後,可以藉助scrapy這個框架進行數據的爬取,可以更方便一些,效率更高,當然,如果爬取的頁面比較復雜,像驗證碼、加密等,這時候就需要認真分析了,網上也有一些教程可供參考,感興趣的可以搜一下,希望以上分享的內容能對你有所幫助吧。