Ⅰ java多線程問題總結
Java多線程分類中寫了21篇多線程的文章,21篇文章的內容很多,個人認為,學習,內容越多、越雜的知識,越需要進行深刻的總結,這樣才能記憶深刻,將知識變成自己的。java課程培訓機構認為這篇文章主要是對多線程的問題進行總結的,因此羅列了多個多線程的問題。
這些多線程的問題,有些來源於各大網站、有些來源於自己的思考。
(1)發揮多核CPU的優勢
隨著工業的進步,現在的筆記本、台式機乃至商用的應用伺服器至少也都是雙核的,4核、8核甚至16核的也沖行培都不少見,如果是單線程的程序,那麼在雙核CPU上就浪費了50%,在4核CPU上就浪費了75%。單核CPU上所謂的」多線程」那是假的多線程,同一時間處理器只會處理一段邏輯,只不過線程之間切換得比較快,看著像多個線程」同時」運行罷了。多核CPU上的多線程才是真正的多線程,它能散唯讓你的多段邏輯同時工作,多線程,可以真正發揮出多核CPU的優勢來,達到帶念充分利用CPU的目的。
(2)防止阻塞
從程序運行效率的角度來看,單核CPU不但不會發揮出多線程的優勢,反而會因為在單核CPU上運行多線程導致線程上下文的切換,而降低程序整體的效率。但是單核CPU我們還是要應用多線程,就是為了防止阻塞。試想,如果單核CPU使用單線程,那麼只要這個線程阻塞了,比方說遠程讀取某個數據吧,對端遲遲未返回又沒有設置超時時間,那麼你的整個程序在數據返回回來之前就停止運行了。多線程可以防止這個問題,多條線程同時運行,哪怕一條線程的代碼執行讀取數據阻塞,也不會影響其它任務的執行。
(3)便於建模
這是另外一個沒有這么明顯的優點了。假設有一個大的任務A,單線程編程,那麼就要考慮很多,建立整個程序模型比較麻煩。但是如果把這個大的任務A分解成幾個小任務,任務B、任務C、任務D,分別建立程序模型,並通過多線程分別運行這幾個任務,那就簡單很多了。
Ⅱ 什麼是Java多線程
多線程的概念?
說起多線程,那麼就不得不說什麼是線程,而說起線程,又不得不說什麼是進程。
進程(Process)是計算機中的程序關於某數據集合上的一次運行活動,是系統進行資源分配和調度的基本單位,是操作系統結構的基礎。在早期面向進程設計的計算機結構中,進程是程序的基本執行實體;在當代面向線程設計的計算機結構中,進程是線程的容器。程序是指令、數據及其組織形式的描述,進程是程序的實體。
進程可以簡單的理解為一個可以獨立運行的程序單位。它是線程的集合,進程就是有一個或多個線程構成的,每一個線程都是進程中的一條執行路徑。
那麼多線程就很容易理解:多線程就是指一個進程中同時有多個執行路徑(線程)正在執行。
為什麼要使用多線程?
1.在一個程序中,有很多的操作是非常耗時的,如資料庫讀寫操作,IO操作等,如果使用單線程,那麼程序就必須等待這些操作執行完成之後才能執行其他操作。使用多線程,可以在將耗時任務放在後台繼續執行的同時,同時執行其他操作。
2.可以提高程序的效率。
3.在一些等待的任務上,如用戶輸入,文件讀取等,多線程就非常有用了。
缺點:
1.使用太多線程,是很耗系統資源,因為線程需要開辟內存。更多線程需要更多內存。
2.影響系統性能,因為操作系統需要在線程之間來回切換。
3.需要考慮線程操作對程序的影響,如線程掛起,中止等操作對程序的影響。
4.線程使用不當會發生很多問題。
總結:多線程是非同步的,但這不代表多線程真的是幾個線程是在同時進行,實際上是系統不斷地在各個線程之間來回的切換(因為系統切換的速度非常的快,所以給我們在同時運行的錯覺)。
2.多線程與高並發的聯系。
高並發:高並發指的是一種系統運行過程中遇到的一種「短時間內遇到大量操作請求」的情況,主要發生在web系統集中大量訪問或者socket埠集中性收到大量請求(例如:12306的搶票情況;天貓雙十一活動)。該情況的發生會導致系統在這段時間內執行大量操作,例如對資源的請求,資料庫的操作等。如果高並發處理不好,不僅僅降低了用戶的體驗度(請求響應時間過長),同時可能導致系統宕機,嚴重的甚至導致OOM異常,系統停止工作等。如果要想系統能夠適應高並發狀態,則需要從各個方面進行系統優化,包括,硬體、網路、系統架構、開發語言的選取、數據結構的運用、演算法優化、資料庫優化……。
而多線程只是在同/非同步角度上解決高並發問題的其中的一個方法手段,是在同一時刻利用計算機閑置資源的一種方式。
多線程在高並發問題中的作用就是充分利用計算機資源,使計算機的資源在每一時刻都能達到最大的利用率,不至於浪費計算機資源使其閑置。
3.線程的創建,停止,常用方法介紹。
1.線程的創建:
線程創建主要有2種方式,一種是繼承Thread類,重寫run方法即可;(Thread類實現了Runable介面)
另一種則是實現Runable介面,也需要重寫run方法。
線程的啟動,調用start()方法即可。 我們也可以直接使用線程對象的run方法,不過直接使用,run方法就只是一個普通的方法了。
其他的還有: 通過匿名內部類的方法創建;實現Callable介面。。。。。
2.線程常用方法:
currentThread()方法:該方法返回當前線程的信息 .getName()可以返回線程名稱。
isAlive()方法:該方法判斷當前線程是否處於活動狀態。
sleep()方法:該方法是讓「當前正在執行的線程「休眠指定的時間,正在執行的線程是指this.currentThread()返回的線程。
getId()方法:該方法是獲取線程的唯一標識。
3.線程的停止:
在java中,停止線程並不簡單,不想for。。break那樣說停就停,需要一定的技巧。
線程的停止有3種方法:
1.線程正常終止,即run()方法運行結束正常停止。
2.使用interrupt方法中斷線程。
3.使用stop方法暴力停止線程。
interrupt方法中斷線程介紹:
interrupt方法其實並不是直接中斷線程,只是給線程添加一個中斷標志。
判斷線程是否是停止狀態:
this.interrupted(); 判斷當前線程是否已經中斷。(判斷的是這個方法所在的代碼對應的線程,而不是調用對象對應的線程)
this.isInterrupted(); 判斷線程是否已經中斷。(誰調用,判斷誰)
註:.interrupted()與isInterrupted()的區別:
interrupted()方法判斷的是所在代碼對應的線程是否中斷,而後者判斷的是調用對象對應的線程是否停止
前者執行後有清除狀態的功能(如連續調用兩次時,第一次返回true,則第二次會返回false)
後者沒有清除狀態的功能(兩次返回都為true)
真正停止線程的方法:
異常法:
在run方法中 使用 this.interrupted();判斷線程終止狀態,如果為true則 throw new interruptedException()然後捕獲該異常即可停止線程。
return停止線程:
在run方法中 使用 this.interrupted();判斷線程終止狀態,如果為true則return停止線程。 (建議使用異常法停止線程,因為還可以在catch中使線程向上拋,讓線程停止的事件得以傳播)。
暴力法:
使用stop()方法強行停止線程(強烈不建議使用,會造成很多不可預估的後果,已經被標記為過時)
(使用stop方法會拋出 java.lang.ThreadDeath 異常,並且stop方法會釋放鎖,很容易造成數據不一致)
註:在休眠中停止線程:
在sleep狀態下停止線程 會報異常,並且會清除線程狀態值為false;
先停止後sleep,同樣會報異常 sleep interrupted;
4.守護線程。
希望對您有所幫助!~
Ⅲ Java多線程是什麼意思
1、繼承Thread類實現多線程
繼承Thread類的方法盡管被我列為一種多線程實現方式,但Thread本質上也是實現了Runnable介面的一個實例,它代表一個線程的實例,並且,啟動線程的唯一方法就是通過Thread類的start()實例方法。start()方法是一個native方法,它將啟動一個新線程,並執行run()方法。這種方式實現多線程很簡單,通過自己的類直接extend Thread,並復寫run()方法,就可以啟動新線程並執行自己定義的run()方法。例如:
代碼說明:
上述代碼中Executors類,提供了一系列工廠方法用於創先線程池,返回的線程池都實現了ExecutorService介面。
public static ExecutorService newFixedThreadPool(int nThreads)
創建固定數目線程的線程池。
public static ExecutorService newCachedThreadPool()
創建一個可緩存的線程池,調用execute 將重用以前構造的線程(如果線程可用)。如果現有線程沒有可用的,則創建一個新線程並添加到池中。終止並從緩存中移除那些已有 60 秒鍾未被使用的線程。
public static ExecutorService newSingleThreadExecutor()
創建一個單線程化的Executor。
public static ScheledExecutorService newScheledThreadPool(int corePoolSize)
創建一個支持定時及周期性的任務執行的線程池,多數情況下可用來替代Timer類。
總結:ExecutoreService提供了submit()方法,傳遞一個Callable,或Runnable,返回Future。如果Executor後台線程池還沒有完成Callable的計算,這調用返回Future對象的get()方法,會阻塞直到計算完成。
Ⅳ 經驗分享:對Java中的線程感想(多線程)
1.進程和線程的區別
通俗一點說,進程就是程序的一次執行,而線程可以理解為進程中的執行凳局褲的一段程序片段。
用一臘搭點文詞說就是,每個進程都有獨立的代碼和數據空間(進程上下文);而線程可以看成是輕量級的進程。一般來講(不使用特殊技術),同一進程所產生的線程共享同一塊內存空間。
同一進程中的兩段代碼是不可能同時執行的,除非引入線程。
線程是屬於進程的,當進程退出時該進程所產生的線程都會被強制退出並清除。
線程佔用的資源要少於進程所佔用的資源。
進程和線程都可以有優先順序。
在線程系統中進程也是一個線程。可以將進程理解為一個程序的第一個線程。
多進程——在操作系統中,能同時運行多個任務(程序)。
多線程——在同一應用程序中,有多個順序流同時執行。
2.通過鐵路售票程序來理解實現多線程的兩種方法:通過java.lang.Thread類和通過Runnable介面
java中有兩種實現多線程的方式。一是直接繼承Thread類,二是實現Runnable介面。那麼這兩種實現多線程的方式在應用上有什麼區別呢?
為了回答這個問題,我們可以通過編寫一段代碼來進行分析。我們用代碼來模擬鐵路售票系統,實現通過四個售票點發售某日某次列車的100張車票,一個售票點用一個線程表示。
我們首先這樣編寫這個程序:
public class ThreadDome1{
public static void main(String[] args){
ThreadTest t = new ThreadTest();
t.start();
t.start();
t.start();
t.start();
}
}
class ThreadTest extends Thread{
private int ticket = 100;
public void run(){
while(true){
if(ticket > 0){
System.out.println(Thread.currentThread().getName() +
"is saling ticket" + ticket--);
}else{
break;
}
}
}
}
上面的代碼中,我們用ThreadTest類模擬售票處的售票過程,run方法中的每一次循環都將總票數減1,模擬賣出一張車票,同時該車票號列印出來,直接剩餘的票數到零為止。在ThreadDemo1類的main方法中,我們創建了一個線程對象,並重復啟動四次,希望通過這種方式產生四個線程。從運行的結果來看我們發現其實只有一個線程在運行,這個結果告訴我們:一個線程對象只能啟動一個線程,無論你調用多少遍start()方法,結果只有一個線程。
我們接著修棗簡改ThreadDemo1,在main方法中創建四個Thread對象:
public class ThreadDemo1{
public static void main(String[] args){
new ThreadTest().start();
new ThreadTest().start();
new ThreadTest().start();
new ThreadTest().start();
}
}
class ThreadTest extends Thread{
private int ticket = 100;
public void run(){
while(true){
if(ticket > 0){
System.out.println(Thread.currentThread().getName() +
" is saling ticket" + ticket--);
}else{
break;
}
}
}
}
這下達到目的了嗎?
從結果上看每個票號都被列印了四次,即四個線程各自賣各自的100張票,而不去賣共同的100張票。這種情況是怎麼造成的呢?我們需要的是,多個線程去處理同一個資源,一個資源只能對應一個對象,在上面的程序中,我們創建了四個ThreadTest對象,就等於創建了四個資源,每個資源都有100張票,每個線程都在獨自處理各自的資源。
經過這些實驗和分析,可以總結出,要實現這個鐵路售票程序,我們只能創建一個資源對象,但要創建多個線程去處理同一個資源對象,並且每個線程上所運行的是相同的程序代碼。在回顧一下使用介面編寫多線程的過程。
public class ThreadDemo1{
public static void main(String[] args){
ThreadTest t = new ThreadTest();
new Thread(t).start();
new Thread(t).start();
new Thread(t).start();
new Thread(t).start();
}
}
class ThreadTest implements Runnable{
private int tickets = 100;
public void run(){
while(true){
if(tickets > 0){
System.out.println(Thread.currentThread().getName() +
" is saling ticket " + tickets--);
}
}
}
}
上面的程序中,創建了四個線程,每個線程調用的是同一個ThreadTest對象中的run()方法,訪問的是同一個對象中的變數(tickets)的實例,這個程序滿足了我們的需求。在Windows上可以啟動多個記事本程序一樣,也就是多個進程使用同一個記事本程序代碼。
可見,實現Runnable介面相對於繼承Thread類來說,有如下顯著的好處:
(1)適合多個相同程序代碼的線程去處理同一資源的情況,把虛擬CPU(線程)同程序的代碼,數據有效的分離,較好地體現了面向對象的設計思想。
(2)可以避免由於Java的單繼承特性帶來的局限。我們經常碰到這樣一種情況,即當我們要將已經繼承了某一個類的子類放入多線程中,由於一個類不能同時有兩個父類,所以不能用繼承Thread類的方式,那麼,這個類就只能採用實現Runnable介面的方式了。
(3)有利於程序的健壯性,代碼能夠被多個線程共享,代碼與數據是獨立的。當多個線程的執行代碼來自同一個類的實例時,即稱它們共享相同的代碼。多個線程操作相同的數據,與它們的代碼無關。當共享訪問相同的對象時,即它們共享相同的數據。當線程被構造時,需要的代碼和數據通過一個對象作為構造函數實參傳遞進去,這個對象就是一個實現了Runnable介面的類的實例。
Ⅳ Java的多線程和CPU
CPU對於各個線程的調度是隨機的(分時調度),而在Java中,JVM負責線程的調度,可更好地分配CPU的使用權。對於線程的調度一般有兩種模式,分時調度和搶占式調度。分時調度是按照順序平均分配;搶占調度是按照優先順序來進行分配。
Ⅵ java 多線程是什麼
進程是程序在處理機中的一次運行。一個進程既包括其所要執行的指令,也包括了執行指令所需的系統資源,不同進程所佔用的系統資源相對獨立。所以進程是重量級的任務,它們之間的通信和轉換都需要操作系統付出較大的開銷。
線程是進程中的一個實體,是被系統獨立調度和分派的基本單位。線程自己基本上不擁有系統資源,但它可以與同屬一個進程的其他線程共享進程所擁有的全部資源。所以線程是輕量級的任務,它們之間的通信和轉換只需要較小的系統開銷。
Java支持多線程編程,因此用Java編寫的應用程序可以同時執行多個任務。Java的多線程機制使用起來非常方便,用戶只需關注程序細節的實現,而不用擔心後台的多任務系統。
Java語言里,線程表現為線程類。Thread線程類封裝了所有需要的線程操作控制。在設計程序時,必須很清晰地區分開線程對象和運行線程,可以將線程對象看作是運行線程的控制面板。在線程對象里有很多方法來控制一個線程是否運行,睡眠,掛起或停止。線程類是控制線程行為的唯一的手段。一旦一個Java程序啟動後,就已經有一個線程在運行。可通過調用Thread.currentThread方法來查看當前運行的是哪一個線程。
Ⅶ java多線程開發的同步機制有哪些
Java同步
標簽: 分類:
一、關鍵字:
thread(線程)、thread-safe(線程安全)、intercurrent(並發的)
synchronized(同步的)、asynchronized(非同步的)、
volatile(易變的)、atomic(原子的)、share(共享)
二、總結背景:
一次讀寫共享文件編寫,嚯,好傢伙,竟然揪出這些零碎而又是一路的知識點。於是乎,Google和翻閱了《Java參考大全》、《Effective Java Second Edition》,特此總結一下供日後工作學習參考。
三、概念:
1、 什麼時候必須同步?什麼叫同步?如何同步?
要跨線程維護正確的可見性,只要在幾個線程之間共享非 final 變數,就必須使用 synchronized(或 volatile)以確保一個線程可以看見另一個線程做的更改。
為了在線程之間進行可靠的通信,也為了互斥訪問,同步是必須的。這歸因於java語言規范的內存模型,它規定了:一個線程所做的變化何時以及如何變成對其它線程可見。
因為多線程將非同步行為引進程序,所以在需要同步時,必須有一種方法強制進行。例如:如果2個線程想要通信並且要共享一個復雜的數據結構,如鏈表,此時需要
確保它們互不沖突,也就是必須阻止B線程在A線程讀數據的過程中向鏈表裡面寫數據(A獲得了鎖,B必須等A釋放了該鎖)。
為了達到這個目的,java在一個舊的的進程同步模型——監控器(Monitor)的基礎上實現了一個巧妙的方案:監控器是一個控制機制,可以認為是一個
很小的、只能容納一個線程的盒子,一旦一個線程進入監控器,其它的線程必須等待,直到那個線程退出監控為止。通過這種方式,一個監控器可以保證共享資源在
同一時刻只可被一個線程使用。這種方式稱之為同步。(一旦一個線程進入一個實例的任何同步方法,別的線程將不能進入該同一實例的其它同步方法,但是該實例
的非同步方法仍然能夠被調用)。
錯誤的理解:同步嘛,就是幾個線程可以同時進行訪問。
同步和多線程關系:沒多線程環境就不需要同步;有多線程環境也不一定需要同步。
鎖提供了兩種主要特性:互斥(mutual exclusion) 和可見性(visibility)。
互斥即一次只允許一個線程持有某個特定的鎖,因此可使用該特性實現對共享數據的協調訪問協議,這樣,一次就只有一個線程能夠使用該共享數據。
可見性要更加復雜一些,documents它必須確保釋放鎖之前對共享數據做出的更改對於隨後獲得該鎖的另一個線程是可見的 —— 如果沒有同步機制提供的這種可見性保證,線程看到的共享變數可能是修改前的值或不一致的值,這將引發許多嚴重問題
小結:為了防止多個線程並發對同一數據的修改,所以需要同步,否則會造成數據不一致(就是所謂的:線程安全。如java集合框架中Hashtable和
Vector是線程安全的。我們的大部分程序都不是線程安全的,因為沒有進行同步,而且我們沒有必要,因為大部分情況根本沒有多線程環境)。
2、 什麼叫原子的(原子操作)?
Java原子操作是指:不會被打斷地的操作。(就是做到互斥 和可見性?!)
那難道原子操作就可以真的達到線程安全同步效果了嗎?實際上有一些原子操作不一定是線程安全的。
那麼,原子操作在什麼情況下不是線程安全的呢?也許是這個原因導致的:java線程允許線程在自己的內存區保存變數的副本。允許線程使用本地的私有拷貝進
行工作而非每次都使用主存的值是為了提高性能(本人愚見:雖然原子操作是線程安全的,可各線程在得到變數(讀操作)後,就是各自玩
弄自己的副本了,更新操作(寫操作)因未寫入主存中,導致其它線程不可見)。
那該如何解決呢?因此需要通過java同步機制。
在java中,32位或者更少位數的賦值是原子的。在一個32位的硬體平台上,除了double和long型的其它原始類型通常都
是使用32位進行表示,而double和long通常使用64位表示。另外,對象引用使用本機指針實現,通常也是32位的。對這些32位的類型的操作是原
子的。
這些原始類型通常使用32位或者64位表示,這又引入了另一個小小的神話:原始類型的大小是由語言保證的。這是不對的。java語言保證的是原始類型的表
數范圍而非JVM中的存儲大小。因此,int型總是有相同的表數范圍。在一個JVM上可能使用32位實現,而在另一個JVM上可能是64位的。在此再次強
調:在所有平台上被保證的是表數范圍,32位以及更小的值的操作是原子的。
3、 不要搞混了:同步、非同步
舉個例子:普通B/S模式(同步)AJAX技術(非同步)
同步:提交請求->等待伺服器處理->處理完返回 這個期間客戶端瀏覽器不能幹任何事
非同步:請求通過事件觸發->伺服器處理(這是瀏覽器仍然可以作其他事情)->處理完畢
可見,彼「同步」非此「同步」——我們說的java中的那個共享數據同步(synchronized)
一個同步的對象是指行為(動作),一個是同步的對象是指物質(共享數據)。
4、 Java同步機制有4種實現方式:(部分引用網上資源)
① ThreadLocal ② synchronized( ) ③ wait() 與 notify() ④ volatile
目的:都是為了解決多線程中的對同一變數的訪問沖突
ThreadLocal
ThreadLocal 保證不同線程擁有不同實例,相同線程一定擁有相同的實例,即為每一個使用該變數的線程提供一個該變數值的副本,每一個線程都可以獨立改變自己的副本,而不是與其它線程的副本沖突。
優勢:提供了線程安全的共享對象
與其它同步機制的區別:同步機制是為了同步多個線程對相同資源的並發訪問,是為了多個線程之間進行通信;而 ThreadLocal 是隔離多個線程的數據共享,從根本上就不在多個線程之間共享資源,這樣當然不需要多個線程進行同步了。
volatile
volatile 修飾的成員變數在每次被線程訪問時,都強迫從共享內存中重讀該成員變數的值。而且,當成員變數發生變化時,強迫線程將變化值回寫到共享內存。
優勢:這樣在任何時刻,兩個不同的線程總是看到某個成員變數的同一個值。
緣由:Java
語言規范中指出,為了獲得最佳速度,允許線程保存共享成員變數的私有拷貝,而且只當線程進入或者離開同步代碼塊時才與共享成員變數的原
始值對比。這樣當多個線程同時與某個對象交互時,就必須要注意到要讓線程及時的得到共享成員變數的變化。而 volatile
關鍵字就是提示 VM :對於這個成員變數不能保存它的私有拷貝,而應直接與共享成員變數交互。
使用技巧:在兩個或者更多的線程訪問的成員變數上使用 volatile 。當要訪問的變數已在 synchronized 代碼塊中,或者為常量時,不必使用。
線程為了提高效率,將某成員變數(如A)拷貝了一份(如B),線程中對A的訪問其實訪問的是B。只在某些動作時才進行A和B的同步,因此存在A和B不一致
的情況。volatile就是用來避免這種情況的。
volatile告訴jvm,它所修飾的變數不保留拷貝,直接訪問主內存中的(讀操作多時使用較好;線程間需要通信,本條做不到)
Volatile 變數具有 synchronized 的可見性特性,但是不具備原子特性。這就是說線程能夠自動發現 volatile
變數的最新值。Volatile
變數可用於提供線程安全,但是只能應用於非常有限的一組用例:多個變數之間或者某個變數的當前值與修改後值
之間沒有約束。
您只能在有限的一些情形下使用 volatile 變數替代鎖。要使 volatile 變數提供理想的線程安全,必須同時滿足下面兩個條件:
對變數的寫操作不依賴於當前值;該變數沒有包含在具有其他變數的不變式中。
sleep() vs wait()
sleep是線程類(Thread)的方法,導致此線程暫停執行指定時間,把執行機會給其他線程,但是監控狀態依然保持,到時後會自動恢復。調用sleep不會釋放對象鎖。
wait是Object類的方法,對此對象調用wait方法導致本線程放棄對象鎖,進入等待此對象的等待鎖定池,只有針對此對象發出notify方法(或notifyAll)後本線程才進入對象鎖定池准備獲得對象鎖進入運行狀態。
(如果變數被聲明為volatile,在每次訪問時都會和主存一致;如果變數在同步方法或者同步塊中被訪問,當在方法或者塊的入口處獲得鎖以及方法或者塊退出時釋放鎖時變數被同步。)
Ⅷ Java多線程程序設計詳細解析
一、理解多線程
多線程是這樣一種機制,它允許在程序中並發執行多個指令流,每個指令流都稱為一個線程,彼此間互相獨立。
線程又稱為輕量級進程,它和進程一樣擁有獨立的執行控制,由操作系統負責調度,區別在於線程沒有獨立的存儲空間,而是和所屬進程中的其它線程共享一個存儲空間,這使得線程間的通信遠較進程簡單。
多個線程的執行是並發的,也就是在邏輯上「同時」,而不管是否是物理上的「同時」。如果系統只有一個CPU,那麼真正的「同時」是不可能的,但是由於CPU的速度非常快,用戶感覺不到其中的區別,因此我們也不用關心它,只需要設想各個線程是同時執行即可。
多線程和傳統的單線程在程序設計上最大的區別在於,由於各個線程的控制流彼此獨立,使得各個線程之間的代碼是亂序執行的,由此帶來的線程調度,同步等問題,將在以後探討。
二、在Java中實現多線凱液慎程
我們不妨設想,為了創建一個新的線程,我們需要做些什麼?很顯然,我們必須指明這個線程所要執行的代碼,而這就是在Java中實現多線程我們所需要做的一切!
真是神奇!Java是如何做到這一點的?通過類!作為一個完全面向對象的語言,Java提供了類java.lang.Thread來方便多線程編程,這個類提供了大量的方法來方便我們控制自己的各個線程,我們以後的討論都將圍繞這個類進行。
那麼如何提供給 Java 我們要線程執行的代碼呢?讓我們來看一看 Thread 類。Thread 類最重要的方法是run(),它為Thread類的方法start()所調用,提供我們的線程所要執行的代碼。為了指定我們自己的代碼,只需要覆蓋它!
方法一:繼承 Thread 類,覆蓋方法 run(),我們在創建的 Thread 類的子類中重寫 run() ,加入線程所要執行的代碼即可。下面是一個例子:
public class MyThread extends Thread
{
int count= 1, number;
public MyThread(int num)
{
number = num;
System.out.println
("創建線程 " + number);
}
public void run() {
while(true) {
System.out.println
("線程 " + number + ":計數 " + count);
if(++count== 6) return;
}
}
public static void main(String args[])
{
for(int i = 0;
i 〈 5; i++) new MyThread(i+1).start();
}
}
這種方法簡單明了,符合大家的習慣,但是,它也有一個很大的缺點,那就是如果我們的類已經從一個類繼承(如小程序必須繼承自 Applet 類),則無法再繼承 Thread 類,這時如果我們又不想建立一個新的類,應該怎麼辦呢?
我們不妨來探索一種新的方法:我們不創建Thread類的子類,而是直接使用它,那麼我們只能將我們的方法作為參數傳遞給 Thread 類的實例,有點類似回調函數。但是 Java 沒有指針,我們只能傳遞一個包含這個方法的類的實例。
那麼如何限制這個類盯敬必須包含這一方法呢?當然是使用介面!(雖然抽象類也可滿足,但是需要繼承,而我們之所以要採用這種新方法,不就是為了避免繼承帶來的限制嗎?)
Java 提供了介面 java.lang.Runnable 來支持這種方法。
方法二:實現 Runnable 介面
Runnable介面只有一個方法run(),我們聲明自己的類實現Runnable介面並提供這一方法,將我們的線程代碼寫入其中,就完成了這一部分的任務。但是Runnable介面並沒有任何對線程的支持,我們還必須創建Thread類的實例,這一點通過Thread類的構造函數public Thread(Runnable target);來實現。下面埋禪是一個例子:
public class MyThread implements Runnable
{
int count= 1, number;
public MyThread(int num)
{
number = num;
System.out.println("創建線程 " + number);
}
public void run()
{
while(true)
{
System.out.println
("線程 " + number + ":計數 " + count);
if(++count== 6) return;
}
}
public static void main(String args[])
{
for(int i = 0; i 〈 5;
i++) new Thread(new MyThread(i+1)).start();
}
}
嚴格地說,創建Thread子類的實例也是可行的,但是必須注意的是,該子類必須沒有覆蓋 Thread 類的 run 方法,否則該線程執行的將是子類的 run 方法,而不是我們用以實現Runnable 介面的類的 run 方法,對此大家不妨試驗一下。
使用 Runnable 介面來實現多線程使得我們能夠在一個類中包容所有的代碼,有利於封裝,它的缺點在於,我們只能使用一套代碼,若想創建多個線程並使各個線程執行不同的代碼,則仍必須額外創建類,如果這樣的話,在大多數情況下也許還不如直接用多個類分別繼承 Thread 來得緊湊。
綜上所述,兩種方法各有千秋,大家可以靈活運用。
下面讓我們一起來研究一下多線程使用中的一些問題。
三、線程的四種狀態
1. 新狀態:線程已被創建但尚未執行(start() 尚未被調用)。
2. 可執行狀態:線程可以執行,雖然不一定正在執行。CPU 時間隨時可能被分配給該線程,從而使得它執行。
3. 死亡狀態:正常情況下 run() 返回使得線程死亡。調用 stop()或 destroy() 亦有同樣效果,但是不被推薦,前者會產生異常,後者是強制終止,不會釋放鎖。
4. 阻塞狀態:線程不會被分配 CPU 時間,無法執行。
四、線程的優先順序
線程的優先順序代表該線程的重要程度,當有多個線程同時處於可執行狀態並等待獲得 CPU 時間時,線程調度系統根據各個線程的優先順序來決定給誰分配 CPU 時間,優先順序高的線程有更大的機會獲得 CPU 時間,優先順序低的線程也不是沒有機會,只是機會要小一些罷了。
你可以調用 Thread 類的方法 getPriority() 和 setPriority()來存取線程的優先順序,線程的優先順序界於1(MIN_PRIORITY)和10(MAX_PRIORITY)之間,預設是5(NORM_PRIORITY)。
五、線程的同步
由於同一進程的多個線程共享同一片存儲空間,在帶來方便的同時,也帶來了訪問沖突這個嚴重的問題。Java語言提供了專門機制以解決這種沖突,有效避免了同一個數據對象被多個線程同時訪問。
由於我們可以通過 private 關鍵字來保證數據對象只能被方法訪問,所以我們只需針對方法提出一套機制,這套機制就是 synchronized 關鍵字,它包括兩種用法:synchronized 方法和 synchronized 塊。
1. synchronized 方法:通過在方法聲明中加入 synchronized關鍵字來聲明 synchronized 方法。如:
public synchronized void accessVal(int newVal);
synchronized 方法控制對類成員變數的訪問:每個類實例對應一把鎖,每個 synchronized 方法都必須獲得調用該方法的類實例的鎖方能執行,否則所屬線程阻塞,方法一旦執行,就獨占該鎖,直到從該方法返回時才將鎖釋放,此後被阻塞的線程方能獲得該鎖,重新進入可執行狀態。
這種機制確保了同一時刻對於每一個類實例,其所有聲明為 synchronized 的成員函數中至多隻有一個處於可執行狀態(因為至多隻有一個能夠獲得該類實例對應的鎖),從而有效避免了類成員變數的訪問沖突(只要所有可能訪問類成員變數的方法均被聲明為 synchronized)。
在 Java 中,不光是類實例,每一個類也對應一把鎖,這樣我們也可將類的靜態成員函數聲明為 synchronized ,以控制其對類的靜態成員變數的訪問。
synchronized 方法的缺陷:若將一個大的方法聲明為synchronized 將會大大影響效率,典型地,若將線程類的方法 run() 聲明為 synchronized ,由於在線程的整個生命期內它一直在運行,因此將導致它對本類任何 synchronized 方法的調用都永遠不會成功。當然我們可以通過將訪問類成員變數的代碼放到專門的方法中,將其聲明為 synchronized ,並在主方法中調用來解決這一問題,但是 Java 為我們提供了更好的解決辦法,那就是 synchronized 塊。
2. synchronized 塊:通過 synchronized關鍵字來聲明synchronized 塊。語法如下:
synchronized(syncObject)
{
//允許訪問控制的代碼
}
#p#副標題#e#
synchronized 塊是這樣一個代碼塊,其中的代碼必須獲得對象 syncObject (如前所述,可以是類實例或類)的鎖方能執行,具體機制同前所述。由於可以針對任意代碼塊,且可任意指定上鎖的對象,故靈活性較高。
六、線程的阻塞為了解決對共享存儲區的訪問沖突,Java 引入了同步機制,現在讓我們來考察多個線程對共享資源的訪問,顯然同步機制已經不夠了,因為在任意時刻所要求的資源不一定已經准備好了被訪問,反過來,同一時刻准備好了的資源也可能不止一個。為了解決這種情況下的訪問控制問題,Java 引入了對阻塞機制的支持。
阻塞指的是暫停一個線程的執行以等待某個條件發生(如某資源就緒),學過操作系統的同學對它一定已經很熟悉了。Java 提供了大量方法來支持阻塞,下面讓我們逐一分析。
1. sleep() 方法:sleep() 允許 指定以毫秒為單位的一段時間作為參數,它使得線程在指定的時間內進入阻塞狀態,不能得到CPU 時間,指定的時間一過,線程重新進入可執行狀態。典型地,sleep() 被用在等待某個資源就緒的情形:測試發現條件不滿足後,讓線程阻塞一段時間後重新測試,直到條件滿足為止。
2. suspend() 和 resume() 方法:兩個方法配套使用,suspend()使得線程進入阻塞狀態,並且不會自動恢復,必須其對應的resume() 被調用,才能使得線程重新進入可執行狀態。典型地,suspend() 和 resume() 被用在等待另一個線程產生的結果的情形:測試發現結果還沒有產生後,讓線程阻塞,另一個線程產生了結果後,調用 resume() 使其恢復。
3. yield() 方法:yield() 使得線程放棄當前分得的 CPU 時間,但是不使線程阻塞,即線程仍處於可執行狀態,隨時可能再次分得 CPU 時間。調用 yield() 的效果等價於調度程序認為該線程已執行了足夠的時間從而轉到另一個線程。
4. wait() 和 notify() 方法:兩個方法配套使用,wait() 使得線程進入阻塞狀態,它有兩種形式,一種允許 指定以毫秒為單位的一段時間作為參數,另一種沒有參數,前者當對應的 notify() 被調用或者超出指定時間時線程重新進入可執行狀態,後者則必須對應的 notify() 被調用。
初看起來它們與 suspend() 和 resume() 方法對沒有什麼分別,但是事實上它們是截然不同的。區別的核心在於,前面敘述的所有方法,阻塞時都不會釋放佔用的鎖(如果佔用了的話),而這一對方法則相反。
上述的核心區別導致了一系列的細節上的區別。
首先,前面敘述的所有方法都隸屬於 Thread 類,但是這一對卻直接隸屬於 Object 類,也就是說,所有對象都擁有這一對方法。初看起來這十分不可思議,但是實際上卻是很自然的,因為這一對方法阻塞時要釋放佔用的鎖,而鎖是任何對象都具有的,調用任意對象的 wait() 方法導致線程阻塞,並且該對象上的鎖被釋放。
而調用 任意對象的notify()方法則導致因調用該對象的 wait() 方法而阻塞的線程中隨機選擇的一個解除阻塞(但要等到獲得鎖後才真正可執行)。
其次,前面敘述的所有方法都可在任何位置調用,但是這一對方法卻必須在 synchronized 方法或塊中調用,理由也很簡單,只有在synchronized 方法或塊中當前線程才佔有鎖,才有鎖可以釋放。
同樣的道理,調用這一對方法的對象上的鎖必須為當前線程所擁有,這樣才有鎖可以釋放。因此,這一對方法調用必須放置在這樣的 synchronized 方法或塊中,該方法或塊的上鎖對象就是調用這一對方法的對象。若不滿足這一條件,則程序雖然仍能編譯,但在運行時會出現IllegalMonitorStateException 異常。
wait() 和 notify() 方法的上述特性決定了它們經常和synchronized 方法或塊一起使用,將它們和操作系統的進程間通信機製作一個比較就會發現它們的相似性:synchronized方法或塊提供了類似於操作系統原語的功能,它們的執行不會受到多線程機制的干擾,而這一對方法則相當於 block 和wakeup 原語(這一對方法均聲明為 synchronized)。
它們的結合使得我們可以實現操作系統上一系列精妙的進程間通信的演算法(如信號量演算法),並用於解決各種復雜的線程間通信問題。
關於 wait() 和 notify() 方法最後再說明兩點:
第一:調用 notify() 方法導致解除阻塞的線程是從因調用該對象的 wait() 方法而阻塞的線程中隨機選取的,我們無法預料哪一個線程將會被選擇,所以編程時要特別小心,避免因這種不確定性而產生問題。
第二:除了 notify(),還有一個方法 notifyAll() 也可起到類似作用,唯一的區別在於,調用 notifyAll() 方法將把因調用該對象的 wait() 方法而阻塞的所有線程一次性全部解除阻塞。當然,只有獲得鎖的那一個線程才能進入可執行狀態。
談到阻塞,就不能不談一談死鎖,略一分析就能發現,suspend() 方法和不指定超時期限的 wait() 方法的調用都可能產生死鎖。遺憾的是,Java 並不在語言級別上支持死鎖的避免,我們在編程中必須小心地避免死鎖。
以上我們對 Java 中實現線程阻塞的各種方法作了一番分析,我們重點分析了 wait() 和 notify()方法,因為它們的功能最強大,使用也最靈活,但是這也導致了它們的效率較低,較容易出錯。實際使用中我們應該靈活使用各種方法,以便更好地達到我們的目的。
七、守護線程
守護線程是一類特殊的線程,它和普通線程的區別在於它並不是應用程序的核心部分,當一個應用程序的所有非守護線程終止運行時,即使仍然有守護線程在運行,應用程序也將終止,反之,只要有一個非守護線程在運行,應用程序就不會終止。守護線程一般被用於在後台為其它線程提供服務。
可以通過調用方法 isDaemon() 來判斷一個線程是否是守護線程,也可以調用方法 setDaemon() 來將一個線程設為守護線程。
八、線程組
線程組是一個 Java 特有的概念,在 Java 中,線程組是類ThreadGroup 的對象,每個線程都隸屬於唯一一個線程組,這個線程組在線程創建時指定並在線程的整個生命期內都不能更改。
你可以通過調用包含 ThreadGroup 類型參數的 Thread 類構造函數來指定線程屬的線程組,若沒有指定,則線程預設地隸屬於名為 system 的系統線程組。
在 Java 中,除了預建的系統線程組外,所有線程組都必須顯式創建。在 Java 中,除系統線程組外的每個線程組又隸屬於另一個線程組,你可以在創建線程組時指定其所隸屬的線程組,若沒有指定,則預設地隸屬於系統線程組。這樣,所有線程組組成了一棵以系統線程組為根的樹。
Java 允許我們對一個線程組中的所有線程同時進行操作,比如我們可以通過調用線程組的相應方法來設置其中所有線程的優先順序,也可以啟動或阻塞其中的所有線程。
Java 的線程組機制的另一個重要作用是線程安全。線程組機制允許我們通過分組來區分有不同安全特性的線程,對不同組的線程進行不同的處理,還可以通過線程組的分層結構來支持不對等安全措施的採用。
Java 的 ThreadGroup 類提供了大量的方法來方便我們對線程組樹中的每一個線程組以及線程組中的每一個線程進行操作。
九、總結
在本文中,我們講述了 Java 多線程編程的方方面面,包括創建線程,以及對多個線程進行調度、管理。我們深刻認識到了多線程編程的復雜性,以及線程切換開銷帶來的多線程程序的低效性,這也促使我們認真地思考一個問題:我們是否需要多線程?何時需要多線程?
多線程的核心在於多個代碼塊並發執行,本質特點在於各代碼塊之間的代碼是亂序執行的。我們的程序是否需要多線程,就是要看這是否也是它的內在特點。
假如我們的程序根本不要求多個代碼塊並發執行,那自然不需要使用多線程;假如我們的程序雖然要求多個代碼塊並發執行,但是卻不要求亂序,則我們完全可以用一個循環來簡單高效地實現,也不需要使用多線程;只有當它完全符合多線程的特點時,多線程機制對線程間通信和線程管理的強大支持才能有用武之地,這時使用多線程才是值得的。
#p#副標題#e#
Ⅸ 在Java 中多線程的實現方法有哪些,如何使用
1、 認識Thread和Runnable
Java中實現多線程有兩種途徑:繼承Thread類或者實現Runnable介面。Runnable是介面,建議用介面的方式生成線程,因為介面可以實現多繼承,況且Runnable只有一個run方法,很適合繼承。在使用Thread的時候只需繼承Thread,並且new一個實例出來,調用start()方法即可以啟動一個線程。
Thread Test = new Thread();
Test.start();
在使用Runnable的時候需要先new一個實現Runnable的實例,之後啟動Thread即可。
Test impelements Runnable;
Test t = new Test();
Thread test = new Thread(t);
test.start();
總結:Thread和Runnable是實現java多線程的2種方式,runable是介面,thread是類,建議使用runable實現java多線程,不管如何,最終都需要通過thread.start()來使線程處於可運行狀態。
2、 認識Thread的start和run
1) start:
用start方法來啟動線程,真正實現了多線程運行,這時無需等待run方法體代碼執行完畢而直接繼續執行下面的代碼。通過調用Thread類的start()方法來啟動一個線程,這時此線程處於就緒(可運行)狀態,並沒有運行,一旦得到spu時間片,就開始執行run()方法,這里方法run()稱為線程體,它包含了要執行的這個線程的內容,Run方法運行結束,此線程隨即終止。
2) run:
run()方法只是類的一個普通方法而已,如果直接調用Run方法,程序中依然只有主線程這一個線程,其程序執行路徑還是只有一條,還是要順序執行,還是要等待run方法體執行完畢後才可繼續執行下面的代碼,這樣就沒有達到寫線程的目的。
總結:調用start方法方可啟動線程,而run方法只是thread的一個普通方法調用,還是在主線程里執行。
3、 線程狀態說明
線程狀態從大的方面來說,可歸結為:初始狀態、可運行狀態、不可運行狀態和消亡狀態,具體可細分為上圖所示7個狀態,說明如下:
1) 線程的實現有兩種方式,一是繼承Thread類,二是實現Runnable介面,但不管怎樣,當我們new了thread實例後,線程就進入了初始狀態;
2) 當該對象調用了start()方法,就進入可運行狀態;
3) 進入可運行狀態後,當該對象被操作系統選中,獲得CPU時間片就會進入運行狀態;
4) 進入運行狀態後case就比較多,大致有如下情形:
·run()方法或main()方法結束後,線程就進入終止狀態;
·當線程調用了自身的sleep()方法或其他線程的join()方法,就會進入阻塞狀態(該狀態既停止當前線程,但並不釋放所佔有的資源)。當sleep()結束或join()結束後,該線程進入可運行狀態,繼續等待OS分配時間片;
·當線程剛進入可運行狀態(注意,還沒運行),發現將要調用的資源被鎖牢(synchroniza,lock),將會立即進入鎖池狀態,等待獲取鎖標記(這時的鎖池裡也許已經有了其他線程在等待獲取鎖標記,這時它們處於隊列狀態,既先到先得),一旦線程獲得鎖標記後,就轉入可運行狀態,等待OS分配CPU時間片;
·當線程調用wait()方法後會進入等待隊列(進入這個狀態會釋放所佔有的所有資源,與阻塞狀態不同),進入這個狀態後,是不能自動喚醒的,必須依靠其他線程調用notify()或notifyAll()方法才能被喚醒(由於notify()只是喚醒一個線程,但我們由不能確定具體喚醒的是哪一個線程,也許我們需要喚醒的線程不能夠被喚醒,因此在實際使用時,一般都用notifyAll()方法,喚醒有所線程),線程被喚醒後會進入鎖池,等待獲取鎖標記。
·當線程調用stop方法,即可使線程進入消亡狀態,但是由於stop方法是不安全的,不鼓勵使用,大家可以通過run方法里的條件變通實現線程的stop。