① python數據挖掘從哪些
一. 基於Python的數據挖掘 基本架構
1. matplotlib, 圖形化
2. pandas,數據挖掘的關鍵, 提供各種挖掘分析的演算法
3. numpy, 提供基本的統計
scipy, 提供各種數學公式
4. python common lib,python基本框架
二. 環境搭建
1. 安裝python
2. 安裝pip
pandas依賴的pip版本,最低是8.0.0。如果pip是8以下的版本,如7.2.1,需要升級pip.
命令是「python -m pip install -U pip」,這是windows版本。
Linux是」pip install -U pip「
通過命令「pip --version」, 可以查看pip版本號
3. 安裝pandas
命令「pip install pandas", 這是windows版本。
Linux平台可用
sudo apt-get install python-pandas
4. 安裝matplotlib
pip install matplotlib
三. 數據類型
pypython common type
string list tuple dict set
6鍾學列
list, tuple, string, unicode string, buffer object, xrange
pandas type
ndarray, series dateFrame
ndarray, 數組類型,新增原因:
list, tuple是基於指針+對象設計的。即list,tuple存儲的是void*指針,指針指向具體對象的數據。
因為是void*指針,所以二者可以存儲各種數據類型,即數據類型可以不統一。
雖然存儲豐富,但如果數據量過大時,即處理大數據時,有弊端。
1. 存儲空間大,浪費內存。因為存兩部分,指針+數據
2. 讀取慢,通過index,找到指針;基於指針,找到數據
所以在大數據處理時,新增ndarray,數字類型,類似C++ 數組。存儲相同,讀取、修改快捷。
別名:array, 有利於節省內存、提高CPU的計算時間,有豐富的處理函數
series,變長字典,
類似一維數組的對象;有數據和索引組成
新增原因:
dict是無序的,它的key和value存在映射關系。但key和value之間是不獨立的,存儲在一起。
如果需要對一項進行操作,會影響到另外一項。所以有了series, series的key和value是獨立的,獨立存儲。
series的key是定長有序的。通過series.key獲取整個索引, 通過series.values獲取所有values.
series的key,可以通過series.index.name,設置唯一的名稱。
series整體也可以設置唯一名稱,通過series.name
DataFrame:
1. 一個表格型的數據結構
2. 含有一組有序的列(類似於index)
3. 可以認為是,共享一個index的Series集合
data1={'name':['java', 'c', 'python'], 'year': [2,2,3]}
frame = pd.DataFrame(data1)
------------------------------------------------
四. 基本的數據分析流程:
1. 數據的獲取
2. 數據准備--規格化,建立各種索引index
3. 數據的顯示、描述,用於調試
如df.index, df.values, df.head(n), df.tail(n) df.describe
4. 數據的選擇
index獲取, 切片獲取, 行、列獲取, 矩形區域獲取
index獲取,df.row1 或者 df['row1']
行列,df.loc[行list, 列list], 如df.loc[0:1,['co1','col2'] ]
通過二位索引,取二維左上角,df.iloc[0,0],也可以列表 df.iloc[0:2,0:2],取前2行。
5. 簡單的統計與處理
統計平均值、最大值等
6. Grouping 分組
df.groupby(df.row1)
7. Merge合並
append追加,
contact連接, 包含append功能,也可以兩個不同的二維數據結構合並
join連接, SQL連接,基於相同欄位連接,如 sql的where, a.row1 = b.row1
------------------------------------------------
五. 高級的數據處理與可視化:
1. 聚類分析
聚類是數據挖掘描述性任務和預測性任務的一個重要組成部分,它以相似性為基礎,
把相似的對象通過靜態分類,分成不同的組別和子集。
在python中,有很多第三方庫提供了聚類演算法。
聚類演算法有很多, 其中K-均值演算法,因為其簡單、快捷的特點,被廣泛使用。
基本原理是,
1. 查找某數據集的中心,
2. 使用均方差,計算距離。使得每一個數據點都收斂在一個組內;各個組是完全隔離的
案例:
>>> from pylab import *
>>> from scipy.cluster.vq import *
>>>
>>> list1=[88,64,96,85]
>>> list2=[92,99,95,94]
>>> list3=[91,87,99,95]
>>> list4 = [78,99,97,81]
>>> list5=[88,78,98,84]
>>> list6=[100,95,100,92]
>>> tempdate = (list1, list2, list3, list4, list5, list6)
>>>
>>> tempdate
([88, 64, 96, 85], [92, 99, 95, 94], [91, 87, 99, 95], [78, 99, 97, 81], [88, 78
, 98, 84], [100, 95, 100, 92])
>>> date = vstack(tempdate)
>>>
>>> date
array([[ 88, 64, 96, 85],
[ 92, 99, 95, 94],
[ 91, 87, 99, 95],
[ 78, 99, 97, 81],
[ 88, 78, 98, 84],
[100, 95, 100, 92]])
>>> centroids,abc=kmeans(date,2) #查找聚類中心,第二個參數是設置分N類,如5類,則為5
>>> centroids # 基於每列查找的中心點,可能是平均值
array([[88, 71, 97, 84],
[90, 95, 97, 90]])
>>>
>>> result,cde=vq(date,centroids) #對數據集,基於聚類中心進行分類
>>> result
array([0, 1, 1, 1, 0, 1])
2. 繪圖基礎
python描繪庫,包含兩部分,
繪圖api, matplotlib提供各種描繪介面。
集成庫,pylab(包含numpy和matplotlib中的常用方法),描繪更快捷、方便。
import numpy as np
import matplotlib.pyplot as plt
t = np.arange(0,10)
plt.plot(t, t+2)
plt.plot(t,t, 'o', t,t+2, t,t**2, 'o') #(x,y)一組,默認是折線;『o'是散點,
plt.bar(t,t**2) # 柱狀圖
plt.show()
--------------------
import pylab as pl
t = np.arange(0,10)
plt.plot(t, t+2)
plt.show()
3. matplotlib圖像屬性控制
色彩、樣式
名稱: 圖、橫、縱軸,
plt.title('philip\'s python plot')
plt.xlabel('date')
plt.ylabel('value')
其他: pl.figure(figsize=(8,6),dpi=100)
pl.plot(x,y, color='red', linewidth=3, lable='line1')
pl.legend(loc='upper left')
子圖
pl.subplot(211) # 整體圖片,可以分為二維部分;
#第一個是圖的行,第二個是列;第三個是index, 從左上開始0遍歷 當前行,再下一行。
#如果是2位數,如11,需要『,』
axes(left, bottom, width, height) # 參數取值范圍是(0,1), left,是到左邊的距離,bottom是到下面的距離
4. pandas作圖
Series、DataFrame支持直接描繪,封裝了調用matplotlib的介面,如
series.close.plot()
df.close.plot() #具體參數類似matplotlib普通介面
屬性控制
類似matplotlib普通介面,修改各種圖片的類型,柱形圖、折線等
--------common-----------------
list, tuple, dict
--------numpy-----------------
ndarray, Series, DataFrame
② python代碼如何應用系統聚類和K-means聚類法進行聚類分析 然後選擇變數,建立適當的模型
-Means聚類演算法
k-means演算法以k為參數,把n個對象分成k個簇,使簇內具有較高的相似度,而簇間的相似度較低。
隨機選擇k個點作為初始的聚類中心。
對於剩下的點,根據其與聚類中心的距離,將其歸入最近的簇。
對每個簇,計算所有點的均值作為新的聚類中心。
重復2,3直到聚類中心不再發生改變
Figure 1
K-means的應用
數據介紹:
現有1999年全國31個省份城鎮居民家庭平均每人全年消費性支出的八大主要變數數據,這八大變數分別是:食品、衣著、家庭設備用品及服務、醫療保健、交通和通訊、娛樂教育文化服務、居住以及雜項商品和服務。利用已有數據,對31個省份進行聚類。
實驗目的:
通過聚類,了解1999年各個省份的消費水平在國內的情況。
技術路線:
sklearn.cluster.Kmeans
數據實例:
③ 如何用python對文本進行聚類
實現原理:
首先從Tourist_spots_5A_BD.txt中讀取景點信息,然後通過調用無界面瀏覽器PhantomJS(Firefox可替代)訪問網路鏈接"http://ke..com/",通過Selenium獲取輸入對話框ID,輸入關鍵詞如"故宮",再訪問該網路頁面。最後通過分析DOM樹結構獲取摘要的ID並獲取其值。核心代碼如下:
driver.find_elements_by_xpath("//div[@class='lemma-summary']/div")
PS:Selenium更多應用於自動化測試,推薦Python爬蟲使用scrapy等開源工具。
# coding=utf-8
"""
Created on 2015-09-04 @author: Eastmount
"""
import time
import re
import os
import sys
import codecs
import shutil
from selenium import webdriver
from selenium.webdriver.common.keys import Keys
import selenium.webdriver.support.ui as ui
from selenium.webdriver.common.action_chains import ActionChains
#Open PhantomJS
driver = webdriver.PhantomJS(executable_path="G:\phantomjs-1.9.1-windows\phantomjs.exe")
#driver = webdriver.Firefox()
wait = ui.WebDriverWait(driver,10)
#Get the Content of 5A tourist spots
def getInfobox(entityName, fileName):
try:
#create paths and txt files
print u'文件名稱: ', fileName
info = codecs.open(fileName, 'w', 'utf-8')
#locate input notice: 1.visit url by unicode 2.write files
#Error: Message: Element not found in the cache -
# Perhaps the page has changed since it was looked up
#解決方法: 使用Selenium和Phantomjs
print u'實體名稱: ', entityName.rstrip('\n')
driver.get("http://ke..com/")
elem_inp = driver.find_element_by_xpath("//form[@id='searchForm']/input")
elem_inp.send_keys(entityName)
elem_inp.send_keys(Keys.RETURN)
info.write(entityName.rstrip('\n')+'\r\n') #codecs不支持'\n'換行
time.sleep(2)
#load content 摘要
elem_value = driver.find_elements_by_xpath("//div[@class='lemma-summary']/div")
for value in elem_value:
print value.text
info.writelines(value.text + '\r\n')
time.sleep(2)
except Exception,e: #'utf8' codec can't decode byte
print "Error: ",e
finally:
print '\n'
info.close()
#Main function
def main():
#By function get information
path = "BaiSpider\\"
if os.path.isdir(path):
shutil.rmtree(path, True)
os.makedirs(path)
source = open("Tourist_spots_5A_BD.txt", 'r')
num = 1
for entityName in source:
entityName = unicode(entityName, "utf-8")
if u'故宮' in entityName: #else add a '?'
entityName = u'北京故宮'
name = "%04d" % num
fileName = path + str(name) + ".txt"
getInfobox(entityName, fileName)
num = num + 1
print 'End Read Files!'
source.close()
driver.close()
if __name__ == '__main__':
main()
④ 聚類演算法之K均值演算法(k-means)的Python實現
K-means演算法是硬聚類演算法,是典型的基於原型的目標函數聚類方法的代表,它是數據點到原型的某種距離作為優化的目標函數,利用函數求極值的方法得到迭代運算的調整規則。K-means演算法以歐式距離作為相似度測度,它是求對應某一初始聚類中心向量V最優分類,使得評價指標J最小。演算法採用誤差平方和准則函數作為聚類准則函數。
通常,人們根據樣本間的某種距離或者相似性來定義聚類,即把相似的(或距離近的)樣本聚為同一類,而把不相似的(或距離遠的)樣本歸在其他類。
所謂聚類問題,就是給定一個元素集合D,其中每個元素具有n個可觀察屬性,使用某種演算法將D劃分成k個子集,要求每個子集內部的元素之間相異度盡可能低,而不同子集的元素相異度盡可能高。其中每個子集叫做一個簇。
k-means演算法是一種很常見的聚類演算法,它的基本思想是:通過迭代尋找k個聚類的一種劃分方案,使得用這k個聚類的均值來代表相應各類樣本時所得的總體誤差最小。
看起來還不錯
分析一個公司的客戶分類,這樣可以對不同的客戶使用不同的商業策略,或是電子商務中分析商品相似度,歸類商品,從而可以使用一些不同的銷售策略,等等。
⑤ 用python2.7做kmeans聚類演算法怎麼導入數據
指定文件名
問題描述:一堆二維數據,用kmeans演算法對其進行聚類,下面例子以分k=3為例。
原數據:
1.5,3.1
2.2,2.9
3,4
2,1
15,25
43,13
32,42
0,0
8,9
12,5
9,12
11,8
22,33
24,25
實現代碼:
[python] view plain
#coding:utf-8
from numpy import *
import string
import math
def loadDataSet(filename):
dataMat = []
fr = open(filename)
for line in fr.readlines():
element = line.strip('\n').split(',')
number = []
for i in range(len(element)):
number.append(string.atof(element[i]))
dataMat.append(number)
return dataMat
def distEclud(vecA, vecB):
count = len(vecA)
s = 0.0
for i in range(0, count):
s = s + power(vecA[i]-vecB[i], 2)
return sqrt(s)
def clusterOfElement(means, element):
min_dist = distEclud(means[0], element)
lable = 0
for index in range(1, len(means)):
dist = distEclud(means[index], element)
if(dist < min_dist):
min_dist = dist
lable = index
return lable
def getMean(cluster): #cluster=[[[1,2],[1,2],[1,2]....],[[2,1],[2,1],[2,1],[2,1]...]]
num = len(cluster) #1個簇的num,如上為3個
res = []
temp = 0
dim = len(cluster[0])
for i in range(0, dim):
for j in range(0, num):
temp = temp + cluster[j][i]
temp = temp / num
res.append(temp)
return res
def kMeans():
k = 3
data = loadDataSet('data.txt')
print "data is ", data
inite_mean = [[1.1, 1], [1, 1],[1,2]]
count = 0
while(count < 1000):
count = count + 1
clusters = []
means = []
for i in range(k):
clusters.append([])
means.append([])
for index in range(len(data)):
lable = clusterOfElement(inite_mean, data[index])
clusters[lable].append(data[index])
for cluster_index in range(k):
mea = getMean(clusters[cluster_index])
for mean_dim in range(len(mea)):
means[cluster_index].append(mea[mean_dim])
for mm in range(len(means)):
for mmm in range(len(means[mm])):
inite_mean[mm][mmm] = means[mm][mmm]
print "result cluster is ", clusters
print "result means is ", inite_mean
kMeans()
⑥ python數據做聚類分析,結果的圖怎麼在二維平面表示出來
python中用pdf_multivariate求解多維密度分布,然後用plot_surface畫三維曲面圖;
另外用matlab也!
⑦ 譜聚類(Spectral clustering)(python實現)
譜聚類概念 :
譜聚類是一種基於圖論的聚類方法,通過對樣本數據的拉普拉斯矩陣的特徵向量進行聚類,從而達到對樣本數據聚類的母的。譜聚類可以理解為將高維空間的數據映射到低維,然後在低維空間用其它聚類演算法(如KMeans)進行聚類。
演算法步驟
1 計算相似度矩陣 W
2 計算度矩陣 D
3 計算拉普拉斯矩陣L=D-W
4 計算L的特徵值,將特徵值從小到大排序,取前k個特徵值.將這個特徵值向量轉換為矩陣
5 通過其他聚類演算法對其進行聚類,如k-means
詳細公式和概念請到 大佬博客
相比較PCA降維中取前k大的特徵值對應的特徵向量,這里取得是前k小的特徵值對應的特徵向量。但是上述的譜聚類演算法並不是最優的,接下來我們一步一步的分解上面的步驟,總結一下在此基礎上進行優化的譜聚類的版本。
python實現
例子一:使用譜聚類從雜訊背景中分割目標
效果圖
例子2:分割圖像中硬幣的區域
效果圖
注意
1)當聚類的類別個數較小的時候,譜聚類的效果會很好,但是當聚類的類別個數較大的時候,則不建議使用譜聚類;
(2)譜聚類演算法使用了降維的技術,所以更加適用於高維數據的聚類;
(3)譜聚類只需要數據之間的相似度矩陣,因此對於處理稀疏數據的聚類很有效。這點傳統聚類演算法(比如K-Means)很難做到
(4)譜聚類演算法建立在譜圖理論基礎上,與傳統的聚類演算法相比,它具有能在任意形狀的樣本空間上聚類且收斂於全局最優解
(5)譜聚類對相似度圖的改變和聚類參數的選擇非常的敏感;
(6)譜聚類適用於均衡分類問題,即各簇之間點的個數相差不大,對於簇之間點個數相差懸殊的聚類問題,譜聚類則不適用;
參考
譜聚類演算法介紹
sklearn官網
⑧ python數據分析項目:用戶消費行為分析
為了創造更多利潤、實現數據驅動運營,某CD網站擬對18個月以來的近7萬條消費數據進行分析。具體的研究思路如下:
新增['month']列,便於後續按月分析。
重新查看,此時的時間列已轉換為正常格式。
由上圖可知,
接下來我們用之前清洗好的欄位進行數據分析。
前三個月消費訂單數在10000筆左右,後續月份的平均則在2500筆。
前三個月產品購買數在20000以上,後續月份的產品購買量在6000~8000左右 。
前三個月每月的消費人數在8000-10000之間,後續月份平均消費人數在2000人不到
上述消費趨勢的分析可以通過數據透視表分析(不建議數據透視表進行去重操作)
本章小結——
趨勢分析:總體來看,消費總金額、消費次數、產品購買量、消費人數的趨勢想似:均先上升、下跌、趨於平穩並下降。
可以看出網站的流失用戶在增加,採用開源(拉新)節流(留存)的運營方式,來增加銷售收入。
上一部分是按月分析,主要看趨勢;本部分按用戶個體分析,來看消費能力。
按用戶消費金額進行降序排列,由圖可知,共計約25000個用戶:
啟發,只要維護好這5000個用戶(佔比20%)就可以把業績KPI完成70%,如果能把5000個用戶運營的更好就可以佔比更高。
通過以上基本數據描述分析可以清楚該網站整體的消費趨勢和用戶消費能力,現在進一步挖掘用戶消費行為數據,通過RFM模型、生命周期等方法對用戶進行分層,為後續運營管理提供依據。
首購可以進一步依渠道劃分,衡量不同渠道的差異性,從而量化渠道能力,為後期渠道優化提供依據。
用戶第一次購買分布,集中在前三個月(1997年1-3月);其中,在2月11日至2月25日有一次劇烈波動
由圖可知,1997年1-4月新用戶數量由90%跌落至80%以下;之後幾個月的新用戶量保持在80~82%區間。
RFM是一個經典的用戶分類模型,模型利用通用交易環節中最核心的三個維度——最近消費(Recency)、消費頻率(Frequency)、消費金額(Monetary)細分用戶群體,從而分析不同群體的用戶價值,最終達到精準營銷。
RFM從3個維度、分2個等級(均值)得到8類用戶分層。
通過RFM模型,把用戶分為8個類別,分別給用戶打標簽、將客戶分為重要價值、重要保持、重要挽留、重要發展、一般價值、一般保持、一般保留、一般發展8類客戶。
從RFM分層可知,本網站的大部分用戶為一般挽留客戶(可適當放棄這部分低價值客戶、也可進一步提高活躍度)、重要保持客戶(企業優質的客戶群,採用會員制運營)。具體運營策略依據參照如下:
為了避免劃分用戶群體過多(RFM從3個維度、分2個等級得到8類用戶分層的數據立方),可能導致針對性的營銷成本負擔上升;下面將通過聚類方法,基於RFM模型劃分成4類用戶,更快實現後期用戶管理。
顯然,歸一化預處理後,當n=2時,輪廓系數取最大值0.79,僅從模型聚類效果來講分2類合適;而標准正態化預處理後顯示,分4類的輪廓系數最大,達0.6964(但2-7類的輪廓系數整理差別波動不大)
參考漏斗模型,針對每個用戶,按18個月內的每個月對用戶情況進行分類,即新用戶、活躍用戶、迴流用戶、流失用戶。
通過下面的數據透視表即可得到每個用戶每個月的購買情況,從而進行轉化分析。
若本月無消費(即為0)
若本月有消費(即為1)
由上表可知,每月的用戶消費狀態變化
⑨ 建議收藏!10 種 Python 聚類演算法完整操作示例
聚類或聚類分析是無監督學習問題。它通常被用作數據分析技術,用於發現數據中的有趣模式,例如基於其行為的客戶群。有許多聚類演算法可供選擇,對於所有情況,沒有單一的最佳聚類演算法。相反,最好探索一系列聚類演算法以及每種演算法的不同配置。在本教程中,你將發現如何在 python 中安裝和使用頂級聚類演算法。完成本教程後,你將知道:
聚類分析,即聚類,是一項無監督的機器學習任務。它包括自動發現數據中的自然分組。與監督學習(類似預測建模)不同,聚類演算法只解釋輸入數據,並在特徵空間中找到自然組或群集。
群集通常是特徵空間中的密度區域,其中來自域的示例(觀測或數據行)比其他群集更接近群集。群集可以具有作為樣本或點特徵空間的中心(質心),並且可以具有邊界或范圍。
聚類可以作為數據分析活動提供幫助,以便了解更多關於問題域的信息,即所謂的模式發現或知識發現。例如:
聚類還可用作特徵工程的類型,其中現有的和新的示例可被映射並標記為屬於數據中所標識的群集之一。雖然確實存在許多特定於群集的定量措施,但是對所識別的群集的評估是主觀的,並且可能需要領域專家。通常,聚類演算法在人工合成數據集上與預先定義的群集進行學術比較,預計演算法會發現這些群集。
有許多類型的聚類演算法。許多演算法在特徵空間中的示例之間使用相似度或距離度量,以發現密集的觀測區域。因此,在使用聚類演算法之前,擴展數據通常是良好的實踐。
一些聚類演算法要求您指定或猜測數據中要發現的群集的數量,而另一些演算法要求指定觀測之間的最小距離,其中示例可以被視為「關閉」或「連接」。因此,聚類分析是一個迭代過程,在該過程中,對所識別的群集的主觀評估被反饋回演算法配置的改變中,直到達到期望的或適當的結果。scikit-learn 庫提供了一套不同的聚類演算法供選擇。下面列出了10種比較流行的演算法:
每個演算法都提供了一種不同的方法來應對數據中發現自然組的挑戰。沒有最好的聚類演算法,也沒有簡單的方法來找到最好的演算法為您的數據沒有使用控制實驗。在本教程中,我們將回顧如何使用來自 scikit-learn 庫的這10個流行的聚類演算法中的每一個。這些示例將為您復制粘貼示例並在自己的數據上測試方法提供基礎。我們不會深入研究演算法如何工作的理論,也不會直接比較它們。讓我們深入研究一下。
在本節中,我們將回顧如何在 scikit-learn 中使用10個流行的聚類演算法。這包括一個擬合模型的例子和可視化結果的例子。這些示例用於將粘貼復制到您自己的項目中,並將方法應用於您自己的數據。
1.庫安裝
首先,讓我們安裝庫。不要跳過此步驟,因為你需要確保安裝了最新版本。你可以使用 pip Python 安裝程序安裝 scikit-learn 存儲庫,如下所示:
接下來,讓我們確認已經安裝了庫,並且您正在使用一個現代版本。運行以下腳本以輸出庫版本號。
運行該示例時,您應該看到以下版本號或更高版本。
2.聚類數據集
我們將使用 make _ classification ()函數創建一個測試二分類數據集。數據集將有1000個示例,每個類有兩個輸入要素和一個群集。這些群集在兩個維度上是可見的,因此我們可以用散點圖繪制數據,並通過指定的群集對圖中的點進行顏色繪制。這將有助於了解,至少在測試問題上,群集的識別能力如何。該測試問題中的群集基於多變數高斯,並非所有聚類演算法都能有效地識別這些類型的群集。因此,本教程中的結果不應用作比較一般方法的基礎。下面列出了創建和匯總合成聚類數據集的示例。
運行該示例將創建合成的聚類數據集,然後創建輸入數據的散點圖,其中點由類標簽(理想化的群集)著色。我們可以清楚地看到兩個不同的數據組在兩個維度,並希望一個自動的聚類演算法可以檢測這些分組。
已知聚類著色點的合成聚類數據集的散點圖接下來,我們可以開始查看應用於此數據集的聚類演算法的示例。我已經做了一些最小的嘗試來調整每個方法到數據集。3.親和力傳播親和力傳播包括找到一組最能概括數據的範例。
它是通過 AffinityPropagation 類實現的,要調整的主要配置是將「 阻尼 」設置為0.5到1,甚至可能是「首選項」。下面列出了完整的示例。
運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,我無法取得良好的結果。
數據集的散點圖,具有使用親和力傳播識別的聚類
4.聚合聚類
聚合聚類涉及合並示例,直到達到所需的群集數量為止。它是層次聚類方法的更廣泛類的一部分,通過 AgglomerationClustering 類實現的,主要配置是「 n _ clusters 」集,這是對數據中的群集數量的估計,例如2。下面列出了完整的示例。
運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,可以找到一個合理的分組。
使用聚集聚類識別出具有聚類的數據集的散點圖
5.BIRCHBIRCH
聚類( BIRCH 是平衡迭代減少的縮寫,聚類使用層次結構)包括構造一個樹狀結構,從中提取聚類質心。
它是通過 Birch 類實現的,主要配置是「 threshold 」和「 n _ clusters 」超參數,後者提供了群集數量的估計。下面列出了完整的示例。
運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,可以找到一個很好的分組。
使用BIRCH聚類確定具有聚類的數據集的散點圖
6.DBSCANDBSCAN
聚類(其中 DBSCAN 是基於密度的空間聚類的雜訊應用程序)涉及在域中尋找高密度區域,並將其周圍的特徵空間區域擴展為群集。
它是通過 DBSCAN 類實現的,主要配置是「 eps 」和「 min _ samples 」超參數。下面列出了完整的示例。
運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,盡管需要更多的調整,但是找到了合理的分組。
使用DBSCAN集群識別出具有集群的數據集的散點圖
7.K均值
K-均值聚類可以是最常見的聚類演算法,並涉及向群集分配示例,以盡量減少每個群集內的方差。
它是通過 K-均值類實現的,要優化的主要配置是「 n _ clusters 」超參數設置為數據中估計的群集數量。下面列出了完整的示例。
運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,可以找到一個合理的分組,盡管每個維度中的不等等方差使得該方法不太適合該數據集。
使用K均值聚類識別出具有聚類的數據集的散點圖
8.Mini-Batch
K-均值Mini-Batch K-均值是 K-均值的修改版本,它使用小批量的樣本而不是整個數據集對群集質心進行更新,這可以使大數據集的更新速度更快,並且可能對統計雜訊更健壯。
它是通過 MiniBatchKMeans 類實現的,要優化的主配置是「 n _ clusters 」超參數,設置為數據中估計的群集數量。下面列出了完整的示例。
運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,會找到與標准 K-均值演算法相當的結果。
帶有最小批次K均值聚類的聚類數據集的散點圖
9.均值漂移聚類
均值漂移聚類涉及到根據特徵空間中的實例密度來尋找和調整質心。
它是通過 MeanShift 類實現的,主要配置是「帶寬」超參數。下面列出了完整的示例。
運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,可以在數據中找到一組合理的群集。
具有均值漂移聚類的聚類數據集散點圖
10.OPTICSOPTICS
聚類( OPTICS 短於訂購點數以標識聚類結構)是上述 DBSCAN 的修改版本。
它是通過 OPTICS 類實現的,主要配置是「 eps 」和「 min _ samples 」超參數。下面列出了完整的示例。
運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,我無法在此數據集上獲得合理的結果。
使用OPTICS聚類確定具有聚類的數據集的散點圖
11.光譜聚類
光譜聚類是一類通用的聚類方法,取自線性線性代數。
它是通過 Spectral 聚類類實現的,而主要的 Spectral 聚類是一個由聚類方法組成的通用類,取自線性線性代數。要優化的是「 n _ clusters 」超參數,用於指定數據中的估計群集數量。下面列出了完整的示例。
運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,找到了合理的集群。
使用光譜聚類聚類識別出具有聚類的數據集的散點圖
12.高斯混合模型
高斯混合模型總結了一個多變數概率密度函數,顧名思義就是混合了高斯概率分布。它是通過 Gaussian Mixture 類實現的,要優化的主要配置是「 n _ clusters 」超參數,用於指定數據中估計的群集數量。下面列出了完整的示例。
運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,我們可以看到群集被完美地識別。這並不奇怪,因為數據集是作為 Gaussian 的混合生成的。
使用高斯混合聚類識別出具有聚類的數據集的散點圖
在本文中,你發現了如何在 python 中安裝和使用頂級聚類演算法。具體來說,你學到了: