導航:首頁 > 編程語言 > phpmemcache集群

phpmemcache集群

發布時間:2023-06-01 19:56:29

⑴ 談談redis,memcache,mongodb的區別和具體應用場景

從以下幾個維度,對 redis、memcache、mongoDB 做了對比。
1、性能
都比較高,性能對我們來說應該都不是瓶頸。
總體來講,TPS 方面 redis 和 memcache 差不多,要大於 mongodb。
2、操作的便利性
memcache 數據結構單一。(key-value)
redis 豐富一些,數據操作方面,redis 更好一些,較少的網路 IO 次數,同時還提供 list,set,
hash 等數據結構的存儲。
mongodb 支持豐富的數據表達,索引,最類似關系型資料庫,支持的查詢語言非常豐富。
3、內存空間的大小和數據量的大小
redis 在 2.0 版本後增加了自己的 VM 特性,突破物理內存的限制;可以對 key value 設置過
期時間(類似 memcache)
memcache 可以修改最大可用內存,採用 LRU 演算法。Memcached 代理軟體 magent,比如建立
10 台 4G 的 Memcache 集群,就相當於有了 40G。 magent -s 10.1.2.1 -s 10.1.2.2:11211 -b
10.1.2.3:14000 mongoDB 適合大數據量的存儲,依賴操作系統 VM 做內存管理,吃內存也比較厲害,服務
不要和別的服務在一起。
4、可用性(單點問題)
對於單點問題,
redis,依賴客戶端來實現分布式讀寫;主從復制時,每次從節點重新連接主節點都要依賴整
個快照,無增量復制,因性能和效率問題,
所以單點問題比較復雜;不支持自動 sharding,需要依賴程序設定一致 hash 機制。
一種替代方案是,不用 redis 本身的復制機制,採用自己做主動復制(多份存儲),或者改成
增量復制的方式(需要自己實現),一致性問題和性能的權衡
Memcache 本身沒有數據冗餘機制,也沒必要;對於故障預防,採用依賴成熟的 hash 或者環
狀的演算法,解決單點故障引起的抖動問題。
mongoDB 支持 master-slave,replicaset(內部採用 paxos 選舉演算法,自動故障恢復),auto sharding 機制,對客戶端屏蔽了故障轉移和切分機制。
5、可靠性(持久化)
對於數據持久化和數據恢復,
redis 支持(快照、AOF):依賴快照進行持久化,aof 增強了可靠性的同時,對性能有所影

memcache 不支持,通常用在做緩存,提升性能;
MongoDB 從 1.8 版本開始採用 binlog 方式支持持久化的可靠性
6、數據一致性(事務支持)
Memcache 在並發場景下,用 cas 保證一致性redis 事務支持比較弱,只能保證事務中的每個操作連續執行
mongoDB 不支持事務
7、數據分析
mongoDB 內置了數據分析的功能(maprece),其他不支持
8、應用場景
redis:數據量較小的更性能操作和運算上
memcache:用於在動態系統中減少資料庫負載,提升性能;做緩存,提高性能(適合讀多寫
少,對於數據量比較大,可以採用 sharding)
MongoDB:主要解決海量數據的訪問效率問題。
表格比較:
memcache redis 類型 內存資料庫 內存資料庫
數據類型 在定義 value 時就要固定數據類型 不需要
有字元串,鏈表,集 合和有序集合
虛擬內存 不支持 支持
過期策略 支持 支持
分布式 magent master-slave,一主一從或一主多從
存儲數據安全 不支持 使用 save 存儲到 mp.rdb 中
災難恢復 不支持 append only file(aof)用於數據恢復
性能
1、類型——memcache 和 redis 都是將數據存放在內存,所以是內存資料庫。當然,memcache 也可用於緩存其他東西,例如圖片等等。
2、 數據類型——Memcache 在添加數據時就要指定數據的位元組長度,而 redis 不需要。
3、 虛擬內存——當物理內存用完時,可以將一些很久沒用到的 value 交換到磁碟。
4、 過期策略——memcache 在 set 時就指定,例如 set key1 0 0 8,即永不過期。Redis 可以通
過例如 expire 設定,例如 expire name 10。
5、 分布式——設定 memcache 集群,利用 magent 做一主多從;redis 可以做一主多從。都可
以一主一從。
6、 存儲數據安全——memcache 斷電就斷了,數據沒了;redis 可以定期 save 到磁碟。
7、 災難恢復——memcache 同上,redis 丟了後可以通過 aof 恢復。
Memecache 埠 11211
yum -y install memcached
yum -y install php-pecl-memcache
/etc/init.d/memcached start memcached -d -p 11211 -u memcached -m 64 -c 1024 -P /var/run/memcached/memcached.pid
-d 啟動一個守護進程
-p 埠
-m 分配的內存是 M
-c 最大運行並發數-P memcache 的 pid
//0 壓縮(是否 MEMCACHE_COMPRESSED) 30 秒失效時間
//delete 5 是 timeout <?php
$memcache = new Memcache; $memcache -> connect('127.0.0.1', 11211); $memcache -> set('name','yang',0,30);
if(!$memcache->add('name','susan',0, 30)) {
//echo 'susan is exist'; }$memcache -> replace('name', 'lion', 0, 300); echo $memcache -> get('name');
//$memcache -> delete('name', 5);
printf "stats\r\n" | nc 127.0.0.1 11211
telnet localhost 11211 stats quit 退出
Redis 的配置文件 埠 6379
/etc/redis.conf 啟動 Redis
redis-server /etc/redis.conf 插入一個值
redis-cli set test "phper.yang" 獲取鍵值
redis-cli get test 關閉 Redis
redis-cli shutdown 關閉所有
redis-cli -p 6379 shutdown <?php
$redis=new
Redis(); $redis->connect('127.0.0.1',6379); $redis->set('test',
'Hello World'); echo $redis->get('test'); Mongodb
apt-get install mongo mongo 可以進入 shell 命令
pecl install mongo Mongodb 類似 phpmyadmin 操作平台 RockMongo

⑵ php的memcached分布式hash演算法,如何解決分布不均crc32這個演算法沒辦法把key值均勻的分布出去

memcached的總結和分布式一致性hash
當前很多大型的web系統為了減輕資料庫伺服器負載,會採用memchached作為緩存系統以提高響應速度。
目錄: (http://hounwang.com/lesson.html)
memchached簡介
hash
取模
一致性hash
虛擬節點
源碼解析
參考資料
1. memchached簡介
memcached是一個開源的高性能分布式內存對象緩存系統。
其實思想還是比較簡單的,實現包括server端(memcached開源項目一般只單指server端)和client端兩部分:
server端本質是一個in-memory key-value store,通過在內存中維護一個大的hashmap用來存儲小塊的任意數據,對外通過統一的簡單介面(memcached protocol)來提供操作。
client端是一個library,負責處理memcached protocol的網路通信細節,與memcached server通信,針對各種語言的不同實現分裝了易用的API實現了與不同語言平台的集成。
web系統則通過client庫來使用memcached進行對象緩存。
2. hash
memcached的分布式主要體現在client端,對於server端,僅僅是部署多個memcached server組成集群,每個server獨自維護自己的數據(互相之間沒有任何通信),通過daemon監聽埠等待client端的請求。
而在client端,通過一致的hash演算法,將要存儲的數據分布到某個特定的server上進行存儲,後續讀取查詢使用同樣的hash演算法即可定位。
client端可以採用各種hash演算法來定位server:
取模
最簡單的hash演算法
targetServer = serverList[hash(key) % serverList.size]
直接用key的hash值(計算key的hash值的方法可以自由選擇,比如演算法CRC32、MD5,甚至本地hash系統,如java的hashcode)模上server總數來定位目標server。這種演算法不僅簡單,而且具有不錯的隨機分布特性。
但是問題也很明顯,server總數不能輕易變化。因為如果增加/減少memcached server的數量,對原先存儲的所有key的後續查詢都將定位到別的server上,導致所有的cache都不能被命中而失效。
一致性hash
為了解決這個問題,需要採用一致性hash演算法(consistent hash)
相對於取模的演算法,一致性hash演算法除了計算key的hash值外,還會計算每個server對應的hash值,然後將這些hash值映射到一個有限的值域上(比如0~2^32)。通過尋找hash值大於hash(key)的最小server作為存儲該key數據的目標server。如果找不到,則直接把具有最小hash值的server作為目標server。
為了方便理解,可以把這個有限值域理解成一個環,值順時針遞增。
如上圖所示,集群中一共有5個memcached server,已通過server的hash值分布到環中。
如果現在有一個寫入cache的請求,首先計算x=hash(key),映射到環中,然後從x順時針查找,把找到的第一個server作為目標server來存儲cache,如果超過了2^32仍然找不到,則命中第一個server。比如x的值介於A~B之間,那麼命中的server節點應該是B節點
可以看到,通過這種演算法,對於同一個key,存儲和後續的查詢都會定位到同一個memcached server上。
那麼它是怎麼解決增/刪server導致的cache不能命中的問題呢?
假設,現在增加一個server F,如下圖
此時,cache不能命中的問題仍然存在,但是只存在於B~F之間的位置(由C變成了F),其他位置(包括F~C)的cache的命中不受影響(刪除server的情況類似)。盡管仍然有cache不能命中的存在,但是相對於取模的方式已經大幅減少了不能命中的cache數量。
虛擬節點
但是,這種演算法相對於取模方式也有一個缺陷:當server數量很少時,很可能他們在環中的分布不是特別均勻,進而導致cache不能均勻分布到所有的server上。
如圖,一共有3台server – 1,2,4。命中4的幾率遠遠高於1和2。
為解決這個問題,需要使用虛擬節點的思想:為每個物理節點(server)在環上分配100~200個點,這樣環上的節點較多,就能抑制分布不均勻。
當為cache定位目標server時,如果定位到虛擬節點上,就表示cache真正的存儲位置是在該虛擬節點代表的實際物理server上。
另外,如果每個實際server的負載能力不同,可以賦予不同的權重,根據權重分配不同數量的虛擬節點。
// 採用有序map來模擬環
this.consistentBuckets = new TreeMap();
MessageDigest md5 = MD5.get();//用MD5來計算key和server的hash值
// 計算總權重
if ( this.totalWeight for ( int i = 0; i < this.weights.length; i++ )
this.totalWeight += ( this.weights[i] == null ) ? 1 : this.weights[i];
} else if ( this.weights == null ) {
this.totalWeight = this.servers.length;
}
// 為每個server分配虛擬節點
for ( int i = 0; i < servers.length; i++ ) {
// 計算當前server的權重
int thisWeight = 1;
if ( this.weights != null && this.weights[i] != null )
thisWeight = this.weights[i];
// factor用來控制每個server分配的虛擬節點數量
// 權重都相同時,factor=40
// 權重不同時,factor=40*server總數*該server權重所佔的百分比
// 總的來說,權重越大,factor越大,可以分配越多的虛擬節點
double factor = Math.floor( ((double)(40 * this.servers.length * thisWeight)) / (double)this.totalWeight );
for ( long j = 0; j < factor; j++ ) {
// 每個server有factor個hash值
// 使用server的域名或IP加上編號來計算hash值
// 比如server - "172.45.155.25:11111"就有factor個數據用來生成hash值:
// 172.45.155.25:11111-1, 172.45.155.25:11111-2, ..., 172.45.155.25:11111-factor
byte[] d = md5.digest( ( servers[i] + "-" + j ).getBytes() );
// 每個hash值生成4個虛擬節點
for ( int h = 0 ; h < 4; h++ ) {
Long k =
((long)(d[3+h*4]&0xFF) << 24)
| ((long)(d[2+h*4]&0xFF) << 16)
| ((long)(d[1+h*4]&0xFF) << 8 )
| ((long)(d[0+h*4]&0xFF));
// 在環上保存節點
consistentBuckets.put( k, servers[i] );
}
}
// 每個server一共分配4*factor個虛擬節點
}
// 採用有序map來模擬環
this.consistentBuckets = new TreeMap();
MessageDigest md5 = MD5.get();//用MD5來計算key和server的hash值
// 計算總權重
if ( this.totalWeight for ( int i = 0; i < this.weights.length; i++ )
this.totalWeight += ( this.weights[i] == null ) ? 1 : this.weights[i];
} else if ( this.weights == null ) {
this.totalWeight = this.servers.length;
}
// 為每個server分配虛擬節點
for ( int i = 0; i < servers.length; i++ ) {
// 計算當前server的權重
int thisWeight = 1;
if ( this.weights != null && this.weights[i] != null )
thisWeight = this.weights[i];
// factor用來控制每個server分配的虛擬節點數量
// 權重都相同時,factor=40
// 權重不同時,factor=40*server總數*該server權重所佔的百分比
// 總的來說,權重越大,factor越大,可以分配越多的虛擬節點
double factor = Math.floor( ((double)(40 * this.servers.length * thisWeight)) / (double)this.totalWeight );
for ( long j = 0; j < factor; j++ ) {
// 每個server有factor個hash值
// 使用server的域名或IP加上編號來計算hash值
// 比如server - "172.45.155.25:11111"就有factor個數據用來生成hash值:
// 172.45.155.25:11111-1, 172.45.155.25:11111-2, ..., 172.45.155.25:11111-factor
byte[] d = md5.digest( ( servers[i] + "-" + j ).getBytes() );
// 每個hash值生成4個虛擬節點
for ( int h = 0 ; h < 4; h++ ) {
Long k =
((long)(d[3+h*4]&0xFF) << 24)
| ((long)(d[2+h*4]&0xFF) << 16)
| ((long)(d[1+h*4]&0xFF) << 8 )
| ((long)(d[0+h*4]&0xFF));
// 在環上保存節點
consistentBuckets.put( k, servers[i] );
}
}
// 每個server一共分配4*factor個虛擬節點
}
// 用MD5來計算key的hash值
MessageDigest md5 = MD5.get();
md5.reset();
md5.update( key.getBytes() );
byte[] bKey = md5.digest();

// 取MD5值的低32位作為key的hash值
long hv = ((long)(bKey[3]&0xFF) << 24) | ((long)(bKey[2]&0xFF) << 16) | ((long)(bKey[1]&0xFF) << 8 ) | (long)(bKey[0]&0xFF);

// hv的tailMap的第一個虛擬節點對應的即是目標server
SortedMap tmap = this.consistentBuckets.tailMap( hv );
return ( tmap.isEmpty() ) ? this.consistentBuckets.firstKey() : tmap.firstKey();
更多問題到問題求助專區(http://bbs.hounwang.com/)

⑶ php怎麼開啟memcache

下載memcache安裝包和php擴展文件php_memcache.dll。解壓memcache,把memcached移動到C盤。

單擊開始菜單,運行「cmd」。
cd .. //進入c盤
cd memcached //進入memcache目錄
memcache.exe -d install //安裝memcache服務

設置php:找到php安裝目錄,打開php.ini文件。找到配置文件里允許支持擴展的區域exetension=。。,添加一行exetension=php_memcache.dll。

把php擴展文件php_memcache.dll移動到php安裝目錄下的ext目錄下。注意在php.ini中要設置好exetension目錄。php_memcache.dll此文件需要先在網上下載下來!

設置apache:
打開apache配置文件httpd.conf,找到LoadMole載入模塊區域。去掉前面的「LoadMole mem_cache_mole moles/mod_mem_cache.so」#號

重啟apache服務。linux下重啟使用命令:service httpd restart。

然後就大功告成!

⑷ php面試題 memcache和redis的區別

Redis與Memcached的區別

傳統MySQL+ Memcached架構遇到的問題

實際MySQL是適合進行海量數據存儲的,通過Memcached將熱點數據載入到cache,加速訪問,很多公司都曾經使用過這樣的架構,但隨著業務數據量的不斷增加,和訪問量的持續增長,我們遇到了很多問題:

1.MySQL需要不斷進行拆庫拆表,Memcached也需不斷跟著擴容,擴容和維護工作占據大量開發時間。

2.Memcached與MySQL資料庫數據一致性問題。

3.Memcached數據命中率低或down機,大量訪問直接穿透到DB,MySQL無法支撐。

4.跨機房cache同步問題。

眾多NoSQL百花齊放,如何選擇

最近幾年,業界不斷涌現出很多各種各樣的NoSQL產品,那麼如何才能正確地使用好這些產品,最大化地發揮其長處,是我們需要深入研究和思考的
問題,實際歸根結底最重要的是了解這些產品的定位,並且了解到每款產品的tradeoffs,在實際應用中做到揚長避短,總體上這些NoSQL主要用於解
決以下幾種問題

1.少量數據存儲,高速讀寫訪問。此類產品通過數據全部in-momery 的方式來保證高速訪問,同時提供數據落地的功能,實際這正是Redis最主要的適用場景。

2.海量數據存儲,分布式系統支持,數據一致性保證,方便的集群節點添加/刪除。

3.這方面最具代表性的是dynamo和bigtable 2篇論文所闡述的思路。前者是一個完全無中心的設計,節點之間通過gossip方式傳遞集群信息,數據保證最終一致性,後者是一個中心化的方案設計,通過類似一個分布式鎖服務來保證強一致性,數據寫入先寫內存和redo log,然後定期compat歸並到磁碟上,將隨機寫優化為順序寫,提高寫入性能。

4.Schema free,auto-sharding等。比如目前常見的一些文檔資料庫都是支持schema-free的,直接存儲json格式數據,並且支持auto-sharding等功能,比如mongodb。

面對這些不同類型的NoSQL產品,我們需要根據我們的業務場景選擇最合適的產品。

Redis適用場景,如何正確的使用

前面已經分析過,Redis最適合所有數據in-momory的場景,雖然Redis也提供持久化功能,但實際更多的是一個disk-
backed的功能,跟傳統意義上的持久化有比較大的差別,那麼可能大家就會有疑問,似乎Redis更像一個加強版的Memcached,那麼何時使用
Memcached,何時使用Redis呢?

如果簡單地比較Redis與Memcached的區別,大多數都會得到以下觀點:

1 Redis不僅僅支持簡單的k/v類型的數據,同時還提供list,set,zset,hash等數據結構的存儲。

2 Redis支持數據的備份,即master-slave模式的數據備份。

3 Redis支持數據的持久化,可以將內存中的數據保持在磁碟中,重啟的時候可以再次載入進行使用。

拋開這些,可以深入到Redis內部構造去觀察更加本質的區別,理解Redis的設計。


Redis中,並不是所有的數據都一直存儲在內存中的。這是和Memcached相比一個最大的區別。Redis只會緩存所有的
key的信息,如果Redis發現內存的使用量超過了某一個閥值,將觸發swap的操作,Redis根據「swappability =
age*log(size_in_memory)」計
算出哪些key對應的value需要swap到磁碟。然後再將這些key對應的value持久化到磁碟中,同時在內存中清除。這種特性使得Redis可以

保持超過其機器本身內存大小的數據。當然,機器本身的內存必須要能夠保持所有的key,畢竟這些數據是不會進行swap操作的。同時由於Redis將內存

中的數據swap到磁碟中的時候,提供服務的主線程和進行swap操作的子線程會共享這部分內存,所以如果更新需要swap的數據,Redis將阻塞這個
操作,直到子線程完成swap操作後才可以進行修改。

使用Redis特有內存模型前後的情況對比:
VM off: 300k keys, 4096 bytes values: 1.3G used
VM on: 300k keys, 4096 bytes values: 73M used
VM off: 1 million keys, 256 bytes values: 430.12M used
VM on: 1 million keys, 256 bytes values: 160.09M used
VM on: 1 million keys, values as large as you want, still: 160.09M used



從Redis中讀取數據的時候,如果讀取的key對應的value不在內存中,那麼Redis就需要從swap文件中載入相應數據,然後再返回給請求方。

這里就存在一個I/O線程池的問題。在默認的情況下,Redis會出現阻塞,即完成所有的swap文件載入後才會相應。這種策略在客戶端的數量較小,進行

批量操作的時候比較合適。但是如果將Redis應用在一個大型的網站應用程序中,這顯然是無法滿足大並發的情況的。所以Redis運行我們設置I/O線程
池的大小,對需要從swap文件中載入相應數據的讀取請求進行並發操作,減少阻塞的時間。

如果希望在海量數據的環境中使用好Redis,我相信理解Redis的內存設計和阻塞的情況是不可缺少的。

補充的知識點:

memcached和redis的比較

1 網路IO模型

Memcached是多線程,非阻塞IO復用的網路模型,分為監聽主線程和worker子線程,監聽線程監聽網路連接,接受請求後,將連接描述
字pipe 傳遞給worker線程,進行讀寫IO, 網路層使用libevent封裝的事件庫,多線程模型可以發揮多核作用,但是引入了cache
coherency和鎖的問題,比如,Memcached最常用的stats
命令,實際Memcached所有操作都要對這個全局變數加鎖,進行計數等工作,帶來了性能損耗。

(Memcached網路IO模型)

Redis使用單線程的IO復用模型,自己封裝了一個簡單的AeEvent事件處理框架,主要實現了epoll、kqueue和select,
對於單純只有IO操作來說,單線程可以將速度優勢發揮到最大,但是Redis也提供了一些簡單的計算功能,比如排序、聚合等,對於這些操作,單線程模型實
際會嚴重影響整體吞吐量,CPU計算過程中,整個IO調度都是被阻塞住的。

2.內存管理方面

Memcached使用預分配的內存池的方式,使用slab和大小不同的chunk來管理內存,Item根據大小選擇合適的chunk存儲,內
存池的方式可以省去申請/釋放內存的開銷,並且能減小內存碎片產生,但這種方式也會帶來一定程度上的空間浪費,並且在內存仍然有很大空間時,新的數據也可
能會被剔除,原因可以參考Timyang的文章:http://timyang.net/data/Memcached-lru-evictions/

Redis使用現場申請內存的方式來存儲數據,並且很少使用free-list等方式來優化內存分配,會在一定程度上存在內存碎片,Redis
跟據存儲命令參數,會把帶過期時間的數據單獨存放在一起,並把它們稱為臨時數據,非臨時數據是永遠不會被剔除的,即便物理內存不夠,導致swap也不會剔
除任何非臨時數據(但會嘗試剔除部分臨時數據),這點上Redis更適合作為存儲而不是cache。

3.數據一致性問題

Memcached提供了cas命令,可以保證多個並發訪問操作同一份數據的一致性問題。 Redis沒有提供cas 命令,並不能保證這點,不過Redis提供了事務的功能,可以保證一串 命令的原子性,中間不會被任何操作打斷。

4.存儲方式及其它方面

Memcached基本只支持簡單的key-value存儲,不支持枚舉,不支持持久化和復制等功能

Redis除key/value之外,還支持list,set,sorted set,hash等眾多數據結構,提供了KEYS

進行枚舉操作,但不能在線上使用,如果需要枚舉線上數據,Redis提供了工具可以直接掃描其mp文件,枚舉出所有數據,Redis還同時提供了持久化和復制等功能。

5.關於不同語言的客戶端支持

在不同語言的客戶端方面,Memcached和Redis都有豐富的第三方客戶端可供選擇,不過因為Memcached發展的時間更久一些,目
前看在客戶端支持方面,Memcached的很多客戶端更加成熟穩定,而Redis由於其協議本身就比Memcached復雜,加上作者不斷增加新的功能
等,對應第三方客戶端跟進速度可能會趕不上,有時可能需要自己在第三方客戶端基礎上做些修改才能更好的使用。

根據以上比較不難看出,當我們不希望數據被踢出,或者需要除key/value之外的更多數據類型時,或者需要落地功能時,使用Redis比使用Memcached更合適。

關於Redis的一些周邊功能

Redis除了作為存儲之外還提供了一些其它方面的功能,比如聚合計算、pubsub、scripting等,對於此類功能需要了解其實現原
理,清楚地了解到它的局限性後,才能正確的使用,比如pubsub功能,這個實際是沒有任何持久化支持的,消費方連接閃斷或重連之間過來的消息是會全部丟
失的,又比如聚合計算和scripting等功能受Redis單線程模型所限,是不可能達到很高的吞吐量的,需要謹慎使用。

總的來說Redis作者是一位非常勤奮的開發者,可以經常看到作者在嘗試著各種不同的新鮮想法和思路,針對這些方面的功能就要求我們需要深入了解後再使用。

總結:

1.Redis使用最佳方式是全部數據in-memory。

2.Redis更多場景是作為Memcached的替代者來使用。

3.當需要除key/value之外的更多數據類型支持時,使用Redis更合適。

4.當存儲的數據不能被剔除時,使用Redis更合適。

談談Memcached與Redis(一)

1. Memcached簡介

Memcached是以LiveJurnal旗下Danga Interactive公司的Bard
Fitzpatric為首開發的高性能分布式內存緩存伺服器。其本質上就是一個內存key-value資料庫,但是不支持數據的持久化,伺服器關閉之後數
據全部丟失。Memcached使用C語言開發,在大多數像Linux、BSD和Solaris等POSIX系統上,只要安裝了libevent即可使
用。在Windows下,它也有一個可用的非官方版本(http://code.jellycan.com/memcached/)。Memcached
的客戶端軟體實現非常多,包括C/C++, PHP, Java, Python, Ruby, Perl, Erlang,
Lua等。當前Memcached使用廣泛,除了LiveJournal以外還有Wikipedia、Flickr、Twitter、Youtube和
WordPress等。

在Window系統下,Memcached的安裝非常方便,只需從以上給出的地址下載可執行軟體然後運行memcached.exe –d
install即可完成安裝。在Linux等系統下,我們首先需要安裝libevent,然後從獲取源碼,make && make
install即可。默認情況下,Memcached的伺服器啟動程序會安裝到/usr/local/bin目錄下。在啟動Memcached時,我們可
以為其配置不同的啟動參數。

1.1 Memcache配置

Memcached伺服器在啟動時需要對關鍵的參數進行配置,下面我們就看一看Memcached在啟動時需要設定哪些關鍵參數以及這些參數的作用。

1)-p <num> Memcached的TCP監聽埠,預設配置為11211;

2)-U <num> Memcached的UDP監聽埠,預設配置為11211,為0時表示關閉UDP監聽;

3)-s <file> Memcached監聽的UNIX套接字路徑;

4)-a <mask> 訪問UNIX套接字的八進制掩碼,預設配置為0700;

5)-l <addr> 監聽的伺服器IP地址,默認為所有網卡;

6)-d 為Memcached伺服器啟動守護進程;

7)-r 最大core文件大小;

8)-u <username> 運行Memcached的用戶,如果當前為root的話需要使用此參數指定用戶;

9)-m <num> 分配給Memcached使用的內存數量,單位是MB;

10)-M 指示Memcached在內存用光的時候返回錯誤而不是使用LRU演算法移除數據記錄;

11)-c <num> 最大並發連數,預設配置為1024;

12)-v –vv –vvv 設定伺服器端列印的消息的詳細程度,其中-v僅列印錯誤和警告信息,-vv在-v的基礎上還會列印客戶端的命令和相應,-vvv在-vv的基礎上還會列印內存狀態轉換信息;

13)-f <factor> 用於設置chunk大小的遞增因子;

14)-n <bytes> 最小的chunk大小,預設配置為48個位元組;

15)-t <num> Memcached伺服器使用的線程數,預設配置為4個;

16)-L 嘗試使用大內存頁;

17)-R 每個事件的最大請求數,預設配置為20個;

18)-C 禁用CAS,CAS模式會帶來8個位元組的冗餘;

2. Redis簡介

Redis是一個開源的key-value存儲系統。與Memcached類似,Redis將大部分數據存儲在內存中,支持的數據類型包括:字
符串、哈希表、鏈表、集合、有序集合以及基於這些數據類型的相關操作。Redis使用C語言開發,在大多數像Linux、BSD和Solaris等
POSIX系統上無需任何外部依賴就可以使用。Redis支持的客戶端語言也非常豐富,常用的計算機語言如C、C#、C++、Object-C、PHP、
Python、Java、Perl、Lua、Erlang等均有可用的客戶端來訪問Redis伺服器。當前Redis的應用已經非常廣泛,國內像新浪、淘
寶,國外像Flickr、Github等均在使用Redis的緩存服務。

Redis的安裝非常方便,只需從http://redis.io/download獲取源碼,然後make && make

install即可。默認情況下,Redis的伺服器啟動程序和客戶端程序會安裝到/usr/local/bin目錄下。在啟動Redis伺服器時,我們
需要為其指定一個配置文件,預設情況下配置文件在Redis的源碼目錄下,文件名為redis.conf。

⑸ php面試題 memcache和redis的區別

Redis與Memcached的區別傳統MySQL+ Memcached架構遇到的問題實際MySQL是適合進行海量數據存儲的,通過Memcached將熱點數據載入到cache,加速訪問,很多公司都曾經使用過這樣的架構,但隨著業務數據量的不斷增加,和訪問量的持續增長,我們遇到了很多問題:1.MySQL需要不斷進行拆庫拆表,Memcached也需不斷跟著擴容,擴容和維護工作占據大量開發時間。2.Memcached與MySQL資料庫數據一致性問題。3.Memcached數據命中率低或down機,大量訪問直接穿透到DB,MySQL無法支撐。4.跨機房cache同步問題。眾多NoSQL百花齊放,如何選擇最近幾年,業界不斷涌現出很多各種各樣的NoSQL產品,那麼如何才能正確地使用好這些產品,最大化地發揮其長處,是我們需要深入研究和思考的問題,實際歸根結底最重要的是了解這些產品的定位,並且了解到每款產品的tradeoffs,在實際應用中做到揚長避短,總體上這些NoSQL主要用於解決以下幾種問題1.少量數據存儲,高速讀寫訪問。此類產品通過數據全部in-momery 的方式來保證高速訪問,同時提供數據落地的功能,實際這正是Redis最主要的適用場景。2.海量數據存儲,分布式系統支持,數據一致性保證,方便的集群節點添加/刪除。3.這方面最具代表性的是dynamo和bigtable 2篇論文所闡述的思路。前者是一個完全無中心的設計,節點之間通過gossip方式傳遞集群信息,數據保證最終一致性,後者是一個中心化的方案設計,通過類似一個分布式鎖服務來保證強一致性,數據寫入先寫內存和redo log,然後定期compat歸並到磁碟上,將隨機寫優化為順序寫,提高寫入性能。4.Schema free,auto-sharding等。比如目前常見的一些文檔資料庫都是支持schema-free的,直接存儲json格式數據,並且支持auto-sharding等功能,比如mongodb。面對這些不同類型的NoSQL產品,我們需要根據我們的業務場景選擇最合適的產品。Redis適用場景,如何正確的使用前面已經分析過,Redis最適合所有數據in-momory的場景,雖然Redis也提供持久化功能,但實際更多的是一個disk-backed的功能,跟傳統意義上的持久化有比較大的差別,那麼可能大家就會有疑問,似乎Redis更像一個加強版的Memcached,那麼何時使用Memcached,何時使用Redis呢?如果簡單地比較Redis與Memcached的區別,大多數都會得到以下觀點:1 Redis不僅僅支持簡單的k/v類型的數據,同時還提供list,set,zset,hash等數據結構的存儲。2 Redis支持數據的備份,即master-slave模式的數據備份。3 Redis支持數據的持久化,可以將內存中的數據保持在磁碟中,重啟的時候可以再次載入進行使用。拋開這些,可以深入到Redis內部構造去觀察更加本質的區別,理解Redis的設計。在Redis中,並不是所有的數據都一直存儲在內存中的。這是和Memcached相比一個最大的區別。Redis只會緩存所有的 key的信息,如果Redis發現內存的使用量超過了某一個閥值,將觸發swap的操作,Redis根據「swappability = age*log(size_in_memory)」計 算出哪些key對應的value需要swap到磁碟。然後再將這些key對應的value持久化到磁碟中,同時在內存中清除。這種特性使得Redis可以 保持超過其機器本身內存大小的數據。當然,機器本身的內存必須要能夠保持所有的key,畢竟這些數據是不會進行swap操作的。同時由於Redis將內存 中的數據swap到磁碟中的時候,提供服務的主線程和進行swap操作的子線程會共享這部分內存,所以如果更新需要swap的數據,Redis將阻塞這個 操作,直到子線程完成swap操作後才可以進行修改。使用Redis特有內存模型前後的情況對比:VM off: 300k keys, 4096 bytes values: 1.3G usedVM on: 300k keys, 4096 bytes values: 73M usedVM off: 1 million keys, 256 bytes values: 430.12M usedVM on: 1 million keys, 256 bytes values: 160.09M usedVM on: 1 million keys, values as large as you want, still: 160.09M used當 從Redis中讀取數據的時候,如果讀取的key對應的value不在內存中,那麼Redis就需要從swap文件中載入相應數據,然後再返回給請求方。 這里就存在一個I/O線程池的問題。在默認的情況下,Redis會出現阻塞,即完成所有的swap文件載入後才會相應。這種策略在客戶端的數量較小,進行 批量操作的時候比較合適。但是如果將Redis應用在一個大型的網站應用程序中,這顯然是無法滿足大並發的情況的。所以Redis運行我們設置I/O線程 池的大小,對需要從swap文件中載入相應數據的讀取請求進行並發操作,減少阻塞的時間。如果希望在海量數據的環境中使用好Redis,我相信理解Redis的內存設計和阻塞的情況是不可缺少的。補充的知識點:memcached和redis的比較1 網路IO模型Memcached是多線程,非阻塞IO復用的網路模型,分為監聽主線程和worker子線程,監聽線程監聽網路連接,接受請求後,將連接描述字pipe 傳遞給worker線程,進行讀寫IO, 網路層使用libevent封裝的事件庫,多線程模型可以發揮多核作用,但是引入了cache coherency和鎖的問題,比如,Memcached最常用的stats 命令,實際Memcached所有操作都要對這個全局變數加鎖,進行計數等工作,帶來了性能損耗。(Memcached網路IO模型)Redis使用單線程的IO復用模型,自己封裝了一個簡單的AeEvent事件處理框架,主要實現了epoll、kqueue和select,對於單純只有IO操作來說,單線程可以將速度優勢發揮到最大,但是Redis也提供了一些簡單的計算功能,比如排序、聚合等,對於這些操作,單線程模型實際會嚴重影響整體吞吐量,CPU計算過程中,整個IO調度都是被阻塞住的。2.內存管理方面Memcached使用預分配的內存池的方式,使用slab和大小不同的chunk來管理內存,Item根據大小選擇合適的chunk存儲,內存池的方式可以省去申請/釋放內存的開銷,並且能減小內存碎片產生,但這種方式也會帶來一定程度上的空間浪費,並且在內存仍然有很大空間時,新的數據也可能會被剔除,原因可以參考Timyang的文章:/memcached/)。Memcached的客戶端軟體實現非常多,包括C/C++, PHP, Java, Python, Ruby, Perl, Erlang, Lua等。當前Memcached使用廣泛,除了LiveJournal以外還有Wikipedia、Flickr、Twitter、Youtube和WordPress等。在Window系統下,Memcached的安裝非常方便,只需從以上給出的地址下載可執行軟體然後運行memcached.exe –d install即可完成安裝。在Linux等系統下,我們首先需要安裝libevent,然後從獲取源碼,make && make install即可。默認情況下,Memcached的伺服器啟動程序會安裝到/usr/local/bin目錄下。在啟動Memcached時,我們可以為其配置不同的啟動參數。1.1 Memcache配置Memcached伺服器在啟動時需要對關鍵的參數進行配置,下面我們就看一看Memcached在啟動時需要設定哪些關鍵參數以及這些參數的作用。1)-p Memcached的TCP監聽埠,預設配置為11211;2)-U Memcached的UDP監聽埠,預設配置為11211,為0時表示關閉UDP監聽;3)-s Memcached監聽的UNIX套接字路徑;4)-a 訪問UNIX套接字的八進制掩碼,預設配置為0700;5)-l 監聽的伺服器IP地址,默認為所有網卡;6)-d 為Memcached伺服器啟動守護進程;7)-r 最大core文件大小;8)-u 運行Memcached的用戶,如果當前為root的話需要使用此參數指定用戶;9)-m 分配給Memcached使用的內存數量,單位是MB;10)-M 指示Memcached在內存用光的時候返回錯誤而不是使用LRU演算法移除數據記錄;11)-c 最大並發連數,預設配置為1024;12)-v –vv –vvv 設定伺服器端列印的消息的詳細程度,其中-v僅列印錯誤和警告信息,-vv在-v的基礎上還會列印客戶端的命令和相應,-vvv在-vv的基礎上還會列印內存狀態轉換信息;13)-f 用於設置chunk大小的遞增因子;14)-n 最小的chunk大小,預設配置為48個位元組;15)-t Memcached伺服器使用的線程數,預設配置為4個;16)-L 嘗試使用大內存頁;17)-R 每個事件的最大請求數,預設配置為20個;18)-C 禁用CAS,CAS模式會帶來8個位元組的冗餘;2. Redis簡介Redis是一個開源的key-value存儲系統。與Memcached類似,Redis將大部分數據存儲在內存中,支持的數據類型包括:字元串、哈希表、鏈表、集合、有序集合以及基於這些數據類型的相關操作。Redis使用C語言開發,在大多數像Linux、BSD和Solaris等POSIX系統上無需任何外部依賴就可以使用。Redis支持的客戶端語言也非常豐富,常用的計算機語言如C、C#、C++、Object-C、PHP、Python、Java、Perl、Lua、Erlang等均有可用的客戶端來訪問Redis伺服器。當前Redis的應用已經非常廣泛,國內像新浪、淘寶,國外像Flickr、Github等均在使用Redis的緩存服務。Redis的安裝非常方便,只需從bin目錄下。在啟動Redis伺服器時,我們需要為其指定一個配置文件,預設情況下配置文件在Redis的源碼目錄下,文件名為redis.conf。php面試題 memcache和redis的區別

⑹ php 怎麼配置memcached

分為linux和windows系統下:

windows下:

1、首先下載memcache的windows版本,將下載下來的文件解壓出來後會看見一個名為memcached.exe的可執行程序

2、將該文件放到指定目錄,如D盤

3、安裝:

開始->運行->cmd打開命令窗口

進入D盤:cd d:

安裝memcache服務:

在命令窗口輸入:

memacahed.exe -d install

等待命令執行完成後,就可以在服務列表中看到memcached服務

4、啟動memcache服務:

memcached.exe -d start

5、可以通過以下命令來查看memcache服務是否啟動成功:

wmic process get description, executablepath | findstr memcached.exe

可以將memcached.exe的路徑放入到系統環境變數中,方便使用。

查看memcache運行狀態:

在命令窗口輸入:

telnet 127.0.0.1 11211

鏈接到memcache上,輸入stats就可以查看到當前memcache的狀態了;

linux下:

1.下載memcache源碼

http://www.memcached.org/

2.解壓並進入目錄

./configure --prefix=/usr/local/memcache
make
make test
sudo make install

3.啟動memcache

memcache -d start -u root

驗證memcache是否正確安裝並啟動

netstat -tap | grep memcached

4.安裝memcache擴展庫

下載memcache擴展

進入到memcache擴展文件

./configure --enable-memcache --with-php-config=/usr/local/php/bin/php-config
make
make install

修改php.ini文件 增加

extension=memcache.so

安裝memcached擴展庫

下載memcached擴展

memcached擴展需要libMemcached庫的支持,所有在安裝memcached擴展庫之前要確認系統已經安裝了libmemcached

安裝libmemcached

./configure --prefix=/usr/local/memcache
make
make install

libmemcached安裝完成後,就可以安裝memcached擴展庫

./configure --with-libmemcached-dir=/usr/local/memcached/ --with-php-config=/usr/local/php/bin/php-config
make
make install

同樣修改php.ini配置文件,增加

extension=memcached.so

⑺ php操作memcacheq

$arr=array(1,2,3,4,5);

$q->set("queque_1",$arr);
這樣,你取的時候就會是一個數組了

⑻ php memacne緩存可靠嗎

你說的memcache吧 是的話下面實在網上隨便找的,總結的到位了 反正就那幾個
優點
一.部分容災
假設只用一台memcache,如果這台memcache伺服器掛掉了,那麼請求將不斷的沖擊資料庫,這樣有可能搞死資料庫,從而引發」雪崩「。如果使用多台memcache伺服器,由於memcache使用一致性哈希演算法,萬一其中一台掛掉了,部分請求還是可以在memcache中命中,為修復系統贏得一些時間。
二.容量問題
一台memcache伺服器的容量畢竟有限,可以使用多台memcache伺服器,增加緩存容量。
三.均衡請求
使用多台memcache伺服器,可以均衡請求,避免所有請求都沖進一台memcache伺服器,導致伺服器掛掉。
四.利用memcache分布式特性
使用一台memcache伺服器,並沒有利用memcache的數據分布式特性。
缺點
1.不能持久化存儲
2.存儲數據有限制:1M 【大於1M,認為就行分割】(內存碎片)
3.mm存儲數據只能key-value
4.集群數據沒有復制和同步機制 【崩潰不會影響程序,會從資料庫中取數據】
5.內存回收不能及時 LRU(演算法):未使用內存》過期內存》最近最少使用內存 這是惰性刪除

⑼ thinkphp裡面怎樣配置memcache

THINKPHP 自帶memcache 擴展。


這樣解決就可以了,簡單粗暴,個人建議還是去後盾網去經常看看教學視頻學習學習吧

閱讀全文

與phpmemcache集群相關的資料

熱點內容
一捏就變形的解壓玩具怎麼折 瀏覽:196
易融貸app借錢怎麼 瀏覽:939
單片機側重點 瀏覽:867
江蘇惠普伺服器虛擬化設計雲主機 瀏覽:647
在歐拉app好貓充電樁怎麼申請 瀏覽:449
反編譯代碼教程 瀏覽:798
linuxio阻塞 瀏覽:973
8腳單片機pic 瀏覽:821
如何看彩色塗鴉遮住的字安卓 瀏覽:688
擺渡機器人編程 瀏覽:654
軟程序員著裝 瀏覽:139
寶雞雲存儲伺服器 瀏覽:668
推薦超解壓游戲無廣告 瀏覽:634
大華伺服器怎麼添加門禁 瀏覽:784
戰地伺服器60hz什麼意思 瀏覽:760
成高級程序員學什麼 瀏覽:501
阿里雲接入備案後退掉伺服器 瀏覽:928
ne40e命令 瀏覽:85
安卓輸入法使用什麼編碼 瀏覽:184
手機如何開淘寶店步驟安卓手機 瀏覽:593