導航:首頁 > 編程語言 > python3爬蟲網頁解析

python3爬蟲網頁解析

發布時間:2023-05-30 15:56:40

『壹』 用python腳本爬取和解析指定頁面的數據

給你貼一下我前一段時間回答的類似問題,用的soup,還有一個用的正則就念臘不貼了,手機不太方便,如下。
import beautifulsoup
import urllib2

def main():

userMainUrl = "你要仔睜滑抓取的地址"
req = urllib2.Request(userMainUrl)
resp = urllib2.urlopen(req)
respHtml = resp.read()
foundLabel = respHtml.findAll("label")

finalL =foundLabel.string

print "biaoti=",finalL
if __name__=="__main__":

main();

PS:如果不會改的話追問一下,回頭我用早橘電腦給你寫一份

『貳』 如何使用python3爬取1000頁百度百科條目

1 問題描述

起始頁面 ython包含許多指向其他詞條的頁面。悄隱通過頁面之間的鏈接訪問1000條網路詞條。

對啟悶廳每個詞條,獲取其標題和簡介。


可以看出,其他詞條的格式都遵循hcom/item/xxx的形式

3 實現

# coding=utf-8from urllib import requestfrom bs4 import BeautifulSoupimport reimport tracebackimport time

url_new = set()
url_old = set()
start_url = 'httpm/item/python'max_url = 1000def add_url(url):
if len(url_new) + len(url_old) > 1000: return
if url not in url_old and url not in url_new:
url_new.add(url)def get_url():
url = url_new.pop()
url_old.add(url) return urldef parse_title_summary(page):
soup = BeautifulSoup(page, 'html.parser')
node = soup.find('h1')
title = node.text
node = soup.find('div', class_='lemma-summary')
summary = node.text return title, summarydef parse_url(page):
soup = BeautifulSoup(page, 'html.parser')
links = soup.findAll('a', href=re.compile(r'/item/'))
res = set()
keprefix = 'htt..com'
for i in links:
res.add(keprefix + i['罩昌href']) return resdef write2log(text, name='d:/ke-urllib.log'):
with open(name, 'a+', encoding='utf-8') as fp:
fp.write(' ')
fp.write(text)if __name__ == '__main__':
url_new.add(start_url) print('working')
time_begin=time.time()
count = 1
while url_new:
url = get_url() try:
resp = request.urlopen(url)
text = resp.read().decode()
write2log('.'.join(parse_title_summary(text)))
urls = parse_url(text) for i in urls:
add_url(i) print(str(count), 'ok')
count += 1
except:
traceback.print_exc() print(url)
time_end=time.time() print('time elapsed: ', time_end - time_begin) print('the end.')

輸出結果

working1 ok
略983 ok984 ok
time elapsed: 556.4766345024109the end.

將urllib替換為第三方庫requests:

pip install requests

略if __name__ == '__main__':
url_new.add(start_url) print('working')
time_begin = time.time()
count = 1
while url_new:
url = get_url() try: with requests.Session() as s:
resp = s.get(url)
text = resp.content.decode() # 默認'utf-8'
write2log('.'.join(parse_title_summary(text)))
urls = parse_url(text) for i in urls:
add_url(i) print(str(count), 'ok')
count += 1
except:
traceback.print_exc() print(url)
time_end = time.time() print('time elapsed: ', time_end - time_begin) print('the end.')

輸出

略986 ok987 ok988 ok989 ok
time elapsed: 492.8088216781616the end.

一個通用的爬蟲架構包括如下四部分:

『叄』 Python網頁解析庫:用requests-html爬取網頁

Python 中可以進行網頁解析的庫有很多,常見的有 BeautifulSoup 和 lxml 等。在網上玩爬蟲的文章通常都是介紹 BeautifulSoup 這個庫,我平常也是常用這個庫,最近用 Xpath 用得比較多,使用 BeautifulSoup 就不大習慣,很久之前就知道 Reitz 大神出了一個叫 Requests-HTML 的庫,一直沒有興趣看,這回可算歹著機會用一下了。

使用 pip install requests-html 安裝,上手和 Reitz 的其他庫一樣,輕松簡單:

這個庫是在 requests 庫上實現的,r 得到的結果是 Response 對象下面的一個子類,多個一個 html 的屬性。所以 requests 庫的響應對象可以進行什麼操作,這個 r 也都可以。如果需要解析網頁,直接獲取響應對象的 html 屬性:

不得不膜拜 Reitz 大神太會組裝技術了。實際上 HTMLSession 是繼承自 requests.Session 這個核心類,然後將 requests.Session 類里的 requests 方法改寫,返回自己的一個 HTMLResponse 對象,這個類又是繼承自 requests.Response,只是多加了一個 _from_response 的方法來構造實例:

之後在 HTMLResponse 里定義屬性方法 html,就可以通過 html 屬性訪問了,實現也就是組裝 PyQuery 來干。核心的解析類也大多是使用 PyQuery 和 lxml 來做解析,簡化了名稱,挺討巧的。

元素定位可以選擇兩種方式:

方法名非常簡單,符合 Python 優雅的風格,這里不妨對這兩種方式簡單的說明:

定位到元素以後勢必要獲取元素裡面的內容和屬性相關數據,獲取文本:

獲取元素的屬性:

還可以通過模式來匹配對應的內容:

這個功能看起來比較雞肋,可以深入研究優化一下,說不定能在 github 上混個提交。

除了一些基礎操作,這個庫還提供了一些人性化的操作。比如一鍵獲取網頁的所有超鏈接,這對於整站爬蟲應該是個福音,URL 管理比較方便:

內容頁面通常都是分頁的,一次抓取不了太多,這個庫可以獲取分頁信息:

結果如下:

通過迭代器實現了智能發現分頁,這個迭代器裡面會用一個叫 _next 的方法,貼一段源碼感受下:

通過查找 a 標簽裡面是否含有指定的文本來判斷是不是有下一頁,通常我們的下一頁都會通過 下一頁 或者 載入更多 來引導,他就是利用這個標志來進行判斷。默認的以列表形式存在全局: ['next','more','older'] 。我個人認為這種方式非常不靈活,幾乎沒有擴展性。 感興趣的可以往 github 上提交代碼優化。

也許是考慮到了現在 js 的一些非同步載入,這個庫支持 js 運行時,官方說明如下:

使用非常簡單,直接調用以下方法:

第一次使用的時候會下載 Chromium,不過國內你懂的,自己想辦法去下吧,就不要等它自己下載了。render 函數可以使用 js 腳本來操作頁面,滾動操作單獨做了參數。這對於上拉載入等新式頁面是非常友好的。

『肆』 python 爬蟲用什麼解析網頁

所謂網頁抓取,就是把URL地址中指定的網路資源從網路流中讀取出來,保存到本地。 類似於使用程序模擬IE瀏覽器的功能,把URL作為HTTP請求的內容發送到伺服器端, 然後讀取伺服器端的響應資源。 在Python中,我們使用urllib2這個組件來抓取網頁。

『伍』 如何通過網路爬蟲獲取網站數據

這里以python為例,簡單介紹一下如何通過python網路爬蟲獲取網站數據,主要分為靜態網頁數據的爬埋山差取和動態網頁數據的爬取,實驗環境win10+python3.6+pycharm5.0,主要內容如下:

靜態網頁數據

這里的數據都嵌套在網頁源碼中,所以直接requests網頁源碼進行解析就行,下面我簡單介紹一下,這里以爬取糗事網路上的數據為例:

1.首先,打開原網頁,如下,這里假設要爬取的欄位包括昵稱、內容、好笑數和評論數:

接著查看網頁源碼,如下,可以看的出來,所有的數據都嵌套在網頁中:

2.然後針對以上網頁結構,我們就可以直接編寫爬蟲代碼,解析網頁並提取出我們需要的數據了,測試代碼如下,非常簡單,主要用到requests+BeautifulSoup組合,其中requests用於獲取網頁源碼,BeautifulSoup用於解析網頁提取數據:

點擊運行這個程序,效果如下,已經成功爬取了到我們需要的數據:

動態網頁數據

這里的數據都沒有在網頁源碼中(所以直接請求頁面是獲取不到任何數據的),大部分情況下都是存儲在一唯唯個json文件中,只有在網頁更新的時候,才會載入數據,下面我簡單介紹一下這種方式,這里以爬取人人貸上面的數據為例:

1.首先,打開原網頁,如下,這里假設要爬取的數據包括年利率,借款標題,期限,金額和進度:

接著按F12調出開發者工具,依次點擊「Network」->「XHR」,F5刷新頁面,就可以找打動態載入的json文件,如下,也就是我們需要爬彎皮取的數據:

2.然後就是根據這個json文件編寫對應代碼解析出我們需要的欄位信息,測試代碼如下,也非常簡單,主要用到requests+json組合,其中requests用於請求json文件,json用於解析json文件提取數據:

點擊運行這個程序,效果如下,已經成功爬取到我們需要的數據:

至此,我們就完成了利用python網路爬蟲來獲取網站數據。總的來說,整個過程非常簡單,python內置了許多網路爬蟲包和框架(scrapy等),可以快速獲取網站數據,非常適合初學者學習和掌握,只要你有一定的爬蟲基礎,熟悉一下上面的流程和代碼,很快就能掌握的,當然,你也可以使用現成的爬蟲軟體,像八爪魚、後羿等也都可以,網上也有相關教程和資料,非常豐富,感興趣的話,可以搜一下,希望以上分享的內容能對你有所幫助吧,也歡迎大家評論、留言進行補充。

『陸』 python如何解析爬取的數據

用json方法轉成字典

『柒』 【Python爬蟲】分析網頁真實請求

1、抓取網頁、分析請求
2、解析網頁、尋找數據
3、儲存數據、多頁處理

翻頁有規律:
很多網址在第一頁時並沒有變化,多翻下一頁後規律就出來,比如 豆瓣第一頁 和 豆瓣第三頁

發現start為40,limit=20,所以猜測start=0就是第一頁,每頁顯示20條數據,對於第三頁顯示的參數可以一個個刪除驗證,可以減去不必要的參數, 但是刪除前一定要做好數據的對比

(1) 文本框輸入後產生一個請求,如常見的登錄、注冊頁面
Referer:表示當前請求的來源
Request URL:表示實際請求地址

翻頁後URL不變,該如何尋找請求?
如: http://www.zkh360.com/zkh_catalog/3.html

通過對比可以發現網站是通過pageIndex參數控制翻頁的,?表示連接

接下來用抓包工具分析下 ,從第四頁開始看URL就知道了,但是前面幾面需要查看請求的參數,這里偏多,就切換到【Inspectors--Webforms】選項,看的比較直觀

類似的網站還有 今日頭條 ,有興趣的朋友可以去研究下
(可通過獲取max_behot_time的值而改變as和cp)

『捌』 python爬蟲如何分析一個將要爬取的網站

首先,你去爬取一個網站,

你會清楚這個網站是屬於什麼類型的網站(新聞,論壇,貼吧等等)。

你會清楚你需要哪部分的數據

你需要去想需要的數據你將如何編寫表達式去解析。

你會碰到各種反爬措施,無非就是各種網路各種解決。當爬取成本高於數據成本,你會選擇放棄。

你會利用你所學各種語言去解決你將要碰到的問題,利用各種語言的client組件去請求你想要爬取的URL,獲取到HTML,利用正則,XPATH去解析你想要的數據,然後利用sql存儲各類資料庫。

『玖』 python爬蟲如何分析一個將要爬取的網站

爬取網頁數據,需要一些工具,比如requests,正則表達式,bs4等,解析網頁首推bs4啊,可以通過標簽和節點抓取扒拍數據。

正巧簡悶,我最近發布了一篇文章就是抓取網頁數據分析的,有完整的抓取步驟,你可以看一下?不好意思給自己打了一下廣春咐羨告?

『拾』 python網頁爬蟲教程

現行環境下,大數據與人工智慧的重要依託還是龐大的數據和分析採集,類似於神譽淘寶 京東 網路 騰訊級別的企業 能夠通過數據可觀的用戶群體獲取需要的數據,而一般企業可能就沒有這種通過產品獲取數據的能力和條件,想從事這方面的工作,需掌握以下知識:
1. 學習Python基礎知識並實現基本的爬蟲過程
一般獲取數據的過程都是按照 發送請求-獲得頁面反饋-解析並且存儲數據 這三個流程來實現的。這個過程其實就是模擬了一個人工瀏覽網頁的過程。
Python中爬蟲相關的包很多:urllib、requests、bs4、scrapy、pyspider 等,我們可以按照requests 負責連接網謹唯站,返回網頁,Xpath 用於解析網頁,便於抽取數據。
2.了解非結構化數據的存儲
爬蟲抓取的數據結構復雜 傳統的結構化資料庫可能並不是特別適合我們使用。我們前期推薦使用MongoDB 就可以。
3. 掌握一些常用的反爬蟲技巧
使用代理IP池、抓包、驗證碼的OCR處理等處理方式即可以解決大部分網站的反爬蟲策略。
4.了解分布式存儲
分布式這個東西,聽起來很恐怖,但其實就是利用多線程的原理讓多個爬蟲同時工作,需要你掌握 Scrapy + MongoDB + Redis 這三種工具游晌段就可以了。

閱讀全文

與python3爬蟲網頁解析相關的資料

熱點內容
文件加密了為啥發不出去了 瀏覽:457
單片機調節馬達 瀏覽:743
鏡花pdf 瀏覽:610
廣西民族大學app忘記密碼怎麼辦 瀏覽:374
學生伺服器是什麼意思 瀏覽:533
如何下載快切app 瀏覽:723
如何將電腦c盤文件加密 瀏覽:886
嵌入式為什麼linux 瀏覽:553
c語言編譯器屬於系統軟體 瀏覽:725
android如何斷點調試 瀏覽:722
圖解韓語pdf 瀏覽:302
sas查各文件夾空間大小 瀏覽:454
python腳本檢查埠 瀏覽:960
催眠解壓視頻泡沫 瀏覽:309
雲伺服器部署系統 瀏覽:879
惡意加密別人的文件犯法 瀏覽:833
漢語語法pdf 瀏覽:158
詞法分析編譯原理論文 瀏覽:271
電腦文件夾還原方法 瀏覽:533
安卓包如何成為文檔 瀏覽:949